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Abstract

The outbreak of the COVID-19 pandemic has showed that the need for medical masks and respirators exceeds the current global
stockpile of these item and production capacity. Taking into account that ionizing radiation has been used for sterilization of
medical products for many years and electron beam irradiation enables the treatment of huge quantities of disposable medical
products in a short time this method should be tested for the masks decontamination. In this work two different filtering
facepiece respirators were irradiated with electron beam of different doses. Presented results confirmed that the decrease in
filtration efficiency after irradiation of both respirators results from elimination of the electric charge from the PP fibers in the
irradiation process. Nevertheless, applied doses did not influence filtering materials structure and integrity, therefore application

of treated in this way masks can be considered after restoration of electric charge what is crucial for their filtering function.

1. Introduction

The discussion around transmission routes of the SARS-CoV-2 virus has been accompanying the outbreak
of the COVID-19 pandemic. Currently available research supports the theory that the virus could be spread
not only by direct contact with the infected person, contaminated surfaces or fomites but may also be spread
by airborne transmission [1-3]. Respiratory droplets that may contain virus particles could be generated
not only during the coughing or sneezing but also are produced during laughing, breathing or speaking [4].
Moreover, size of the expiratory particles emitted in each of these activities is different [4].

Larger droplets precipitate quickly in the ground or another surface before drying, but smaller ones may
stay long in the air become aerosolized particles.

Therefore, special safety measures like hand-washing, social distance and use of personal protective equipment
(PPE) like filtering facepiece respirators should be implemented to prevent the SARS-CoV-2 transmission.

Generally, most PPE is designed to be used only one time and by one person prior to disposal, should not
be reprocessed and reused. Exposition of PPE to infectious materials during use (e.g., body fluids from an
infected person) results its microbiological contamination therefore used PPE should be removed promptly,
using proper removal and disposal procedures.

However, the outbreak of the COVID-19 pandemic has showed clearly that the current global stockpile of
PPE is insufficient, particularly for medical masks and respirators (FFP3 or FFP2 standard). Moreover, the
capacity to expand PPE production is limited therefore, the current demand for respirators and masks cannot
be met and the shortages of PPE has become a global problem. This issue has led to serious consideration of
temporary measures that can be adopted in crisis situations when serious shortage of PPE takes place. Based



on current evidence, in consultation with international experts WHO carefully considered possibility of the
reprocessing and reuse of the PPE [5]. The FDA also has issued Emergency Use Authorizations (EUAs)
for the emergency use of decontamination systems for certain respirators used by health care personnel
when there are insufficient supplies of new respirators resulting from the COVID-19 pandemic. However,
reprocessing should not affect integrity of the filtration materials and respirators after decontamination should
still fulfil strict requirements concerning filtration effectiveness. Different methods as hydrogen peroxide
sterilization, ethylene oxide fumigation, UV, microwave oven irradiation or hot water heating were tested for
decontamination of filtering facepiece respirators [6-9].

Tonizing radiation has been widely used for sterilization of disposable medical products for many years [10].
Different types of ionizing radiation, i.e., y- radiation from isotopic sources, high-energy X-rays from high-
power X-ray generators or electron beams (EB) from accelerators can be applied to radiation sterilization of
medical disposable products.

EB irradiation enables the treatment of huge quantities of disposable medical products in a short time.
However, electron beam is characterized with lower penetration than vy-rays, therefore, products of higher
density should be properly packed to be successfully sterilized. Nevertheless, due to high dose rate of EB
irradiation the decontamination of PPE is very fast process and appropriate dose is delivered in several
seconds what could limit post-oxidation related effects related to degradation of the materials (polymers)
that were used to PPE production [11].

It was confirmed that ionizing radiation is very effective in coronaviruses elimination and doses D19 do not
exceed 2 kGy [12, 13]. The Dj value is the dose required to reduce an exposed microbial population 90%
(one logyp) at a given conditions.

In this work two different filtering facepiece respirators (one conforming to the FFP1 standard and one
conforming to the FFP3 standard) were irradiated with electron beam of different doses. Then effect of EB
irradiation on filtration efficiency, morphology and degradation of the masks material was evaluated.

2. Materials and methods

To compare influence of EB irradiation on different respirators two different polypropylene masks: 3M 1863+
conforming to the high FFP3 standard and 3M 9101E conforming to the FFP1 standard were chosen for
the investigation. Masks were sealed in plastic bags and irradiated with doses 12 kGy and 25 kGy in air
atmosphere, at ambient temperature. Electron beam irradiation of samples was carried out using 10 MeV,
10 kW linear electron accelerator “Elektronika”. Delivered doses were confirmed using B3 radiochromic foil
dosimeter measured with a flat bed scanner and RisoScan software, with uncertainties evaluated at 8%. The
masks were irradiated in a single layer to minimise dose gradient and ensure uniformity of delivered doses.
For both tested samples the dose increase inside the samples was below 1 %.

Doses were selected taking into account assumption the possible variability in viral load in used masks and its
random distribution among products. On the base of microbial contamination found in surgical masks one
can realise that the standard deviation of the bioburden is higher than the mean N: 47 £ 56 cfu/ml/piece for
inside mask area and 166 + 199 cfu/ml/piece from mask outside area [14]. This results from the variability
of environments where masks are used and differences in the level of the bioburden. On the base of the
maximum of 1000 microorganisms should be present in the product, decontamination dose (a dose required
for 5 or 6 order of magnitude reduction of bioburden) was calculated as 12 kGy [14]. Moreover, masks were
also irradiated with standard sterilization dose 25 kGy which is defined as sterilization dose according to
VDpax method given in ISO 11137-2 standard “Sterilization of health care products — Radiation — Part
2: Establishing the sterilization dose”.. Masks that were not irradiated were used as control samples.

SEM images of the masks layers were obtained, using a Hitachi TM-100 scanning electron microscope with
an accelerating voltage of 15.0kV. Samples for the SEM examination were prepared according to a standard
procedure, fixed with conductive glue, and coated with a thin layer of gold. The samples were examined at
a magnification of 500x.



Thermogravimetric analysis (TGA) of masks samples was used to determine the thermal stability and possible
degradation of respirators materials was conducted with a Q500 TGA (TA Instruments) thermogravimetric
analyser in the temperature range 37-700°C at a heat ingrate of 10°C per minute, under a constant flow (60
mL/min) of nitrogen gas.

To determine the initial separation efficiency of the tested respirators samples before and after irradiation
the high quality test bench MFP NanoPlus (PALAS GmbH) was used. The main elements of this test-rig are:
UGF2000 generator which is able to generated nanoobject from liquid solution, cascade of impactors which
were used to cut-off the largest particles (which were not object of this research), the bipolar neutralizer
Kr-85, used to ensure equilibrium charge distribution on particles, DEMC classification column, pneumatic
filtration chamber and universal fluid condensation particle counter UF-CPC. The UF-CPC together with
the DEMC classification column form a system called U-SMPS. It allows to classify and count particles in
size range from 20 to 200 nm. Scheme of MFP nanoPlus is presented in Fig.1.

Fractional and overall filtration effectiveness was determined for solid particles (KCI nanocrystals) as well
as oil nanodroplets of Di-Ethyl-Hexyl-Sebacat (DEHS). For tests circular samples with diameter of 60 mm
were punched from tested respirators. All filtration test were performed at the air flow rate 95 L /min and the
air face velocity 0.559 m/s. For this experiments It was required to performed experiments in a sequence of
measurements without (upstream) and with (downstream) a filtrating material in the tested chamber. One
series consisted of two upstream measurements and two downstream measurements. There were carried out
two series of measurements for each masks material. Next, the average value of the filtration effectiveness was
calculated and presented on diagrams below. The time of a single measurement of upstream and downstream
was always 380 sec. For this time, the interval between measurements was included and it was 60 sec. Such
a long time of a single measurement was necessary to correctly classify and count nanoparticles. Moreover,
during the tests there were also determined the pressure drops across the tested materials and their initial
overall filtration efficiency. Size distribution of the generated aerosols used in the experiments is presented
in Fig. 2.

Results and discussion

SEM images of the separate layers that compose 1863+ and 9101E respirators are presented in Fig. 3 and
Fig. 4, respectively.

Filtration material used in both tested respirators was composed of pure polypropylene (PP), however
investigation of the 1863+ respirator filtration fabric revealed that the mask consist of four layers, each of
them is composed of the PP fibres of different diameters woven in different density (Fig. 3). Filtration media
that composes 9101E respirator consists of three layers, inner and outer fabric seems to be built of the fibres
of similar diameter and density, while middle layer is composed of the fibres of significantly smaller diameters
(Fig. 4).

Any holes or cracks in the fibres structure are not visible therefore one can conclude that applied irradiation
doses do not effect morphology of the fibres used for the respirators production.

The investigation of the thermal properties of respirators irradiated with different EB doses was carried out in
order to determine influence of radiation on thermal stability. Filtration materials can undergo degradation
or cross-linking under irradiation. In case of the 1863+ respirator small degradation of the material was
confirmed. The higher irradiation dose was the higher drop of onset temperature and temperature of the
maximum in the loss weight rate was observed (Fig. 5 and Fig. 6). However, observed decrease of the
characteristic temperatures is not big therefore degradation of the filtration material under EB irradiation is
minimal. Thermal decomposition of the material is single step process with one peak in temperature ~445-460
°C which is characteristic for PP degradation (Fig. 6).

Completely deferent phenomena in the thermal degradation of the 9101E filtration material is observed. Onset
temperature determined for the filtration materials increase with irradiation dose (Fig. 7). Thermograms
obtained for control sample and the sample irradiated with 12 kGy are characteristics for non-oxidized PP,



while peak present in the thermogram of the sample irradiated with 25 kGy is typical for oxidized PP (Fig. 8)
[15]. Therefore, one can conclude that oxidation of the PP took place in the irradiation process and the higher
dose was applied the level of PP oxidation was higher. PP oxidation lead to increase of the material thermal
stability and can be connected with reduction of the third type hydrogen and formation of carboxylate salt
(COO-N-Me3Ph) in oxidized PP [16].

It was observed decrease in filtration efficiency for irradiated respirators in comparison to the control samples.
Decrease in filtration efficiency observed for respirators irradiated with both doses was similar. Moreover, for
both respirators it was observed that filtration efficiency decreased with the increase of the particle diameter
(Fig. 9). The main mechanical mechanism of deposition for nanoparticles is diffusion (Brownian motion).
When the particle diameter increases, the Brownian motion are less intense, thus and diffusional mechanism
becomes less important in process of particle deposition, which explain the observed phenomenon.

Decrease in filtration efficiency may result from elimination of the electric charge from the PP fibers in
the irradiation process. To support this theory conditioning of the non-irradiated samples of respirators in
isopropanol (IPA) vapours was applied to remove the electric charge from the surface of studied filtrating
materials. Obtained results confirmed that drop in filtration efficiency for the irradiated filters is connected
with the elimination of the electric charge from the fiber surface (Fig. 10).

Baseline filtration efficiency was very high for both respirators: 99.7% for 1863+ respirator and 90.2% for
9101E respirator, whereas after irradiation with both doses filtration efficiency dropped to 62% (average
value for droplets and particles filtration) for respirator 1863+ irradiated with 12 kGy and similar value
66% was obtained for this respirator irradiated with 25 kGy. Even more significant decrease in filtration
efficiency to 42% for respirators irradiated with 12 kGy and 44% for masks irradiated with 25 kGy was
observed for 9101E respirator (Fig. 11). The decrease of filtration efficiency observed for control samples
conditioned in IPA was similar to the drop in filtration efficiency determined for irradiated samples what
supports theory that irradiation eliminate electric charge from the surface of PP fibres. Moreover, filtration
efficiency observed for irradiated samples conditioned additionally in IPA remained almost at the same level.

Additionally, pressure drop across the filtrating materials was determined for each respirators do investigate
influence of the irradiation on the integrity and stability of the filtration materials (Fig. 13). Small decrease of
the pressure drop across the filtrating materials after irradiation was observed for both respirators. However,
observed differences in pressure drop for control and irradiated samples were so small that can not be
connected with the changes of the filtrating materials structure.

Conclusions

Irradiation of two different filtering facepiece respirators with electron beam irradiation allows to determine
that applied irradiation doses does not affect filtrating materials stability and integrity. SEM analysis revealed
that morphology of the fibres used for the respirators production remains the same after irradiation with
both doses as the morphology of control samples and any effect like crack and holes are not visible for all
filtrating layers . In case of the 1863+ respirator slight degradation of the material was confirmed while
completely different behaviour was observed for 9101E respirator.

Presented results confirmed that the decrease in filtration efficiency after irradiation of both respirators
results from elimination of the electric charge from the PP fibers in the irradiation process. Therefore, de-
contamination of filtering facepiece respirators with electron beam irradiation is problematic without regard
to applied doses. Nevertheless, applied doses did not influence filtering materials structure and integrity,
therefore application of treated in this way masks can be considered after restoration of electric charge what
is crucial for their filtering function.
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