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Abstract

He’s frequency formulation suggests the fast identification of the amplitude-frequency relationship of a nonlinear oscillator.
This paper applies the formulation to the Duffing-harmonic oscillator with great success. A modification of He’s frequency

formulation and the variational iteration method are also used for comparison.

A modification of He’s frequency-amplitude formulation

He’s original frequency formulation was derived from an ancient Chinese mathematical algorithm [10, 13|,
recently there was a hot discussion on He’s original frequency formulation [14-22|. Here we check Ren-Hu’s
modification [14].

Rewrite the problem (1) in this form

i(1+2%) +23=0,2(0)=A4, (0)=0. (10)

In view of He’s frequency-amplitude formulation [7-9], we use a trial solution

x1 = Acoswt. (11)

Taking equation (11) into the first equation of problem (10) results in the residual
Ry = —w?Acoswit (1 + A2 cos? wlt) + A% wit

= {% (1-w?)— wa} coswit + A; (1 —w?) cos3wit. (12)

Introducing defined in [14]

Ry= 4[5 Ry (t)dt, (13)

with T the period of the oscillator.

Submitting equation (12) into equation (13), we obtain

Ri=4 fo% {[% (1-w}) - w%A} coswit + ATS (1 —w}) cos3 wlt} dt

= 284 (1 - uf) — ] - 2Dy

Let x9 = Acoswst withw; # wo, by the similar operation as the above, we have

Ro= 2[4 (1-uf) —wga] - ZAY (15

Using He’s frequency-amplitude formulation [10, 13], we have



BN

2 __ Rzogf—lfhwg: {

1842
YT TR R 2 (16)

[ (1) -a] -T2 (2o (1mut)ut] - CDE | O DR
When , Eq. (16) becomes

w? = 7(97}32) (17)

2 2
[242 -u)-za] - LD L o (oaty-aa) - 52
2

Bl

while the exact one is w = 1. When A<<1, we have

W' = 5 =4 8

This agrees with that by the homotopy perturbation method [10-12]. So Ren-Hu’s modification is valid for
A<<1.

Variational iteration method

Reconsider the problem (1), according to the variational iteration method with Laplace transform; we have
the iteration equality [23]

Llonsr] = Llon] = L | fy & sinw (¢ - €8]

= L[z,) — LL[sinwt] o L [&, (t) + a3 (t) + 22 (t) &n ()] (19)
where L is the Laplace transform operator.

Assume the initial approximation be

xg = Acoswt (20)

Then we have

L[z (t)] = L[Acoswt] — LL[sinwt] @ L [—Aw? coswt + A3 cos® wt — A3w? cos® w]

3(A3-A%L°
= L[Acoswt] — L L[sinwrt] L [(<4) - Aw2> coswt + ‘43%‘43“20053@1 (21)

Imposing the inverse Laplace transform on equality (21), there holds the first-order approximant

2 s 2
x1 (t) = Acosot — 4= (3 <A3 — Aw ) - 4Aw2) sin wt + % (cos wt — cos 3w1)(22)

No secular term in the equality (22) requires that
3 <A3 - A3w2) — 4Aw? =0 (23)

which yields this

w? = 2475 (24)

Eq. (24) satisfies two scale extremals.

Discussion and Conclusions

Eq. (1) can be solved effectively by the homotopy perturbation method [24-28] and the variational approach
[2, 29]. By the semi-inverse method [30, 31], we can establish a variational formulation for Eq. (1), which is

J(u) = OT/4 $d% — $2% + 3 1In (1 + 2?) } dt(25)

By comparison also with those in open literatures, we conclude that He’s frequency is the simplest while its
accuracy is also extremely high. Considering the simplest calculation, He’s frequency formulation greatly
promote the development of the nonlinear science, especially the nonlinear vibration.
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