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Abstract

We have performed a large-scale evaluation of current computational methods, including conventional small-molecule force

fields, semiempirical, density functional, ab initio electronic structure methods, and current machine learning (ML) techniques

to evaluate relative single-point energies. Using up to 10 local minima geometries across ˜700 molecules, each optimized by

B3LYP-D3BJ with single-point DLPNO-CCSD(T) triple-zeta energies, we consider over 6,500 single points to compare the

correlation between different methods for both relative energies and ordered rankings of minima. We find promise from current

ML methods and recommend methods at each tier of the accuracy-time tradeoff, particularly the recent GFN2 semiempirical

method, the B97-3c density functional approximation, and RI-MP2 for accurate conformer energies. The ANI family of ML

methods shows promise, particularly the ANI-1ccx variant trained in part on coupled-cluster energies. Multiple methods suggest

continued improvements should be expected in both performance and accuracy.

Keywords: conformers, thermochemistry, machine learning, density functional, semiempirical, DFTB,
coupled-cluster

dayshrsmsec

“Holy Grail”

GFN

DFT-D
MP2

ML

Force Field

M
ed

ia
n 

R
2

0

0.5

1.0

Time (s)
10−4 10−2 1 102 104

1



P
os

te
d

on
A

u
th

or
ea

12
J
u
n

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

98
0
89

0.
00

61
76

91
/v

2
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Introduction

For almost all molecules, multiple geometrically-distinct conformers exist. Understanding and predicting
thermodynamically accessible ensembles of molecular conformers is a key task underlying much of compu-
tational chemistry.[1],[2],[3] In principle, for each rotatable bond, the number of possible minima increases
exponentially. Consequently, most conformer sampling methods[4] use classical small-molecule force fields
to evaluate energies because of their fast performance, despite potentially poor correlation with quantum
mechanical methods.[5]

Multiple efforts have evaluated the success of wavefunction and density functional first-principles methods to
compare the energetics of different conformers.[6],[7],[8],[9],[10],[11],[12] While experimental crystal structures and
bioactive docked conformers are not always the lowest energy conformer, recent efforts have demonstrated
only small energy differences when using quantum chemical methods instead of force fields.[13],[14]

Even for simple molecules such as 1,1’-biphenyl, use of large basis set coupled cluster methods are needed
to accurately place the dihedral angle and barrier.[15] Other works have documented the need for accurate
treatment of non-covalent interactions to model conformers in π-conjugated oligomers.[16]

One common assumption is the presumed balance between increasing desired thermochemical accuracy and
increased computational time. That is, more computationally intensive methods produce more accurate
geometries and thermochemical properties. For example, the rise of composite ab initio thermochemical
recipes such as G3,[17] G4,[18] and W1[19],[20] to W4[21] seeks to provide highly accurate thermochemical
predictions by separate estimates of basis set extrapolation and electron correlation. Still, such methods are
largely limited to small molecules due to the high computational cost.[22] As mentioned above, efforts for
conformer sampling have often focused on classical force fields or multi-level approaches using semiempirical
methods.[4],[23],[24]

In our previous paper,[5] we considered both the single-point energies and geometry optimizations of a
range of common computational chemistry methods, including classical force fields, semiempirical quantum
chemistry, and dispersion-corrected density functional methods. In general, due to the large differences in
the potential energy surfaces predicted by force fields and quantum methods, we found poor correlation
between both single point energies at the same geometry and optimized geometries using different methods.

In this work, in order to expand our range of computational methods, we only consider the relative sin-
gle point energies from the same set of density-functional optimized geometries, comparing multiple current
methods to a high-quality coupled cluster baseline. We consider the mean absolute relative errors in energies
(MARE), as well as the correlation of relative energies, reflected in the R2 coefficient of determination, and
the ranking of single-point energies reflected in the Spearman ρ correlation. The use of correlation coefficients
and the Spearman correlation intend to consider whether methods exhibit systematic errors that may not
affect linear correlation or ranking of energetic stabilities.

While we find increased accuracy typically still requires exponential increases in computational time, sev-
eral methods stand out as widely useful methods for ranking conformer energies. Future improvements in
standard computational methods and machine learning surrogates suggest that both increased accuracy and
efficiency are expected from further method development.

Computational Methods

Calculations were performed using Open Babel version 3.0[25] for all force field calculations
(MMFF94[26],[27],[28],[29],[30] and UFF[31],[32]) OpenMOPAC for PM7,[33] xtb version 6.2[34] for GFN0[35]

GFN1[36] and GFN2 calculations,[37] and Orca 4.0.1[38] for all density functional and ab initio calculations,
unless otherwise indicated. For density functional methods, the D3(BJ)[39],[40],[41],[42] dispersion correction
scheme was used as indicated, except for ωB97X-D3[43] which uses a similar approach. For ab initio methods,
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Orca 4.0.1 was used for MP2[44] and DLPNO-CCSD(T)[45],[46] with “TightPNO” using the cc-pVTZ basis
set.[47],[48] Energies are read from all output files using the cclib[49] version 1.6.2, and pybel version 3.0.[50]

Machine learning methods included “bag-of-features” representations and ANI-1x[51], ANI-1ccx[52], and ANI-
2x[53] models. The Bag-of-Features representations chosen were Bag of Bonds[54](BOB), Bond Angle Tor-
sion [55](BAT), and Bond Angle Torsion Typed (BATTY). BOB represents atoms and pair-wise interactions
into sorted bags with BAT being a many-body expansion to include angles and torsions. Both of these rep-
resentations were implemented using chemreps.[56] The BATTY representation takes inspiration from BAT
in order to include minimal atom typing in all bond, angle, and torsion bags while excluding nonbonding
interaction and nuclear charge bags in the final representation, as discussed below. scikit-learn[57] was
used for kernel ridge regression of Bag-of-Features representations.

For this work, all timings are single-core CPU times using a 2.60 GHz Intel Skylake CPU (Intel Xeon Gold
6126) with 192GB RAM per node, through the University Pittsburgh Center for Research Computing.

Python scripts and Jupyter notebooks were used to compile all data into pandas[58] data frames, us-
ing numpy[59] and scipy[60] functions for analysis. 3DMol.js was used for interactive molecular visualization
of conformers.[61] Plotly was used for interactive plots.[62]

All scripts and data, including molecular geometries, are provided through GitHub (https://github.com/
ghutchis/conformer-benchmark) with the intent that additional computational methods can be added to
these benchmark comparisons.

Test Set Selection

As in our previous work,[5] a dataset consisting of experimental crystal structures of 700 small molecules
capable of multiple conformer geometries was provided to us by Ebejer[63] and were derived from the work of
Hawkins et al.[23] along with ligands from the Astex Diverse Set.[64] These compounds have been repeatedly
used to evaluate the quality of conformer generation.[23],[63] Approximately half (320 molecules) consist solely
of carbon, hydrogen, nitrogen, and oxygen (CHON) atoms, while the remainder are more complex drug-like
compounds and ligands from the Protein Data Bank (PDB).[23] A list of Simplified Molecular Input Line
Entry Specification (SMILES)[65] for all 700 molecules can be found in the Supporting Information.

For ab initio calculations using the cc-pVTZ basis sets, relativistic effective core potentials were not available
for molecules containing iodine. Thus, for comparisons with DLPNO-CCSD(T) and RI-MP2 methods, such
species were omitted. Similarly, the ANI-1x and ANI-1cxx methods only support molecules containing
CHON atoms and evaluations were only performed on the subset of molecules supported. The ANI-2x
method supports additional elements, but not bromine or iodine and thus evaluations were similarly only
performed on the supported subset for that method.

For bag of feature ML testing, the training set was five conformers of each molecule, with the remaining
conformers as test/validation. Any molecule with fewer than five conformers had the conformers added to
the training set and was omitted from the test set.

Results

In this work, we focus on the evaluation of single point atomization energy calculations on a subset of ˜700
organic molecules. Conformers were initially created from a set of 250 diverse poses with maximal heavy-
atom root mean squared deviation (RMSD) using Open Babel, and at most 10 poses were selected based on
the lowest heat of formation calculated by PM7, followed by full geometry optimization using B3LYP-D3BJ
with the def2-SVP basis set.[5]

3
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Using this set of DFT-optimized minima, in this work, single point atomization energies were computed
using the DLPNO-CCSD(T)[45],[46] method using the cc-pVTZ basis set.(Dunning 1989, Kendall 1992) This
approach has been found to be a highly accurate method for calculating thermochemical properties and
with a significantly lower computational cost for medium to large organic molecules, compared to canonical
CCSD(T) methods.[66],[67],[45] Using only the set of molecules in which all standard (i.e., not machine-learning
based) methods completed leaves 6511 entries. Of those, 9 molecules (out of 690) had 2 or fewer poses and
were also removed, leaving 681 unique molecules and ˜6500 entries for comparison.

To our knowledge, this is the most extensive computational validation set, both in terms of the number
of compounds, geometries, and computational methods for studying low energy molecular conformers. We
provide all data and analysis scripts as open data and open source to allow future reuse via a GitHub
repository.
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Figure 1: Example analysis of ωB97X-D3 and GFN2 methods, starting with (A) correlation between ωB97X-
D3 and DLPNO-CCSD(T) energies for a single molecule, (B) histogram of R2 correlations across all
molecules, (C) correlation between GFN2 and DLPNO-CCSD(T) energies, and (D) corresponding histogram
of R2 correlations across all molecules.

As illustrated in Figure 1, each method is correlated with DLPNO-CCSD(T) / cc-pVTZ energies for each
molecule (e.g., astex 1hwi in Figure 1). Since each molecule has several conformers, three metrics are com-
piled, the mean absolute relative energy (MARE) compared to the DLPNO-CCSD(T) atomization energies,
the Pearson R2 correlation, and the Spearman correlation ρ. The MARE metric gives an absolute measure
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of the energetic errors, but since different methods use different energy scales (e.g., heats of formation for
PM7 and force fields), the statistical correlations use linear regression (R2) and relative ordering (Spearman
ρ) to remove sources of systematic energy differences. For each metric across each method, the median value
was compiled as illustrated in Figure 1, to represent the overall quality of a given method.

Since the metrics are unlikely to reflect normal distributions (e.g., Figure 1 shows highly non-Gaussian dis-
tributions), determining confidence intervals cannot be established from analytical formulas. Consequently,
we used bootstrap sampling to establish 95% confidence values for the medians, as reported below. For ease
of discussion, we have given the confidence ranges in all tables and figures, but indicate ± errors using the
average of the upper and lower bounds. In general, the asymmetry between upper and lower bounds are
smalll.

By considering a large number of diverse organic molecules with many poses per molecule, we seek to sample
a wide variety of conformer energy preferences (e.g., intramolecular hydrogen and halogen bonding, π-π
stacking, electrostatic interactions, etc.). While using optimized low-energy conformers may under-estimate
the accuracy of methods for high-energy structures,[7] we believe the current work is a challenging but useful
comparison. In general, such high-energy geometries reflect steric repulsion more than the diverse types of
interactions driving low-energy geometries.

Moreover, many computational predictions rely on Boltzmann-weighted averages of multiple thermally ac-
cessible conformers, including NMR prediction,[2],[1] reactions, and even understanding the effects of dipole
moments on solvent viscosity.[68] Consequently, deriving accurate relative energies of molecular conformers
is a crucial task, as discussed below.

Comparison of single points vs. DLPNO-CCSD(T)

For comparison, we considered a wide variety of currently available computational methods:

• Common classical organic force fields: MMFF94,[69],[27],[28],[29],[30] UFF,[31] GAFF[70]

• Semiempirical wave function: PM7[33]

• Density functional tight binding: GFN0,[35] GFN1,[71] GFN2[37]

• Low-cost density functional approximations: PBEh-3c,[72] B97-3c[73]

• Dispersion-corrected density functionals: B3LYP,[74],[75],[76],[77] PBE[78],[79], ωB97X-D[43] with
dispersion correction (using def2-TZVP basis set[80],[81])

• Møller-Plesset RI-MP2[44] with the cc-pVTZ basis set[47],[48]

In the case of B3LYP and PBE dispersion-corrected functionals, we also considered both the commonly-used
double-zeta def2-SVP and triple-zeta def2-TZVP basis sets to understand the effects of basis set size. For
B3LYP, PBE, and ωB97X, we also considered the accuracy with and without dispersion correction.

Basis Set Effects

For the frequently-used B3LYP-D3BJ and PBE-D3BJ density functional methods, we considered both the
def2-SVP and def2-TZVP basis sets. In both cases, the triple zeta basis set significantly improved corre-
lation with the DLPNO-CCSD(T)/cc-pVTZ baseline, for example, the median R2 scores improved from
0.868±0.064 to 0.920±0.025 for B3LYP-D3BJ and from 0.835±0.025 to 0.885±0.018 for PBE-D3BJ. There
were comparable improvements in median Spearman rank correlation and reduced mean absolute relative
errors, all statistically significant (i.e. p-values far below 0.001). The increased basis sets also roughly doubled
the CPU time required.

While the PBE method is still significantly faster than B3LYP, the newer B97-3c proves to be faster than
either with comparable accuracy (i.e., roughly intermediate to the TZ results for B3LYP-D3BJ and PBE-
D3BJ). Additionally, the time required for B3LYP-D3BJ/def2-TZVP calculations is only slightly less than

5
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Method MARE R2 Spearman
ρ

CPU
Time

DLPNO-
CCSD(T)

0 1 1 21901.38 276.95

RI-MP2 0.11 [0.11-
0.13]

0.96 [0.96-
0.97]

0.95 [0.95-
0.96]

2118.83 42.26

ωB97X-D3
0.16 [0.15-

0.17]
0.93 [0.91-

0.94]
0.92 [0.9-0.93] 2524.83 35.67

B3LYP (TZ) 0.17 [0.15-
0.19]

0.92 [0.91-
0.93]

0.92 [0.9-0.93] 1672.79 20.67

B97-3c 0.2 [0.18-
0.22]

0.9 [0.89-
0.92]

0.9 [0.88-
0.92]

137.45 2.16

PBE (TZ) 0.21 [0.19-
0.23]

0.88 [0.87-0.9] 0.89 [0.88-0.9] 358.65 6.94

PBEh-3c 0.21 [0.18-
0.23]

0.88 [0.86-0.9] 0.88 [0.87-0.9] 453.04 9.46

B3LYP (SVP) 0.23 [0.21-
0.26]

0.87 [0.84-
0.89]

0.88 [0.87-
0.89]

330.94 4.35

PBE (SVP) 0.26 [0.24-0.3] 0.83 [0.81-
0.86]

0.85 [0.84-
0.88]

149.03 2.24

ANI-1ccx 0.44 [0.36-
0.52]

0.64 [0.57-
0.71]

0.71 [0.64-
0.77]

1.45 0.0

GFN2 0.39 [0.33-
0.43]

0.64 [0.59-
0.68]

0.72 [0.68-
0.75]

2.6 0.07

GFN1 0.35 [0.31-
0.41]

0.62 [0.58-
0.66]

0.7 [0.66-
0.73]

2.66 0.05

ANI-2x 0.41 [0.36-
0.48]

0.62 [0.56-
0.69]

0.68 [0.65-
0.72]

3.45 0.01

ANI-1x 0.45 [0.38-
0.54]

0.59 [0.52-
0.66]

0.65 [0.57-
0.72]

1.46 0.0

BATTY/n 0.42 [0.38-
0.48]

0.47 [0.41-
0.54]

0.5 [0.4-0.6] 0.14 2.16e-
05

GFN0 0.44 [0.39-
0.49]

0.4 [0.35-
0.48]

0.53 [0.46-
0.56]

0.07 0.0

GAFF 1.64 [1.42-
1.83]

0.35 [0.29-
0.41]

0.48 [0.44-
0.54]

0.01 5.73e-
05

MMFF94 0.7 [0.58-
0.85]

0.33 [0.29-
0.38]

0.47 [0.43-
0.52]

0.0 4.4e-05

BOB 1.92 [1.72-
2.16]

0.32 [0.28-
0.39]

0.1 [0.0-0.2] 0.14 3.92e-
05

PM7 0.62 [0.56-
0.71]

0.32 [0.27-
0.36]

0.33 [0.27-
0.41]

0.06 0.0

BAT 1.18 [1.03-1.3] 0.31 [0.28-
0.38]

0.2 [0.1-0.3] 0.18 1.32e-
05

UFF 5.03 [4.4-5.61] 0.29 [0.24-
0.34]

0.32 [0.24-
0.41]

0.0 8.61e-
06

Table 1: Overall statistics across all molecules studied and all methods. Columns indicate median mean
absolute relative error (MARE in kcal/mol), median R2 correlation, median Spearman correlation, and
median single-core CPU time in seconds. MARE, R2, and Spearman correlation are relative to the DLPNO-
CCSD(T)/cc-pVTZ baseline. Ranges indicate 95% confidence intervals for the median metrics established
by bootstrap sampling.

RI-MP2/cc-pVTZ results, which exhibit significantly improved accuracy relative to DLPNO-CCSD(T)/cc-
pVTZ (i.e., median R2 = 0.964±0.006 and median MARE of 0.115 ±0.011 kcal/mol for RI-MP2).
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Thus increasing basis set size for these density functional methods, at least from double zeta to triple
zeta, does improve accuracy, albeit at a significant computational cost. In general, the B97-3c method
provides accuracy comparable to popular dispersion-corrected DFT methods such as B3LYP-D3BJ with
faster performance, and RI-MP2 provides greater accuracy at a very similar speed.

Dispersion Corrections

Since the bonding is consistent across multiple conformers, the ranking of small energy diffe-
rences is known to be dominated by non-bonding interactions.[82],[83] Density functional methods are
known to incorrectly account for dispersion interactions, which has led to a variety of empirical
corrections.[39],[40],[41],[42],[84],[85],[86],[87] Comparing un-corrected PBE, B3LYP, and ωB97X single-point ener-
gies to DLPNO-CCSD(T) illustrate a significant effect. The uncorrected median R2 values drop by ˜0.12,
and the median Spearman correlations drop by ˜0.08. For example, the median R2 of B3LYP / TZ drops
from 0.920±0.012 to 0.706±0.050 without the D3BJ dispersion correction.

Method Median
R2

Median
Spearman ρ

Disper-
sion

No
Dispersion

Dispersion No
Dispersion

DLPNO-
CCSD(T)

1 — 1 —

ωB97X
0.93 [0.91-

0.94]
0.88 [0.86-

0.9]
0.92 [0.9-

0.93]
0.89 [0.87-

0.9]
B3LYP (TZ) 0.92 [0.91-

0.93]
0.71 [0.66-

0.76]
0.92 [0.9-

0.93]
0.78 [0.75-

0.81]
PBE (TZ) 0.89 [0.87-

0.9]
0.75 [0.71-

0.79]
0.89 [0.88-

0.9]
0.81 [0.77-

0.83]
B3LYP
(SVP)

0.87 [0.84-
0.89]

0.73 [0.67-
0.76]

0.88 [0.87-
0.89]

0.78 [0.76-
0.81]

PBE (SVP) 0.84 [0.81-
0.86]

0.75 [0.7-
0.79]

0.86 [0.84-
0.88]

0.81 [0.77-
0.83]

Table 2: Effect of dispersion correction for DFT methods. Values in brackets indicate 95% confidence
intervals from bootstrap sampling.

On the time-scale of a density functional calculation, these empirical dispersion corrections require only
a minuscule time, yet significantly improve the accuracy of the relative energies. Thus, even though this
work is concerned with intramolecular interactions in conformers, dispersion-corrected density functional
calculations should always be used. Continued efforts, such as the improved D3 methods[88] or the new D4
method[85],[84] will hopefully improve their accuracy further.

Comparison of Timing

As discussed above, a frequent concern for conformer screening is the relative computational performance.
In general, classical molecular force field methods have been preferred since they allow the generation of hun-
dreds of conformers per compound in seconds. While traditional high-level ab initio methods are considered
a “gold standard” for thermochemical energies, the time required for a single point energy evaluation may
be high. For this work, all timings are single-core CPU times using a 2.60 GHz Intel Skylake CPU (Intel
Xeon Gold 6126) with 192GB RAM per node.

As indicated in Figure 2, hybrid density functional methods such as B3LYP-D3BJ require significant single-
computational time for single-point energies of medium-sized organic molecules (median 26±0.3 minutes)
compared to GGA methods such as PBE or approximate density functional tight binding methods such

7
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as GFN1 / GFN2 (median 2.6±0.06 s yields ˜600x speedup). Conventional density functional methods
nevertheless represent a meaningful mid-point relative to DLPNO-CCSD(T) method, which may be faster
than traditional coupled cluster methods but are still five to ten times slower than B3LYP (i.e., hours per
single point energy).

GFN / GFN2
Median = 1.55×10−3×
~2.64 sec

PBE-D3BJ
Median = 0.217×
~5.07 min

ωB97X-D3
Median = 1.52×
~40.1 min

RI-MP2
Median = 1.27×
~32.9 min

DLPNO-CCSD(T)
Median = 13.09×
~5.83 hrsC

ou
nt

s

0

1000

C
ou

nt
s

0

2000

C
ou

nt
s

0

2000

4000

C
ou

nt
s

0

5000

C
ou

nt
s

0

1000

Relative Time (B3LYP)
10−4 10−3 10−2 10−1 1 101 102

Figure 2: Histograms of relative timings for key methods considered, normalized to B3LYP-D3BJ single
points on the same molecule, using ORCA 4.0.1. Median relative times and median wall clock times for
single-core runs are included for reference.

Consequently, an important consideration is also the typical trade-off in computational chemistry between
thermochemical accuracy and computational time. Since traditional MP2 and coupled-cluster methods
exhibit high computational complexity, much research ignored them for medium to large organic molecules
due to the time required. Particularly in computational screening and conformer generation, fast molecular
force fields such as MMFF94 and UFF, as well as semiempirical quantum chemical methods such as AM1,[89]

PM3,[90] PM6,[91] and PM7[33] were considered “good enough” to generate structures for further refinement
with density functional and other methods. More recent methods, particularly the ANI machine learning
methods and the GFN family of density functional tight binding appear to significantly improve on accuracy

8
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with only modest increases in the time required.

GFN1 / GFN2

ANI-2xANI-1x

PM7UFF

GAFF

RI-MP2

DLPNO-
CCSD(T)

B97-3c

DFT-D

dayshrsmsec

BATTy
GFN0

BoB, BATM
ed

ia
n 

R
2

0

0.5

1.0

Time (s)
10−4 10−2 1 102 104

Figure 3: Comparison of single-core computational time required for energy evaluation (in log scale) to
median R2 found when compared to DLPNO-CCSD(T) energies. Error bars indicate 95% confidence intervals
of time and medain R2 from bootstrap sampling. Dashed line indicates approximate “best current method”
threshold defined from force fields through RI-MP2 methods.

We find that consistent with common assumptions, even recent methods roughly adhere to the requirement
of significant increases in computational (time) cost to gain increased thermochemical accuracy, as illustrated
in Figure 3 with R2. Similar trends are found for MARE and Spearman ρ metrics. Since multiple studies
have demonstrated the need for accurate treatment of noncovalent interactions including intramolecular
electrostatic and dispersion effects for understanding conformer relative energies, it is not surprising that this
benchmark illustrates the significant accuracy advantage of modern dispersion-corrected density functional
and wavefunction methods.

Use of Machine Learning Methods as Surrogates: ANI and Bag-of-Features

One possible solution to the trade-off between accuracy and computational cost would be the growing use
of machine learning (ML) methods in chemistry, particularly as a surrogate for thermochemical parameters
such as atomization energies.[92],[93],[94] Typically, these ML methods use deep neural networks (DNN) and
have been trained to density functional calculations, particularly hybrid B3LYP or ωB97X atomization
energies[95][96] although recent efforts have included training on coupled-cluster quality data as well.[52]

In principle, since the evaluation of the DNN is fast, the time required for the prediction of an ML method
is dominated by the time to generate the input descriptors – still only a small fraction of that required for
a quantum calculation. Therefore, if an ML method could reproduce density functional or coupled-cluster
energies at semiempirical or force field computational cost, it would dramatically change the conventional
accuracy/time tradeoff.

9



P
os

te
d

on
A

u
th

or
ea

12
J
u
n

20
20

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

98
0
89

0.
00

61
76

91
/v

2
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

While evaluation of DNN methods would be significantly faster on graphics processing units (GPUs), and may
not be optimized for CPU evaluation, we note that many quantum chemistry methods are also accelerated
on GPUs. Thus we retain the single-core CPU timings in Table 1 and Figure 3 but note that the actual
speed of ML methods such as ANI would be faster when evaluated on a modern GPU.

ANI methods

Table 1 and Figure 3 show the ANI family ML methods, ANI-1x, ANI-1ccx, and ANI-2x, performing similarly
to GFN tight binding semiempirical methods in both accuracy and speed. ANI-1cxx outperforms the ANI-1x
model that does not contain dispersion corrections while performing slightly better than the ANI-2 model.
The inclusion of dispersion correction for DFT methods is clearly beneficial as they improve upon their
non-dispersion corrected counterparts, as seen in Table 2.

In principal, it is possible to perform post hoc addition of a D3 dispersion correction to both ANI-1x and
ANI-2x. Table 3 shows potentially improved performance over their non-dispersion corrected counterparts,
although the differences are not statistically significant. Moreover, since the D3 dispersion correction for
ωB97X-D3 cannot be calculated by standard tools, applying such a post hoc correction is challenging. For
our set, one could calculate the dispersion correction from the ωB97X-D3 calculations performed on the
same molecule, but without such density functional calculations, applying dispersion correction would be
impossible.

While the newer D4 correction[85],[84] can be calculated using the DFTD4 program,[97] we find adding D4
corrections worsen the median R2 and Spearman metrics, although again the differences are not statistically
significant. The variance of applying D3 and D4 corrections to the ANI models illustrates the challenge
in current machine learning methods. Since they inherently add some error on top of the underlying data
used for training the model, use of coupled-cluster or other highly accurate dispersion-corrected training is
needed.

Method Median
R2

Median
Spearman ρ

No Dis-
persion

D3 D4 No
Dispersion

D3 D4

ANI-
1ccx

0.64 [0.57-
0.7]

– – 0.71 [0.64-
0.77]

– –

ANI-
1x

0.59 [0.52-
0.66]

0.63 [0.57-
0.71]

0.57 [0.48-
0.67]

0.65 [0.57-
0.72]

0.71 [0.65-
0.75]

0.62 [0.56-
0.71]

ANI-
2x

0.62 [0.56-
0.68]

0.66 [0.61-
0.7]

0.6 [0.54-
0.66]

0.69 [0.64-
0.72]

0.71 [0.67-
0.73]

0.66 [0.62-
0.7]

Table 3: Comparison of post hoc dispersion correction for ANI machine learning methods. Values in brackets
indicate 95% confidence intervals from bootstrap sampling.

Bag of Feature methods

The performance of the bag-of-features models, while faster than the ANI symmetry function models, were
more comparable to the accuracy of force field methods. The inclusion of additional information to the
descriptor such as three and four-body interactions and atom typing were beneficial to the bag-of-features
models, the accuracy pales in comparison to the ANI symmetry function models.

Standard bag-of-features have at minimum a bag of nuclear charges and a bag of two-body interactions as
seen in BOB and further bags are added that contain additional information such as angles and torsions
with BAT. This approach was taken for the BATTY representation with the modification of using minimal
atom typing (i.e., sp, sp2, sp3 hybridization) to sort bags. Unlike other bag-of-features representations, the
performance of BATTY was increased by removing the bags of nuclear charges and excluding the nonbonding
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interactions from the two-body interactions bag to create a bag of simple bonds. Since relative conformer
energies are strongly dominated by non-bonded interactions, this finding is surprising, although perhaps
separating bonding and two-body non-bonded interactions facilitate ML training. A recent example, BAND-
NN, took the approach of separating the bonding and nonbonding information similarly to classical force
fields and finds an improvement in performance.[98]

ML commonly employs techniques to normalize the data, improving the model’s training.[99],[100] In this
work, we used physically-motivated normalization techniques for the bag-of-features representations. Four
molecular properties, the number of atoms, bonds, electrons, and the molecular mass, were chosen for
normalizing the atomization energy. BATTY saw improvements in performance when normalizing by the
number of atoms (i.e., BATTY/n) and the number of bonds (BATTY/b) across Spearman, R2, and MARE.
The other bag-of-feature representations experienced a slight improvement in R2 when normalizing by the
number of atoms but not an improvement in the MARE. Normalizing the atomization energy for bag-of-
features methods does provide minor improvements, but not enough to compete with the ANI-1 and ANI-2
methods.

ML methods, despite training on density functional and coupled-cluster energies, are still not as accurate as
conventional quantum methods for predicting conformer energies. At present, the ANI family is comparable
to the semiempirical GFN methods for accuracy on this task.

Method Normalization MARE R2 Spearman ρ
BOB — 1.92 [1.73-2.16] 0.32 [0.27-0.39] 0.1 [0.0-0.2]
BOB Atoms 1.94 [1.76-2.17] 0.36 [0.32-0.42] 0.1 [0.0-0.2]
BOB Mass 2.2 [1.93-2.41] 0.32 [0.27-0.37] 0.1 [-0.1-1.0]
BOB Electrons 2.06 [1.75-2.28] 0.32 [0.28-0.37] 0 [-0.1-1.0]
BOB Bonds 5.09 [4.46-5.78] 0.27 [0.24-0.32] 0 [-0.1-1.0]
BAT — 1.18 [1.05-1.3] 0.31 [0.28-0.37] 0.2 [0.1-0.3]
BAT Atoms 1.36 [1.19-1.49] 0.34 [0.28-0.4] 0.1 [0.1-0.3]
BAT Mass 1.4 [1.27-1.55] 0.31 [0.27-0.37] 0.2 [0.1-0.3]
BAT Electrons 1.28 [1.16-1.45] 0.32 [0.28-0.38] 0.15 [0.1-0.3]
BAT Bonds 1.62 [1.45-1.81] 0.35 [0.3-0.4] 0.1 [0.0-0.2]

BATTY — 0.51 [0.47-0.6] 0.4 [0.34-0.44] 0.4 [0.3-0.5]
BATTY Atoms 0.42 [0.38-0.48] 0.47 [0.4-0.54] 0.5 [0.4-0.6]
BATTY Mass 0.69 [0.61-0.75] 0.41 [0.35-0.48] 0.4 [0.3-0.5]
BATTY Electrons 0.63 [0.55-0.71] 0.42 [0.35-0.48] 0.4 [0.3-0.5]
BATTY Bonds 0.42 [0.37-0.5] 0.48 [0.41-0.54] 0.5 [0.4-0.6]

Table 4: Effects of normalization descriptors on machine learning methods (e.g. BATTY/n refers to BATTY
with number of atom normalization). Numbers in brackets indicate 95% confidence intervals for the median
MARE, R2, and Spearman ρ metrics.

Discussion

Effects of Conformer Energy Ranges on Accuracy Metrics

Previous work has suggested that the poor correlations found between force field and semiempirical methods
are derived from the small number of low-energy conformers considered in this benchmark.[7] Certainly, one
might imagine that when considering multiple geometries with only small differences in energies, random
errors are magnified. Figure 4 illustrates a histogram of the ranges in DLPNO-CCSD(T) energies across
the molecules considered. Despite the small ranges in energies, there is little correlation between the energy
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range of a molecule and the accuracy metrics of a particular method. This suggests no bias from the small
energy windows used in this benchmark set.

Figure 5 indicates there is no correlation between R2 and the energy window of the conformers. The ML
methods have a relatively even distribution of R2 across the energy window indicating that random errors
in the model may have more of an impact on performance than the size of the energy window.

C
ou

nt

0

50

100

150

DLPNO-CCSD(T) Energy Range (kcal/mol)
0 5 10 15 20 25

Figure 4: Histogram of relative DLPNO-CCSD(T) energy ranges across multiple conformers.

Connection Between Accuracy Metrics: MARE, R2, Spearman

In principle, the mean absolute relative errors in energies (MARE) consider both random and systematic
errors of a method, while the R2 and Spearman correlation metrics remove systematic errors through linear
correlation (R2) or ranking (Spearman ρ). However, for the comparisons here, there is a strong connection
between all three metrics, as illustrated in Figure 6. Methods with smaller MARE have almost a linear
correlation with increased median R2. The three classical force field methods have essentially the same
median R2 metric despite differences in MARE, likely due to systematic errors in the methods. Similarly,
while increasing the data in the bag-of-features descriptors from BOB to BAT decreases the median MARE
from 1.92 kcal/mol to 1.18 kcal/mol, the accuracy as judged by the median R2 remains essentially constant
(0.31 and 0.32, respectively).

Dipole Moment Ranges

Since we generally find very small energy differences between the conformers considered in this work, one
might wonder whether such differences have meaningful consequences. Due to Boltzmann statistics, many
properties are dominated by the lowest energy geometry, even with small energy windows to other geometries.
One recent example comes from understanding the effects of dipole moments on solvent viscosity.[68] Finding
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Figure 5: Examples of the relation of energy windows to R2 for the ML methods (A) ANI-1x, (B) ANI-1ccx,
(C) BOB, and (D) BATTY/# atoms.

all conformers with proper weighting is thus crucial to predicting the dipole moment of an ensemble of
different conformers.

We find over the set of molecules considered, over 140 molecules have a range of 3 D or more, and 75
molecules have a range of 4 Debye or above across multiple conformers in the study. Figure 8 illustrates the
example of omegacsd CNBPCT, with two conformers that are close in energy yet span dramatically different
dipole moments. Using B3LYP-D3BJ (TZ), the computed dipole moments range from 1.41D to 9.78D.
The molecule contains two carbonyl bonds, either parallel (high dipole moment) or anti-parallel (low dipole
moment) depending on the rotation of several bonds and the more polar conformer is predicted to be
more stable by B3LYP-D3BJ, possibly due to an intramolecular hydrogen bond. On the other hand, using
DLPNO-CCSD(T) cc-pVTZ, the conformers differ by only 0.3 kcal/mol, with the anti-parallel, less polar
conformer more stable than the other.

Such polarity differences are examples in which small differences in conformer energies can have signifi-
cant effects on molecular properties. Since experimental properties reflect a Boltzmann-weighted average
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Figure 6: Correlation between mean absolute relative energies (MARE) and median R2 correlation. Since the
R2 metric minimizes systematic errors, the high degree of correlation between the two metrics indicate most
methods exhibit relatively random / non-systematic errors. Error bars indicate 95% confidence intervals
from bootstrap sampling.

of multiple thermally accessible conformers, even small differences in conformer energies have large effects
on populations involved in property prediction, as recently discussed with conformer and polarity effects
on solvent viscosity.[68]

Machine Learning Batch Evaluation

An advantage for ML and force field predictions is the ability to batch evaluate by loading all conformers of
a molecule at once and evaluating them as a batch opposed to evaluating one at a time, as with conventional
quantum chemistry methods. Table 5 indicates the median sequential times from Table 1 and median time
per single point in batch evaluation. Speedups range ˜70-170 times faster for both force field and ANI
methods. We note that while the ANI methods improve performance in batch evaluation, traditional force
field methods do as well, with similar speedups.

Method Median Time Median Batch Time Speedup
MMFF94 0.0 4.4e-05 5.05e-05 6.02e-07 70.89
GAFF 0.01 5.73e-05 3.29e-05 4.49e-07 160.64
UFF 0.0 8.61e-06 4.32e-05 4.46e-07 21.88

ANI-1x 1.46 0.0 0.01 0.0 113.15
ANI-1ccx 1.45 0.0 0.01 0.0 111.5
ANI-2x 3.45 0.01 0.02 9.7e-05 172.44

Table 5: Comparison of single-core median sequential time to median batch time (in seconds), and relative
speedups for batch evaluation.
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Figure 7: Histogram of the range of B3LYP-computed dipole moments in Debye across the conformers
considered in this work. While most molecules show only small differences in polarity across conformers,
many have over 3-4 Debye ranges.
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Figure 8: Example of conformational diversity in dipole moment in the molecule omegacsd CNBPCT reflect-
ing anti-parallel carbonyl (left - rmsd45) or parallel carbonyl groups (right - rmsd92), with B3LYP-D3BJ
def2-TZVP computed dipole moments ranging from 1.41D to 9.78D, respectively. The two geometries differ
by only 1.3 kcal/mol at the B3LYP-D3BJ def2-TZVP level, with the more polar conformer (right) stabilized
by an intramolecular hydrogen bond. Using DLPNO-CCSD(T) cc-pVTZ, the less polar conformer (left) is
more stable by 0.3 kcal/mol.
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Conclusions

The current work extends previous efforts to consider the accuracy of modern computational chemistry
methods to rank the energies of drug-like conformers. Since such energy differences are small, this poses
a challenging benchmark even for density functional methods. Use of dispersion-corrections for density
functionals are required – the slim time required is offset with dramatically increased accuracy. While triple-
zeta and larger basis sets also provide higher accuracy, likely because of better treatment of non-covalent
interactions, the large number of possible conformers forces trade-offs in accuracy and computational time
required.

Current ML methods show great promise, particularly the ANI-1ccx method trained in part on coupled-
cluster energies,[52] since they provide accuracy comparable to the semiempirical GFN2 method and can be
performed in batch and accelerated on GPUs. Despite claims of reaching and exceeding DFT accuracy, we
do not find these methods yet meet the accuracy of modern dispersion-corrected methods. Nevertheless, we
expect these methods will provide increased accuracy in the future. An important caveat is the need to train
on accurate data, such as dispersion-corrected density functional, MP2, or coupled-cluster calculations.

We expect continued improvement from other methods, particularly multiple efforts to improve classical force
fields,[101],[102],[103],[104] inclusion of polarizable atomic charges,[105],[106],[107],[108],[109],[110],[111],[112] novel force
fields from experimental data, density functional and other quantum methods,[113],[114],[115],[116],[117],[118] and
continued development of approximate semiempirical quantum methods.[37]

At present, we can highly recommend methods at each tier of the accuracy-time tradeoff, particularly the
recent GFN2 semiempirical method, the B97-3c density functional approximation, and RI-MP2 for accurate
conformer energies. Previous efforts to use a hierarchy of methods are still useful, for example, the use of
GFN2 methods to refine initial conformer ensembles, followed by refinement of a smaller set of low-energy
geometries with more accurate methods. Batch evaluation with ANI methods are also efficient, although
they do not yet span the range of elements supported by semiempirical methods such as GFN2 or density
functional methods.

The current benchmark reflects conformational preferences in a vacuum as judged by enthalpy differences
alone. Since free energy differences drive experimental conformers, introducing entropic considerations will be
needed for further work.[15] Moreover, much chemistry is performed in solution, thus work on understanding
conformer energies in solvation is also critical.[119],[120]
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