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Abstract

Estimating snow water equivalent (SWE) and snowmelt in semi-arid mountain ranges is an important but challenging task, due
to the large spatial variability of the seasonal snow cover and scarcity of field observations. Adding solar radiation as snowmelt
predictor within empirical snow models is often done to account for topographically induced variations in melt rates, at the cost
of increasing model complexity. This study examines the added value of including different treatments of solar radiation within
empirical snowmelt equations. Three spatially-distributed, enhanced temperature index models that respectively include the
potential clear-sky direct radiation (HTI), the incoming solar radiation (ETIA) and net solar radiation (ETIB) were compared
with a classical temperature-index model (TI) to simulate SWE within the Rheraya basin in the Moroccan High Atlas Range.
Extensive model validation of simulated snow cover area (SCA) was carried out using blended MODIS snow cover products
over the 2003-2016 period. We found that models enhanced with a radiation term, particularly ETIB which includes net solar
radiation, better explain the observed SCA variability compared to the TI model. However, differences in model performance
were overall small, as were the differences in basin averaged simulated SWE and melt rates. SCA variability was found to be
dominated by elevation, which is well captured by the TI model, while the ETIB model was found to best explain additional
SCA variability. The small differences in model performance for predicting spatiotemporal SCA variations is interpreted to
results from the averaging out of topographically-induced variations in melt rates simulated by the enhanced models, a situation
favored by the rather uniform distribution of slope aspects in the basin. Moreover, the aggregation of simulated SCA from the
100 m model resolution towards the MODIS resolution (500 m) suppresses key spatial variability related to solar radiation,

which attenuates the differences between the TI and the radiative models.

Introduction

Snow constitutes a key element in determining water availability in mountainous catchments, especially in
arid and semiarid regions, so that a good understanding of snowpack processes is crucial to support water
management strategies (Barnett, Adam, & Lettenmaier, 2005; De Jong, Lawler, & Essery, 2009; Vicuna,
Garreaud, & McPhee, 2011; Viviroli & Weingartner, 2008). Snowmelt and snow water equivalent assessment
using modelling techniques at the basin scale is therefore an important tool for water budget calculation and



runoff prediction (Bair, Rittger, Davis, Painter, & Douzier, 2016; Fayad et al., 2017; Han et al., 2019; Matin
& Bourque, 2013).

The Atlas mountain range in Morocco plays an important role in socio-economic development by providing
fresh water to irrigate the arid plains downstream and provide drinking water for populations and hydropower
generation (Chehbouni et al., 2008). In the headwater basins of these chains, streamflow is largely generated
from meltwater supplied by the snowpack during spring and early summer (Boudhar et al., 2009; Boudhar
et al., 2020; Hajhouji et al., 2018; Schulz & de Jong, 2004). With the current situation of water resources
scarcity induced by increasing demand due to both population growth and economic development, snowpack
monitoring and modelling appears as an essential task to support policy-making and decisions for water
resources management.

The lack of ground observations, but also the high temporal and spatial heterogeneity of snow cover driven
by highly variable temperatures, orographic precipitation and complex topography, represent challenging
limitations for snow studies in the Atlas range (Boudhar, Boulet, Hanich, Sicart, & Chehbouni, 2016; Boudhar
et al., 2010; Chaponnieére et al., 2005; Marchane et al., 2015). In this context, the use of simple conceptual snow
models combined with remote sensing data constitutes a useful approach to assess and quantify snowmelt and
SWE distribution at the basin scale. Conceptual models use simplified process representations with lower
data requirements than physically based models, and are thus widely used for large-scale applications in
high mountain catchments where in situ observations are sparse (Fassnacht et al., 2017; Schneider, Kilian, &
Glaser, 2007; Singh & Bengtsson, 2003). The most commonly used conceptual snow models are temperature-
index models, which depend solely on air temperature to calculate snowmelt (Hock, 2003). Despite their
simplicity, these models can provide reliable estimates of melt rates and perform generally well both at
the point scale and within distributed or lumped hydrological models (Abudu, Cui, Saydi, & King, 2012;
Hublart et al., 2016; Kampf & Richer, 2014; Réveillet, Vincent, Six, & Rabatel, 2017; Senzeba, Bhadra,
& Bandyopadhyay, 2015; Vincent, 2002). On the other hand, it has been demonstrated that enhanced
temperature-index models including solar radiation can outperform classical degree-day models (Bouamri,
Boudhar, Gascoin, & Kinnard, 2018; Carenzo, Pellicciotti, Rimkus, & Burlando, 2009; Gabbi, Carenzo,
Pellicciotti, Bauder, & Funk, 2014; Hock, 1999; Homan, Luce, McNamara, & Glenn, 2011; Pellicciotti et al.,
2005).

Solar radiation is one of the main components of the surface energy balance, generally contributing between
50 and 90% of the energy available for melt (Mazurkiewicz, Callery, & McDonnell, 2008; Willis, Arnold, &
Brock, 2002), and has a great influence on the spatial variability of ablation (Aguilar, Herrero, & Polo, 2010;
Boudhar et al., 2016; Comola et al., 2015; Herrero, Polo, Moiiino, & Losada, 2009). However, representing
the spatial variability within distributed snowmelt models for hydrological applications remains challenging,
especially in mountainous areas where the snow distribution depends on complex relationships between
meteorological conditions and the surrounding landscape, primarily topography (Allen, Trezza, & Tasumi,
2006; Anderton, White, & Alvera, 2004; Griinewald, Schirmer, Mott, & Lehning, 2010; Molotch, Colee, Bales,
& Dozier, 2005).

In this sense, various studies showed that altitude, slope, and aspect play a crucial role in determining the
spatial variability of snow process (Lehning et al., 2006; Letsinger & Olyphant, 2007; Lépez-Moreno & Stihli,
2008). Interactions between topography and solar radiation strongly modulates the shortwave radiation
balance and produce considerable shading effect, especially in high relief landscapes (e.g. Olyphant, 1984).
In the semiarid, subtropical context of the Atlas Range, solar radiation is expected to be significant for spatial
SWE modeling (Lépez-Moreno et al., 2017) considering that (i) solar radiation strikes the Earth surface at a
large elevation angle during spring over subtropical regions, delivering more heat per unit area; (ii) the arid
climate favors the transmissivity of solar radiation and the sparse vegetation favors high absorption of solar
irradiance by the surface; (iii) the pronounced topographic variability should cause heterogeneous radiation
loading on slopes (Baba, Gascoin, Kinnard, Marchane, & Hanich, 2019).

A previous study by Bouamri et al. (2018) demonstrated that snow ablation models enhanced with solar
radiation outperformed the simple temperature index (TI) (e.g. Hock, 2003) model at the point (station) scale



and were also more transferable between years, when model parameters were calibrated over a single year.
However, model performances were more similar when models were calibrated on a longer (4 year) period. In
this present study, we aim to further assess the contribution of solar radiation to the spatiotemporal variability
of simulated snowmelt and SWE at the basin scale in the Atlas range. Given the significant computational
cost entailed to calculate spatially distributed radiation fields, it is important to assess their relevance for
estimating snowmelt with conceptual models aimed for hydrological applications. Hence, a particular focus
of this study is to benchmark the performance of enhanced models including different treatments of solar
radiation, relative to the reference temperature index model.

Study area

The present work was carried out in the Rheraya watershed located in the High Atlas range in central Morocco
(Figure 1). The Rheraya watershed has a mixed snow-rain regime and constitutes the most important water
supply for the downstream region (Chaponniére et al., 2005; Hajhouji et al., 2018; Rochdane, Reichert,
Messouli, Babqiqi, & Khebiza, 2012; Schulz & de Jong, 2004). The snow cover is highly variable at annual
and inter-annual time scales and the snowmelt was found to contribute from 28 to 48% of the annual river
discharge (Boudhar et al., 2009). Average annual precipitation was 520 mm from 1988 to 2010 as measured
at the Club Alpin Francais (CAF) station at 2650 m above sea level (a.s.l), where 50% occurred as snow
during winter months (Boudhar et al., 2016). This basin covers an area of 228 km?, ranging in altitude from
1060 m a.s.] to a culminating point on the Jbel Toubkal summit, the highest summit of North Africa at
4167 m a.s.l. In terms of topography, the slopes are steep (mean of “24% from a 100 m resolution DEM)
and characterized by sparse vegetation in the spring which quickly disappear due to aridity. The Rheraya
has been used as an experimental site for mountain hydrological studies in the Tensift River basin (Jarlan et
al., 2015), leading to a concentration of studies on snow and hydrology in this basin (Baba, Gascoin, Jarlan,
Simonneaux, & Hanich, 2018; Baba et al., 2019; Bouamri et al., 2018; Boudhar et al., 2016; Hajhouji et al.,
2018).

Data and methods

Digital Elevation Model

A 4 m spatial resolution Digital Elevation Model (DEM) derived from Pleiades stereoscopic imagery was
used to represent the basin topography. Details about DEM processing are provided in Baba et al. (2019).
The DEM was previously validated for the Rheraya catchment, showing a vertical absolute accuracy of 4.72
m (Baba et al., 2019). The DEM was aggregated to a coarser 100 m resolution using bilinear resampling. This
resolution was chosen as a good tradeoff allowing for a reasonable model computation time while adequate
representing the dominant topographic features in the Rheraya catchment (Baba et al., 2019).

Meteorological forcing data

Available meteorological observations were obtained from ten stations at various locations within the Rheraya
watershed (Table 1, Figure 1). We used daily meteorological data retrieved from these weather stations, nine
located within the Rheraya watershed and one station outside the catchment boundaries. The type of variable
measured and period of available observations varied between the stations over the studied period (2003-
2016). While precipitation measurements were available at all ten stations, the availability of air temperature
and relative humidity varied among stations and over time (Figure 2). Oukaimeden-SM (3230 m a.s.l.) is
the only station with significant snowfall measuring all meteorological variables including total precipitation.
However, historical precipitation was measured with an unheated tipping-bucket rain-gauge, which yields
unreliable snowfall in winter (Bouamri et al., 2018). The lower altitude CAF station (2612 m a.s.l.) has more



reliable precipitation observations, since rainfall and snowfall are independently and manually measured
since 1988 (Figure 1). Despite its location outside, but near the catchment boundary, the CAF station
is crucial in this study to distribute precipitation at high elevations. Because the high elevation stations
Oukaimeden-SM and Neltner have unheated rain gauges, their precipitation records were excluded in order
to avoid interpolating unreliable observations.

Satellite data

MODIS daily snow product

Snow cover maps in this study were derived from the Moderate Resolution Imaging Spectroradiometer
(MODIS) daily snow cover products MOD10A1 and MYD10A1 (MODIS Snow Cover Daily L3 Global 500
m SIN GRID V006), respectively generated from the Terra and Aqua MODIS satellites, and acquired from
the National Snow and Ice Data Center (NSIDC) (Hall & Riggs, 2016). The MODIS snow products from the
Terra and Aqua satellites are available since February 2000 and February 2002, respectively. The datasets
are produced in a Geographic projection and were re-projected to the World Geodetic System 1984 (WGS84)
Universal Transverse Mercator (UTM) coordinate system using the data transformation options available at
NSIDC. A total of 5818 MOD10A1 images and 5309 MYD10A1 images covering 13 years from September
2003 to August 2016, were used in this study.

Snow cover was identified using the Normalized Difference Snow Index (NDSI) (Hall, Riggs, & Salomonson,
1995), which captures the high contrast between the characteristically high reflectance of snow in the visible
spectrum and its low reflectance in the shortwave infrared spectrum. Starting in MODIS version 6, the
fractional snow cover (FSC) has been replaced by the NDSI which is designed to detect snow cover with high
accuracy over a wide range of viewing conditions, besides providing more flexible data to the user (Riggs,
Hall, & Romén, 2016).

Processing and combining MOD10A1 and MYD10A1

Cloud obscuration is the main obstacle to using MODIS snow cover products (Parajka & Bléschl, 2008; Xie,
Wang, & Liang, 2009; Zhou, Aizen, & Aizen, 2013). The Terra and Aqua satellites have an approximate 3
hours average overpass time difference, during which cloud conditions can change significantly (Xue, Wang,
Xiao, Chen, & Liu, 2014). Various previous studies have shown that combining Terra and Aqua observations
reduces cloud obscuration (Gafurov & Bérdossy, 2009; Gascoin et al., 2015; Parajka & Bloschl, 2008; Wang
& Xie, 2009; Xie et al., 2009). For example, Gao, Xie, Yao, and Xue (2010) reported that combining Terra
and Aqua improved cloud filtering, by reducing the influence of transient clouds in daily reflectance data by
11.7% compared to using MOD10A1 alone, and 7.7% compared to using MYD10A1 alone. In this study, the
MOD10A1 and MYD10A1 were merged into a combined product called CMXD10A (Figure 3) as follow: (i)
on any given day if only one source (either Terra or Aqua) was available it was used for that day; (ii) for days
when both products are available, priority was given to the Terra product (e.g. Xie et al., 2009) since the
Aqua MODIS instrument provides less accurate snow maps due to dysfunction of band 6 on Aqua (Gascoin
et al., 2015; Riggs & Hall, 2004; Salomonson & Appel, 2006; Zhang et al., 2019). This means than any pixel
classified as either cloud, missing, or unclassified in MOD10A1 was filled with the corresponding pixel in
MYD10A1 if that pixel had a NDSI value, else the original MOD10A1 pixel classification was conserved
(Figure 3).

Subsequently, a spatiotemporal filter was applied to the merged CMXD10A product to fill in missing NDSI
data, i.e. pixels classified as cloud, but also those classified as either missing, saturated or unclassified,
collectively referred to as ‘missing’ therein. A spatial filter was first applied only if less than 60% of the
mountainous areas (elevations above 1000 m) were missing (Marchane et al., 2015). This filter classifies
missing pixels as snow-covered when their elevations is higher than the average elevation of the snowy pixel
for the entire basin. Then, a temporal filter was applied to linearly interpolate the remaining missing pixels
within a moving window extending 3 days prior and 2 days after the current date. NDSI values in the blended



and interpolated CMXD10A product were converted to binary maps of snow cover area (SCA) based on an
NDSI threshold of 0.4, following previous studies (Hall & Riggs, 2016; Marchane et al., 2015; Xiao, Zhang,
Boles, Rawlins, & Moore, 2004), i.e., for each pixel, SCA = 1 when NDSI [?] 0.4, otherwise SCA = 0 (Figure
3). The blending and filtering procedure reduced the fraction of missing pixels to 0.84%, similar to previous
results obtained in the same area by Marchane et al. (2015).

Snow models

Four different melt models were used to simulate SWE in the Rheraya watershed, ranging from a classical
degree-day or ‘temperature index’ (TI) model (Hock, 2003), which uses air temperature as the sole predictor
for melt, to ‘enhanced’ degree-day models that include solar radiation terms: (i) Hock’s temperature index
melt model (HTI) including clear sky solar radiation (Hock, 1999); (ii) an enhanced temperature-index
(ETTA) including global radiation (Pellicciotti et al., 2005) and (iii) an enhanced temperature-index (ETIB)
that includes albedo (Pellicciotti et al., 2005) (Table 2). These models were previously calibrated and
validated at the point scale at the Oukaimeden-SM weather station site (Bouamri et al., 2018), and the same
model coefficients were used for the spatial simulations in this study (Table 3). Further model descriptions
and results regarding model performances at the point scale are presented in detail in Bouamri et al. (2018),
and only the main model equations are given in Table 2.

Sublimation losses are not accounted for in empirical melt models. These can be significant in the Rheraya
basin, representing 7-20 % of annual snowfall (Boudhar et al., 2016). To take into account sublimation
losses, a constant average mean daily sublimation rates was used over the entire basin (Table 3), based on
the energy balance study at the Oukaimeden-SM site by Boudhar et al. (2016). While this approach is
admittedly simple, it allows correcting for first order sublimation losses and as such avoid compensating
these losses by reduced precipitation during interpolation, as can be the case when sublimation losses are
completely ignored.

Spatialization of meteorological forcing

Half-hourly meteorological observations retrieved from the different weather stations were averaged to daily
interval for the entire study period (2003-2016). Relative humidity (RH) observations was converted to dew
point temperature (DP) following Liston and Elder (2006b), since RH is considered a non linear function of
elevation; then mean monthly lapse rates for air temperature (Ta) and dew point temperature (DP) were
determined by linear regression of these variables against elevation.

To distribute Ta and DP observations, station observations were first adjusted to a common elevation using
the calculated lapse rate for each variable, and then spatially interpolated to the entire basin using the Barnes
objective analysis scheme, following Liston and Elder (2006b). The Barnes scheme is used for interpolating
data from irregularly spaced observations to a regular grid using a two-pass scheme (Barnes, 1964). It uses
a Gaussian distance weighting function to interpolate observations to the regular grid, in which the weight
that a station contributes to the grid point decreases with increasing distance from the point. The Barnes
method was chosen after a comparative analysis of interpolation methods (nearest neighbor, Inverse Distance
Weighting) in Rheraya, and showed that it results in smoother gridded fields and reduced errors compared
to other methods. The interpolated values are then lapsed back to their original grid elevation using the
same lapse rate, and the DP reconverted to RH.

Precipitation was spatially distributed by combining spatial interpolation with a non-linear lapse rate, fol-
lowing Liston and Elder (2006b). First, precipitation observations are interpolated to the model grid using
the Barnes objective analysis scheme. A reference topographic surface is constructed by interpolating the
station true elevations (as measured by GPS) using the same method. The modelled precipitation rateP,
(mm d!), at a grid point 2 with elevation Z, is computed as:
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Where P, is the interpolated station precipitation, Zyis the interpolated station elevation, and X (mm km™)
is the precipitation lapse rate, or ‘correction factor’ (Liston & Elder, 2006b). This enhancement factorX is
referred to as the ‘precipitation lapse rate’ (PLR) hereafter. An interpolated topographic reference surface
(Z; ) is used rather than a fixed reference because the precipitation adjustment function (equation (1)) is a
nonlinear function of elevation (Liston & Elder, 2006b).

Due to the large spatial and temporal heterogeneity of observed precipitation in Rheraya, a specific calibration
of PLR was sought. A range of 0.21- 0.35 km™ was used based on an value optimized on weather station
observations and the value suggested by Liston and Elder (2006b). The calibration-validation procedure was
performed on the positives SWE changes, mostly reflecting snow accumulation, simulated by the distributed
model at the AWS Oukaimeden-SM. PLR was calibrated over a lumped 3-year period (2003-2006) and
validated separately on the remaining two years (2007-2008, 2009-2010).

The extrapolation of precipitation using equation (1) can result in unrealistically large accumulation rates at
high elevations where there are few stations to constrain precipitation. Several studies have shown (Alpert,
1986; Collados-Lara, Pardo-Iguzquiza, Pulido-Velazquez, & Jimenez-Sanchez, 2018; Eeckman et al., 2017;
Roe & Baker, 2006) that while precipitation typically increases with elevation in mountain basins due to
orographic uplifting of air masses, this increase can cease and precipitation even decrease passed a certain
elevation. This is caused by the progressive depletion of moisture available for condensation within the rising
air mass. As such, it is crucial in hydrological modeling to limit the vertical extrapolation of precipitation to
avoid artificial snow build up at high elevations. In this sense, Liston and Elder (2006b) limited the difference
between the actual (Z,) and interpolated (Zp) station elevation (Z = Z,— Zp) to a default maximum value
(Zmax) of 1800 m. In this study, this parameter was subjected to a calibration/validation procedure against
the MODIS SCA maps for all melt models. Z,,,, was calibrated on odd years within a 300-1800 m range and
validated on even years for each model in order to reduce the climate dependency of the calibration period
(Arsenault, Brissette, & Martel, 2018). The validation was done using the optimal parameter for each model
as well as with the mean of the optimal parameters of each model (mean Zax).

The potential, clear-sky direct solar radiation was calculated as a function of solar geometry, topography
and a constant vertical atmospheric transmissivity following Hock (1999), and includes topographic shading
(Equation 4b in Table 2). Global radiation is calculated using a cloud factor parameterization based on
relative humidity (Equation 5b, ¢ in Table 2), and the net radiation uses an albedo parameterisation based
on accumulated positive degree days (Equation 6b in Table 2). Further details are given in Bouamri et al.
(2018).

Rain/snow partition

Determination of the precipitation phase remains decisive in hydrological modeling, especially in mountain
areas, to distinguish between liquid and solid inputs (Marks, Winstral, Reba, Pomeroy, & Kumar, 2013;
Yasutomi, Hamada, & Yatagai, 2011). Various approaches based on air temperature variable have been
used, such as a single air temperature threshold (e.g. Fassnacht, Venable , Khishigbayar ;, & Cherry, 2013)
or a varying snowfall fraction between two air temperature thresholds (e.g. Feiccabrino, Graff, Lundberg,
Sandstrom, & Gustafsson, 2015; Marks et al., 2013). This linear transition technique was used for the
rain-snow partition. The snowfall fraction is linearly interpolated between a temperature threshold for
rain Train (degC), and a temperature threshold for snow Tynow (degC) (McCabe & Wolock, 1999; Moore,
Trubilowicz, & Buttle, 2012; Tarboton & Luce, 1996). The daily snowfall (SF) and rainfall (RF) are computed
as:

SF = Pz (Train - Tz) / (Train - Tsnow ) (23)
RF = P, — SF (2b)




Where P, is total precipitation and T is air temperature at gridpoint x. If the daily air temperature is above
theT ain threshold then RF = P, andSF = 0, while if T, < Ty,owthen RF = 0 and SF =P,. The two fixed
temperature threshold, Ti,i, and Ty,ow, Were calibrated on odd years and validated on even years using the
total precipitation at the CAF station over 2003-2016 where manual observations of snowfall and rainfall are
available. A range of -3 to 3°C was selected for calibration based on observed temperatures during recorded
precipitations at the CAF station.

Model validation

The daily snow cover area (SCA) from the merged CMXDI10A product was used to assess the ability of
each model to simulate the spatiotemporal variability of snow cover in the Rheraya basin over the 2013-2016
period. A conversion of the simulated SWE to SCA was required in order to compare the simulated SCA with
MODIS SCA. This conversion was performed using a constant threshold (SWEy), i.e. for each grid, SCA =
1 when SWE [?] SWE( and SCA = 0 otherwise. The conversion was done at the model resolution (100 m).
The use of this fixed threshold avoids more complex snow depletion curves that require more parameters
unknown in our area (Magand, Ducharne, Le Moine, & Gascoin, 2014; Pimentel, Herrero, & Polo, 2017).
Therefore, SWE( was subjected to the same calibration/validation procedure as for Z,,.x, using a range of
values from 1 to 20 mm following previous studies (Baba et al., 2019; Gascoin et al., 2015)

Confusion matrices were used to assess the classification accuracy of the simulated SCA maps relative to
MODIS SCA. Confusion matrices are two-dimensional contingency tables that display the discrete joint
distribution of simulated and observed data frequencies (Zappa, 2008). Model skill scores were derived from
the confusion matrix (Table 5). The Heidke Skill Score (HSS) (Heidke, 1926) which is equivalent to the
Kappa coefficient proposed by Cohen (1960), measure the classification accuracy relative to that expected
by chance and has been extensively used for imbalanced datasets, including snow remote-sensing studies (e.g.
Baba et al., 2019; Notarnicola et al., 2013; Zappa, 2008). The HSS was thus the preferred global metrics used
for model assessment. Still, because no global metric is able to completely depict the types of classification
errors committed by a model, four metrics based on marginal ratios of the confusion matrix were also used
to investigate model errors, as done in several previous studies (e.g. Parajka & Bloschl, 2012; Rittger,
Painter, & Dozier, 2013; Zhang et al., 2019; Zhou et al., 2013). The true positive rate (TPR) measures the
proportion of MODIS snow-covered pixels correctly identified as such by the model. Oppositely, the true
negative rate (TNR) measures the proportion of MODIS snow-free pixels correctly simulated by the model.
The false-negative rate (FNR) measures the proportion of MODIS snow-covered pixels incorrectly identified
as snow-free by the model. Complementarily, the false-positive rate (FPR) or ‘False Alarm Rate’ (FAR) as
called by Zappa (2008) is the proportion of MODIS snow-free pixels incorrectly identified as snow-covered
by the model. Further descriptions of theses metrics are given in Table 5.

Results

Point scale model calibration and validation

Rain/snow partition

The optimal values of Typow and Tyain thresholds (Equation (2)) found from calibration were -2.5 degC and
2.5 degC respectively. Overall, the agreement between simulated and measured precipitation is fair with
a moderate performance for rainfall (NSE = 0.54; r = 0.75), and higher performance for snowfall (NSE=
0.77, r= 0.88) (Figure 4a). The frequency analysis of precipitation events at the CAF station shows that
snowfall-only events occurred at air temperatures up to +5degC, while rainfall-only events can occur at
temperature down to -5degC, with mixed events occurring within this -5degC to +5degC range (Figure
4b). The -2.5degC to +2.5degC calibrated range thus stands out as the best compromise to predict most



accurately absolute rain and snowfall quantities within this sensitive -5degC to +5degC interval. The better
performance for snowfall is encouraging for the ensuing SWE modelling.

Calibration of PLR

The optimal value for the precipitation lapse rate (PLR) found from calibration against SWE measurements
at the Oukaimeden-SM station was 0.35 km™!. The performance among models is relatively similar during the
lumped three-year calibration period (2003-2006) (Figure 5). The TI and HTT models show slightly better
performances (NSE =0.85) than the models including radiation (ETTA, NSE = 0.78) and albedo (ETIB, NSE
= 0.83). All models present the worst prediction performances during calibration year 2003-2004, during
which all models exaggerated ablation from mid December to mid February, especially for the ETIB model,
while this model performed better than others in late spring (Figure 5a). Independent validation shows
different results. In 2006-2007 the models performed unequally, particularly during the ablation period,
with models that include radiation (ETTA) and albedo (ETIB) showing an overall better performance (NSE
values of 0.60 and 0.78, respectively) than TI (NSE = -0.10) and HTI (NSE = 0.19) (Figure 5, Table 5).
In 2009-2010 all models underestimated accumulation, with slight differences in ablation, and the TT model
performed slightly better than other models (NSE = 0.58).

Overall, these results show that the simpler TT and HTI models performed slightly better in calibration than
additive ETT models, but they transfer less well to independent validation years. This agrees with previous
findings by Bouamri et al. (2018) who showed that enhanced ETI models transfer better to other years when
calibrated on a short time period. However Bouamri et al (2018) used the observed accumulation rate to
calibrate and validate the different melt models, in order to remove the influence of precipitation uncertainties
on the calibration of the melt model coefficients (Table 3). The comparatively worst performance observed at
the Oukaimeden-SM station in this study can thus be attributed to uncertainties in precipitation observations,
rain-snow partition, and the spatial interpolation of precipitation, and highlights the notorious difficulties in
distributing precipitations observations in mountainous basins (Gottardi, Obled, Gailhard, & Paquet, 2012).

Catchment-wide snow cover area

Parameter sensitivity and variability

The sensitivity of SCA model performance to the maximum elevation difference (Zpyax) and SWE-SCA
conversion threshold (SWEq) was assessed using the mean daily HSS metric computed over the calibration
period, i.e. the odd years of the 2003-2016 period (Figure 6). Generally, the model performance increases
with model complexity, i.e. the HSS is lowest for TT and highest for ETIB. All four models are more sensitive
t0 Zmax than theSWE( parameter. The mean optimal SWEgvaries between 3 mm for TI to 6 mm for ETIB,
with little variations in HSS score within this range as well as within each model. A mean optimalSWEj
value of 4 mm was thus used for validation on even years and for further inter-model comparisons. This
value is small compared to the 40 mm threshold used by Baba et al. (2019) and Gascoin et al. (2015) but
SWEj is resolution dependent, increasing with pixel resolution. The optimal Z,,,, shows more variability
between models, increasing with model complexity, i.e. lowest for TT and highest for ETIB. This is in fact to
be expected from this parameter, which should also partly correct errors in ablation. A meanZ,,,of 1000m,
which is within the zone of maximum performance for each model (Figure 6), was used for validation across
models and for further inter-model comparisons.

Table 6 summarizes the calibration and validation metrics using the optimal parameter sets of each model and
the mean optimal parameters. Generally, HSS increases slightly with model complexity, where the enhanced
ETI (A&B) perform slightly better than the simpler TI and HTI models. Choosing the multi-model average
parameter set over the model-specific optimal parameters affects little the performance in validation (Table
6a, b). In fact, some increases in performance are even noted, which suggest that the model-specific values
may be slightly overfitted and less transferable compared to the multi-model average parameters. The slight
overall differences in performance between models suggest that, on average, all models have similar abilities



to classify snow vs. snow free MODIS pixels, as assessed by the HSS metric. The small differences could
be partly attributed to the fact that performance metrics are averaged over the whole calibration period.
Hence, interannual and seasonal differences in model performance are investigated next.

Basin-wide SWE and SCA

Time series of daily simulated basin-wide SWE and fractional snow cover (fSCA) show significant intra and
inter-annual variability over the period (2003-2016) (Figure 7). The fSCA simulated by the four models are
in good agreement overall with MODIS observations, both in terms of timing and magnitude. In some years,
however, the simulated snow covers lasts longer than observed in MODIS (2004, 2007, 2008, 2009, and 2012).
These years had above average basin-wide simulated SWE (Figure 7a), so that overestimated accumulation
in the upper basin during these wetter years could be the cause for the longer-lasting simulated SCA. In
contrast, in years with scarce snowfall and thinner simulated snowpack (e.g. 2011, 2013, 2014, and 2016),
the agreement between simulated and observed fSCA is better.

All four models show slight differences in their basin-wide fSCA and SWE predictions. Error metrics for the
whole period (2003-2016) show that increasing model complexity slightly improves the correlation (r) and
predictive skill (NSE) for basin-wide fSCA (Figure 7c). Both the root mean squared error (RMSE) and mean
absolute error (MAE) also decrease with model complexity, but a larger bias for the ETIB model slightly
increases its overall error relative to the ETTA model (Figure 7d). Hence, overall, the best performance is
primarily observed for both enhanced radiative models ETTIA and ETIB followed by the HTT and the classical
TT models. Still, given the slight differences between models and the increased computational cost associated
with enhanced radiative models, it is tempting to conclude at this point that the simplest temperature-based
TT model offers a satisfactory performance to simulate SWE for hydrological applications in the High Atlas
range. The causes for inter-model differences in model performance and in simulated SWE and melt are
explored in the next sections.

Seasonality

The seasonality of the simulated SWE and fSCA was investigated to better understand seasonal inter-
model differences (Figure 8). Models with a radiation term (HTI, ETIA, and ETIB) were contrasted to the
classical TT model to highlight the effect of the different radiation terms to the simulated snow cover and
model performance relative to MODIS (Figure 8d-f). The mean basin SWE seasonal cycle calculated over
snow-covered areas only shows similar variations among models, particularly during the accumulation season
(October-March) (Figure 8a). The mean simulated peak occurs in April and varies from 172 mm to 195
mm between models. Increasing differences between the ETI models and TI from March to May indicates
increasing ablation rates simulated by these models relative to TI, while the HTT model differs significantly
from TI only from May onward (Figure 8d). Maximum differences are reached at peak SWE in April for
ETIA (-24 mm) and ETIB (-14 mm) and in June for HTT (-21 mm) (Figure 8d). When considering mean
SWE over the whole basin surface, differences between the enhanced models and TT are more positive during
winter and occur at different times. ETIB stands out with the largest mean peak SWE of 37 mm in March,
following by HTT and the other models. In contrast to the classical TI, all radiative models simulate higher
mean basin SWE in accumulation, while ETTA and HTT simulate lower SWE in late spring compared to TI.

The different seasonal behaviours in the mean basin SWE (‘SWEp,.g,’) and mean SWE over snow covered
areas (‘SWEgca’) can be explained by differences in simulated SCA, since SWEp,sn = fSCA / 100 x
SWEgca. All models, except ETIB, underestimated MODIS fSCA during accumulation, whereas all models
overestimated MODIS fSCA during the ablation period, by 4.2% for ETIB and TI, and by 3.4% for HTT and
ETIA (Figure 8c, f). This confirms the tendency identified in Figure 7 for wet years to have a longer-lasting
snow cover simulated by all models, relative to MODIS. Inter-model differences show that all enhanced
models simulate a larger snow cover than TI during the accumulation period, with ETIB being the most
different and also most in line with MODIS, followed by HTT and ETIA. This explains the positive differences
in SWEpasin between these models and TI during the accumulation period (Figure 8b, e).



Seasonal variations in SCA model performance, as measured by the HSS index, were investigated over the
calibration, validation, and entire period (Figure 9a-c). Globally, the HSS metric is highest (70.6-0.75) during
winter and spring (December-April) but decreases sharply during the shoulder season (Oct.-Nov. and May-
June). This shows that the model performance is generally good during most of the snow season, but that
classification errors increase when the snow cover is restricted in the basin. All radiative models performed
better than TT especially in the accumulation period, with ETIB performing best, with a maximum increase
in HSS of 0.05 in calibration and 0.03 for both the validation and entire period. The models become gradually
more similar in late spring (May-June).

Spatial performance

Model performance in predicting spatial variations in SCA was investigated by plotting the HSS metric
against elevation bins (Figure 10). Overall, the HSS index increases with elevation for all models (Figure
10b). The mean fractional snow cover area (fSCA) also increases with elevation, in line with MODIS {SCA,
but all models start overestimating fSCA above 3500 m (Figure 10a). The lowest HSS values are thus
associated with the marginal and transient snow conditions found at the lowest elevations of the basin.
Since these elevation areas represent a large share of the basin hypsometry (Figure 10a), the increased
classification errors in these areas have a large influence on the basin-wide and time-averaged performance
metrics displayed on Figure 6 and Table 6.

All enhanced models perform generally better than TI, although the gains in performance remain overall
small (Figure 10c-e). Elevation trends also differ between the radiative models. ETIB performs best, but
the improvement is most pronounced at lower elevations (Z<3000m), which represent a large portion of
the total basin but where there is less snow present throughout the year (Figure 10a). At high elevations
(Z>3000m) where mean SCA is above 30%, the gain in performance becomes more marginal for ETIB, while
it is somewhat more pronounced for HTT and ETTA. While the bulk of the elevation bands show increased
performance relative to TI, a small portion of grid points, in some cases up to of “20% (left side of boxes in
Figure 10 boxplots), suffered increased errors relative to TI.

Further insights into the performance behavior between models can be obtained by looking at classification
success (TPR, TNR) and error (FPR, FNR) rates by altitude (Figure 11) . Overall, TPR increases with
elevation, reaching a maximum value of “0.9 around 3600 m. (Figure 11, row 1) . The enhanced models
better classify snow presence than TI in the more transient snow zones (71500-3200m), with ETIB clearly
performing best. The improvement for HTT is small but rather consistent with altitude, whereas ETIA
shows more variations with even losses in performance in the highest and lowest altitudes relative to TI.
Opposite to TPR, the true negative rate (TNR) decreases with altitude. Both ETT models show the largest
deviations with TI, but decreased accuracy is seen at medium elevations, especially for ETIB (Figure 11,
row 2). The elevation profile of the FPR error rate shows that all models tend to over predict snow presence
towards higher altitudes (Figure 11, rows 3). Conversely, models rarely overpredict snow-free conditions at
high elevations, but do so at the lower altitudes (Figure 11, rows 4). Enhanced models can be seen to reduce
both the FPR and FNR errors on average, but large scatter occurs within elevation bands. The clearer
improvement relative to TT is the decreased FNR error for ETIB (Figure 11d, rows 4).

Snow cover duration (SCD)

The simulated snow cover duration (SCD) was also compared to the observed SCD from MODIS (Figure
12) during calibration (odd years) and validation (even years). The radiative models that include global
radiation (ETIA) and albedo (ETIB), slightly outperform (r = 0.96, RMSE = 17 days) the HTT and TI
models (r = 0.95, RMSE = 18-19 days) in validation. Overall ETIB performed best, with lowest RMSE in
calibration and in validation (equal to ETIA) and lower bias in validation. However, differences between
models do no stand out clearly for SCD, despite significant spatial differences in SCA predictions and errors
between models (Figure 10, Figure 11).
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Discussion and conclusions

Difference in model performance

The enhanced radiative models, especially ETIB, showed increased performance relative to the simplest TI
model for predicting basin wide SCA over time (Figure 7). In particular, the peak SCA in February was
notably better simulated by the ETIB model compared to the other models (Figure 8c). However, overall
differences in model performance were small. More contrasts between models were found in their ability to
simulate the spatial heterogeneity of the snow cover. While all radiative models improved SCA predictions,
the ETIB model showed the most improvement, with the largest gains in performance at mid to low elevations
(Figure 10). The increasing FPR and decreasing FNR with elevations suggest that there may be a persistent
elevation bias in the simulated SCA (Figure 11), which is partly alleviated by radiative models, in particular
ETIB. This suggests that increasing global radiation with altitude (due to higher atmospheric transmissivity)
and the consideration of snow albedo result in steeper ablation elevation profiles relative to temperature-only
melt calculations with the TI model. However, the remaining elevation trends in the error rates point to
lingering problems with the distribution of precipitation in the basin.

The distribution of precipitation in mountainous areas is challenging (Gottardi et al., 2012; Grunewald,
Buhler, & Lehning, 2014; Nepal, Krause, Flugel, Fink, & Fischer, 2014), especially in a data-scarce regions
such as the High Atlas Range. The exclusion of two high elevation stations with unreliable unheated
tipping bucket gauges left us to rely heavily on the CAF station to extrapolate precipitations to higher
elevations. While reliable, this station is located near the basin boundary and its elevation (2612 m) is
low compared to the considerable amount of snow-covered terrain higher up (Figure 10a). Furthermore,
the precipitation lapse rate calculated using the available stations up to 2612 m was found to be poorly
defined due to the large spatial and temporal heterogeneity of observed precipitation, which prompted
the decision to use a single and constant non-linear lapse rate calibrated on positive SWE changes at the
Oukaimeden station (3230 m). The use of a calibrated maximum difference elevation (Zyax) to limit the
vertical extrapolation of precipitation may have limited the errors associated with this approach, but better
spatially-distributed precipitation fields would be needed in the future to improve snow simulations for
hydrological model applications. Outputs from numerical weather models are increasingly used for this
purpose, but are still problematic for precipitation (Bellaire, Jamieson, & Fierz, 2011; Reveillet et al., 2020).
Scaling precipitation inputs by measured snow distributions is another promising approach but requires
costly airborne surveys to acquire reliable snow depth maps (Vogeli, Lehning, Wever, & Bavay, 2016).
Progresses in mapping snow depth from high-resolution stereoscopic satellites images could however open
new avenues on this front (Marti et al., 2016). Assimilation of snow cover maps within snow models can also
help reducing precipitations biases, but increases computation costs (Baba et al., 2018; Margulis, Cortes,
Girotto, & Durand, 2016).

Our results show that most of the snow cover variability is driven by elevation and that this trend was
adequately captured by all four models (Figure 10). Hence the simple TI model could be sufficient for
melt simulations at the basin scale, due to the strong dependence of temperature and related melt rates on
elevation, as found elsewhere (e.g. Hock, 2003; Reveillet et al., 2017; Vincent, 2002). The enhanced radiative
models improved the snow cover simulations, but given their significant extra computational cost, our results
suggest that the simpler TI is adequate for operational snow simulations in the high Atlas Range. This
contrasts previous studies that showed that including solar radiation improves the performance of spatially-
distributed melt models for predictions of glacier mass balance (Gabbi et al., 2014), snow cover area (Follum,
Downer, Niemann, Roylance, & Vuyovich, 2015) and streamflow from snow-fed basins (Brubaker, Rango,
& Kustas, 1996; Follum, Niemann, & Fassnacht, 2019). On the other hand, the use of a fully distributed
(grid-based) model improved the simulations of SCA relative to semi-distributed temperature index models
previously applied in this basin (Boudhar et al., 2009).

Despite the overall good performance for the simple TI model, enhanced models still explained more vari-
ability in SCA per elevation band, but with notable discrepancies among models (Figure 10). To better
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understand these discrepancies, the simulated SWE and melt rates were compared by elevation band (Fig-
ure 13). The HTT model shows the smallest difference relative to TI, in line with its more similar performance
in SCA simulations. This can be attributed to the fact that HTT only considers the potential clear-sky ra-
diation and thus ignores temporal variations in atmospheric transmissivity and albedo. Both ETI models
show significant differences in simulated SWE (Figure 13c, d) and melt rates (Figure 13g, h) relative to
TI. The best performing ETIB model simulates smaller melt rates and larger SWE at middle elevations
(2000-3500 m), and higher melt rates and smaller SWE at the highest elevations (>3500 m). Interestingly,
median differences in SWE and melt rates per elevation band are rather small, which again shows that the
preponderant influence of elevation on the simulated SWE is well captured by the simple TI model. However,
significant deviations occur, up to ca. +-20 mm for SWE and ca. +-1 mm d! for melt rates (Figure 13c-d,
g-h). Even more interesting is the fact that these significant differences in melt rates and SWE do not result
in larger inter-model differences in SCA simulations. On the one hand, this shows the general limitation of
using satellite SCA to validate and compare model performance for SWE simulations. On the other hand,
it also points to possible adverse effect of using coarse resolution products such as MODIS for validation of
higher-resolution models. This topic is discussed in detail next.

Effect of resolution on SCA validation

In order to compare the simulated SCA with MODIS, the modelled SCA was aggregated from 100 m to the
500 m resolution of MODIS (Figure 3). This has the potential to suppress significant spatial variability in
the finer (100 m) scale simulated SCA. To explore this, the snow cover duration (SCD, equal to mean SCA
x 365 days) modelled at the original 100 m resolution was compared to that aggregated at 500 m resolution
(Figure 14). While the overall elevation trends remain unchanged, the aggregation of SCA from 100 m to
500 m results in significant changes in SCA at some elevations, especially for the ETI models (Figure 14c-d
vs. g-h). The simulated median SCD elevation profiles at 500 m resolution are not as smooth as the original
ones at 100 m (Figure 14a vs. e). This is explained by the considerable smoothing of SCA variability related
to slope and aspect variations at scales finer than 500 m, as seen by the considerable noise in the median
northern exposure index profile for the 500 m aggregated vs. original 100 m DEM (Figure 14a vs. e). This
loss, upon aggregation, of topographic-induced SCA variability simulated by the radiative models can partly
explain why the SCD simulated at 500 m by the different models give overall similar results compared to
MODIS (Figure 12, Figure 14i-1).

The smoothing effect of model aggregation is particularly evident when plotting modelled quantities (SWE,
melt rates and SCD) by aspect (Figure 15). At the original 100 m model resolution, all radiative models
expectedly simulate smaller melt rates and larger SWE on northern slopes, and vice-versa on southern slopes
(Figure 15a, b), which results in longer-lasting snow on northern slopes compared to TI (Figure 15¢). This is
in line with previous studies (e.g. Baba et al., 2019; Comola et al., 2015; Lopez-Moreno & Stahli, 2008) which
found that south-facing slopes receive more solar radiation and generally melts faster than on north-facing
slopes. Aggregation of simulated SCA to 500 m results in significant disruption of this pattern (Figure 15d),
which can be attributed to changes in the distribution of slopes and aspects following aggregation (Figure
15e). These results corroborate previous conclusions made by Baba et al. (2019) concerning the influence of
DEM resolution on the simulation of snow cover. Using the physically-based model SnowModel (Liston &
Elder, 2006a), they found a significant degradation of model performance when aggregating the model DEM
to resolutions of 500 m and beyond, which disrupted the representation of slopes in the basin and affected
solar radiation variability. Comola et al. (2015) also showed that the effects of solar radiation patterns
on the hydrologic response of snow-covered basins are scale dependent, i.e., significant at small scales with
predominant aspects and weak at larger scales where aspects become uncorrelated and orientation differences
average out. They further found that a calibrated TT model on scales larger than the aspect correlation scale
are well transferable. Their conclusions find support in our results: (i) the inclusion of radiation patterns
in the large Rheraya catchment has a small influence overall on basin-wide simulated average SWE and
SCA. (ii) The influence of solar radiation on simulated SWE and melt rates is greatly suppressed when
aggregating model outputs to MODIS resolution of 500 m, which smooths out radiation effects and brings
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the radiative models closer to simulations made with a simple temperature-based (TI) model. Our results
support the notion that in large basins (i.e. larger than the correlation length of the terrain), topographic-
induced variations in solar radiation tend to average out so that mean simulated melt rates, SWE and SCA
do not differ greatly from using temperature alone to predict snowmelt. A more uniform distribution of slope
aspects in a basin, such as observed here for Rheraya (cf. Figure 15), will reinforce this phenomenon. In the
context of operational flow forecasting in the High Atlas Range, simple temperature index models will thus
provide sufficiently accurate snowmelt estimates.

Our findings also call for caution when using medium resolution satellite products such as MODIS to validate
spatially distributed snow models. The necessary aggregation of finer-scale model outputs to a resolution
larger than key processes scales, such as that where interactions between topography and solar radiation
are greatest, will suppress valid model information. The increasing availability of publicly available high-
resolution snow cover maps imagery (Gascoin, Grizonnet, Bouchet, Salgues, & Hagolle, 2019) should pro-
gressively reduce our dependence on MODIS snow cover products and help crash-testing high-resolution
snow models in the future.

Data availability statement

MODIS data that support the findings of this study are openly available in the National Snow and Ice Data
Center (NSIDC) at (https://nsidc.org/), and meteorological data are upon demand with authors.
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Tables

Table 1: Characteristic and geographic coordinates (WGS-84) of weather stations in the Rheraya catchment,
with available observations: precipitation (P), air temperature (T), relative humidity (RH), wind speed (WS),
snowfall (S), shortwaves radiations (SR) and runoff (Q).
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Elevation Elevation Elevation Elevation

Latitude Latitude Longitude Longitude GPS GPS DEM DEM Z interp Z interp
Stations  (°) () () ) (m) (m) (m) (m) (m) (m)
Elevation Elevation Elevation Elevation
Latitude Latitude Longitude Longitude GPS GPS DEM DEM Z interp Z interp
Stations  (°) (") () ) (m) (m) (m) (m) (m) (m)
Aremd 31.12 -7.92 -7.92 1940 1940 1938 1938 2015 2015 P, T,
RH,
WS
Asni 31.25 -7.98 -7.98 1170 1170 1183 1183 1105 1105 P
Imskerbour31.20 -7.94 -7.94 1404 1404 1426 1426 1931 1931 P, T,
RH.
Neltner  31.07 -7.94 -7.94 3207 3207 3120 3120 1961 1961 P, T
RH,
WS
Oukaimede3d.18 -7.87 -7.87 3230 3230 3239 3239 2482 2482 P, T,
SM RH,
SR,
WS
Tachedert 31.16 -7.94 -7.94 2343 2343 2321 2321 2467 2467 T, RH
Tamatarte 31.14 -7.90 -7.90 1924 1924 1913 1913 2119 2119 P
Matate 31.16 -7.85 -7.85 1825 1825 1800 1800 1997 1997 P
CAF 31.21 -7.86 -7.86 2612 2612 2635 2635 2515 2515 P, T,
S
Tahanaout 31.29 -7.96 -7.96 925 925 1069 1069 986 986 P, Q

Z interp interpolated weather station elevations at Rheraya catchment.

Table 2 : Melt models equations used in this study. Variables are defined in footnote and model parameters

in Table 3.

Snowmelt models

Classical temperature index (TI) melt model

Hock’s temperature index melt model (HTT)

Enhanced temperature-index (ETIA) melt model

20

Equations
M =
DDF x T, T, >Tr
0 Ta < TT
(3)
M =
(MF +RF X Iot) Tq T, > Tr
0 T, < Tr
a) It = Ip m ) o Oisz) xcos 8 (4b
4a) Inoy = Iy (£ (wrtee
M =
TF x T,+SRFy, x I T, > Tr
0 Ta < TT

(5a) R = —0.000054 x RH? — 0.0024 x RH + 1.3
(5b) I = R x L (5¢)



Snowmelt models

Equations

Enhanced temperature-index (ETIB) melt model M=

0 Ta S TT
(6a) a =p; —p2 ((PDD )) (6b)

{ TF x T, +SRFpe (1—a) I T, > Tr

M is the melt rate (mm d!), T, is daily mean air temperature (°C) and Tr is a threshold temperature fixed
at 0°C. I,ot is the potential clear-sky incoming direct solar radiation (W m™2), I; is the solar constant (1368
W m2), R, and R are the mean and actual Sun-Earth distance, {a is the vertical clear-sky atmospheric
transmissivity (0.75), P is the atmospheric pressure in Pa and Fyis standard atmospheric pressure (101 325
Pa). 7Z is the solar zenith angle, and 6 is the incidence angle of the Sun on the surface.I is incoming shortwave
radiation (W m™2), and « is snow albedo, where PDD (mm °C! d!) is the positive degree-day sum since
the last snowfall. The parameter p; represents a typical maximum albedo value for fresh snow (0.8) and py
is the empirical snow albedo decay parameter (0.21). RH is relative humidity.

Table 3 : Summary of model parameters values previously calibrated by Bouamri et al. (2018) and prescribed

in this study.

Prescribed Optimal Calibrated Calibrated Optimum  Optimum  Optimum
parameter Description Value Unit parameter parameter Description value value value
DDF Degree- 2.7 mm d! TLP Temperaturélemperaturélemperature0.56 °C 100
day °Ct lapse rate lapse rate lapse rate m!
factor
MF Melt 1.8 mm d! DPLR Dew Dew Dew -0.68 °C 100
factor °Ct point point point m™
lapse rate lapse rate lapse rate
RF Potential  0.005 m? mm PLR PrecipitatiorPrecipitatiorPrecipitatior).35 km?
radia- Wt lapse lapse lapse
tion dt rate rate rate
factor °Ct
TF Temperaturel.1 mm d! SWEq SWE- SWE- SWE- 4 mm
factor °Ct SCA SCA SCA
threshold  threshold threshold
SRF i, Global 0.025 m? mm Zmax Maximum Maximum Maximum 1000 m
radia- w1t eleva- eleva- eleva-
tion d! tion tion tion
factor difference  difference difference
TF Temperature).6 mm d! Tsnow Temperaturélemperaturélemperature 2.5 °C
factor °Ct thresh- thresh- thresh-
old for old for old for
Snow Snow SNOW
SRF Net 0.07 m? mm Train Temperaturélemperaturélemperature2.5 °C
net short- w1 thresh- thresh- thresh-
wave d! old for old for old for
radia- rain rain rain
tion
factor
D1 Fresh 0.8 -
snow
albedo
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Prescribed Optimal Calibrated Calibrated Optimum  Optimum  Optimum
parameter Description Value Unit parameter parameter Description value value value
D2 Albedo 0.21 -

decay

parameter
Subli Constant  0.244 mm d!

subli-

mation

rate

Table 4 : Description of confusion matrix between simulated and MODIS SCA, and the evaluation metrics
used for model assessment. TP: true positive, TN: true negative, FP: false positive, FN: false negative.

SCA MODIS SCA MODIS

SCA 4im  Snow Snow free

Snow TP FP

Snow free FN TN

Metrics Definitions Definitions

TPR TP1EN) (TP1FN)

TNR TINLFP) e

FNR (Flg% (FN+TP)

FPR (FPFﬁ (FP+TN)

HSS 2x (TPXTN—FPxFN) 2x(TPXTN—FPxFN)
(TP+FP) X (FP+IN)+(IP+FN)x (FN+TN) (TP+FP)x(FP+IN)+(ITP+FN)x (FN+TN)

Table 5 : Error statistics for calibration and validation of the precipitation lapse rate (PLR) at Rheraya

catchment

Snowmelt models Metrics Calibration Validation Validation
(km™') 2003 to 2006 2007/2008 2009/2010

TI BIAS -3.45 -48.99 70.68
NSE 0.85 -0.10 0.58
RMSE  0.04 0.07 0.08

HTI BIAS 1.27 -39.45 75.86
NSE 0.85 0.19 0.54
RMSE 0.04 0.06 0.08

ETIA BIAS 15.38 -22.29 76.72
NSE 0.78 0.60 0.53
RMSE  0.05 0.04 0.08

ETIB BIAS 10.66 -8.05 83.09
NSE 0.83 0.78 0.47
RMSE  0.05 0.03 0.09

Table 6 : HSS index and optimal SWEq and Z,,.« parameters obtained in calibration-validation

CALIBRATION CALIBRATION

CALIBRATION

Models TI
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HTI



CALIBRATION CALIBRATION CALIBRATION

HSS 0.45 0.47
VALIDATION VALIDATION VALIDATION
A- Optimal parameters sets of each model [SWEq (mm), Zpax(m)] A- Optimal parameters sets of eacl
TI [3, 700] HTI [4, 900]
HSS 0.46 0.47
B- Mean optimal parameter [SWEq = 4 mm, Z,,x = 1000 m)] B- Mean optimal parameter [SWE;
HSS 0.45 0.47

Figures captions

Graphical Abstract
Figure 1. Geographical location of the Rheraya basin and weather stations

Figure 2. Available observations during the study period (2003-2016) for the different weather stations in
the Rheraya catchment. RH: relative humidity; Ta: air temperature; Pr: total precipitation.

Figure 3 : Flowchart describing the steps for processing MODIS data and comparing MODIS and simulated
snow cover area (SCA). Purple color: data source, pink: sub-result, and gray: main results.

Figure 4. Partition of precipitation into snowfall and rainfall. (a) Simulated vs. observed precipitation after
calibration of the fixed rain-snow partition temperature thresholds. (b) Observed frequencies of snow, rain,
and mixed precipitation events per one-degree temperature bin at CAF weather station over the 2003-2016
period.

Figure 5. Calibration and validation of precipitation lapse rate (PLR) on observed SWE at AWS
Oukaimeden-SM. (a-c) calibrated years, respectively 2003-2004, 2004-2005, 2005-2006; (d-e) validated years,
respectively, 2007-2008 and 2009-2010.

Figure 6 . Sensitivity of model SCA simulation performance to Z,cand SWEy parameters. The model
performance is assessed with the mean HSS index over the calibrated period. Optimal parameter values are
indicated by asterisks (*). (a) TI; (b) HTI; (¢) ETIA; (d) ETIB.

Figure 7. Time series of (a) simulated mean snow water equivalent (SWE), and (b) simulated mean SCA
(fractional snow cover area: fSCA) of all models vs MODIS and (c) errors statistics over the entire period
2003-2016 in the Rheraya catchment.

Figure 8 : Seasonal cycle of mean simulated snow water equivalent (SWE) (a) over snow-covered area only;
(b) over the whole basin; (¢) mean simulated fSCA vs MODIS; (d-e) difference between radiative models
and reference TI model for a-b panels; (f) difference between modelled and MODIS fSCA.

Figure 9. Seasonal cycle of HSS index over (a) calibration; (b) validation; (c) entire period. Lower row:
corresponding differences between enhanced radiative models and classical temperature index (TI) model.

Figure 10. (a) Distribution of mean SCA per elevation range, and hypsometric curve at 100 m. (b) Median
of HSS index of all models per elevation, (c, d, and e) HSS differences between radiative and classical model
per elevation range over Rheraya basin.

Figure 11. SCA classification errors per elevation range in the Rheraya watershed; 15* row: true positive
rate (TPR); 274 row: true negative rate (TNR); 3" row: false positive rate (FPR); 4'® row: false negative
rate. (a) Median error rate; (b, ¢, and d) differences between radiative and classical TI model.

Figure 12. Annual average simulated snow cover duration (SCD) vs MODIS SCD during calibration (light
blue) and validation (dark blue), with statistic errors for all model (a) TI; (b) HTI; (¢) ETIA; (d) ETIB.
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Figure 13. SWE and melt per elevation band in the Rheraya catchment. (a) Median SWE for all models;
(b-d) SWE differences between radiative and classical TI model; (e) median melt rate for all models; (f-h)
melt differences between radiative and TI model

Figure 14. Snow cover duration (SCD) per elevation band in the Rheraya catchment. (a) Median SCD
and DEM median northern exposure index at 100 m resolution; (b, ¢, and d) SCD differences between
radiative and classical model at 100 m. (e-h): same as (a-b) but SCD is aggregated from 100 m to 500 m
and the northern exposure index (‘NS index’) is calculated on a DEM aggregated from 100 m to 500 m. (i-1)
Differences between each model 500 m SCA and MODIS.

Figure 15. Mean SWE, melt rate, and snow cover duration (SCD) by aspect. (a) Mean SWE (mm); (b)
melt rate (mm d1); (¢) SCD (days) at 100 m resolution; (d) SCD (days) at 500 m resolution and (e) DEM
aspect at 100 and 500 m resolution.
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