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Abstract

Objective: To develop an artificial intelligence (AI) model to detect congenital central nervous system (CNS) malformations

in fetal cerebral-cranial ultrasound images, and to assess the efficacy of this algorithm in improving clinical doctors’ diagnostic

performance. Design: Retrospective, multicenter, diagnostic study Setting: Three Chinese hospitals Population: a cohort of

2397 fetuses with CNS malformations and 11316 normal fetuses. Methods: AI model was developed by training on 37450

images from 15264 fetuses and testing on 812 images from 449 fetuses. Three groups of doctors (trainee, competent, expert)

were equipped with the AI system to test its enhancement of diagnosis performance. Main outcome measures: Diagnostic

performance of AI model and that of doctors. Comparison of performance between AI model and doctors, and doctors with

and without AI assistance. Results: The performance of AI model was comparable to that of expert in identifying 12 types

of CNS malformations in terms of accuracy 79.8% (95% CI 77.0-82.6% ) versus 78.9% (95% CI 75.2-85.2% ), sensitivity

78.4% (75.3-81.3%) versus 77.5% (73.7-81.4%) , specificity of 94.4% (86.2-98.4%) versus 93.0% (84.1-100.0%), and AUC 0.864

(0.833-0.895) versus 0.853 (0.800-0.905). This AI model improved doctors’ diagnostic performances, the trainee group received

maximum improvement, whose diagnostic performance advanced to the level of expert group in terms of accuracy (80.2%, 95%

CI 75.0-85.3% ) and AUC (0.872, 95% CI 0.861-0.882 ). Conclusions: Our AI system achieved a high diagnostic performance

comparable with that of experienced doctors and can support unexperienced doctors by improving their diagnostic accuracy to

an expert-level.

Introduction

Congenital malformations are the leading cause of fetal loss and one of the top ten causes of mortality in
children under five1, 2. It also accounted for 25-38 million disability-adjusted life-years worldwide3, which
causes heavy burden on individuals, families, health-care systems, and societies4. There are substantial
inter-country differences worldwide in the reported prevalence of congenital malformations partly due to
the unequal capacities of prenatal screening, leaving many cases undetected, especially in underdeveloped
regions. For example, the reported prevalence of congenital cerebral anomalies in Europe increased by 2.4%
per annum, but a six-fold difference was found in prevalence across different regions, with an association
between prevalence and prenatal detection rate5. Therefore, early identification of congenital anomalies with
efficiency is crucial in ensuring medical intervention, minimizing world healthcare disparity, and eventually
leading to the optimization of healthcare resources. This goal calls for not only the detection equipment
but also doctor expertise for prenatal diagnosis. Yet, training doctors is a timely and costly process, which
causes enormous expense to provide prenatal surveillance for average citizens all over the world.
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The implementation of artificial intelligence (AI) systems has shown its potential to revolutionize disease
diagnosis by performing classification difficult for human experts 6-11. The performance of most reported
AI shows a promising trend12-18, furthermore, it has significant advantages in terms of convenient open-
source sharing, which have the potential to provide medical guidance to multiple hospitals simultaneously,
especially for less developed and remote areas 19,20. In the field of fetal congenital malformation diagnosis,
AI development involved the differentiation of images of normal and abnormal fetuses was rare, only limited
progress in AI-assisted fetal ultrasound identification of normal fetus structure were reported14-18 , these
studies laid a foundation for the development of AI system to identify abnormal structure in ultrasound
images by training on fetuses with congenital malformation.

We have initially constructed an AI system involving abnormal fetal CNS ultrasound images to classify
fetal CNS ultrasound images as either normal or abnormal and our system achieved a high performance21.
Nonetheless, this system only classified images to provide binary outcomes, it is far from making diagnosis
for specific CNS malformation. Here, we sought to further advance our system from binary classification to
multi-classification, which is capable of detecting multiple types of CNS malformations. We also assessed
the efficacy of this algorithm in improving clinical doctors’ diagnostic performance. This is so far the first
attempt to construct a deep learning AI system to aid both the experienced and unexperienced physicians
in the prenatal ultrasound diagnosis on congenital anomalies.

Materials and Methods

Ultrasound images datasets

This research was a retrospective multicenter diagnostic study. For AI model development and testing, ab-
normal pregnancies of 12 types of common CNS malformations and normal pregnancies were retrospectively
collected from The first Affiliated Hospital of Sun Yat-sen University (March 2010 to September 2018),
Dongguan Maternal and Child Health Hospital (January 2016 to December 2018), and the Women and
Children’s Hospital affiliated with Xiamen University (January 2016 to December 2018). These 12 types
of malformations included: agenesis of corpus callosum (ACC), absence of cavum septi pellucidi (ASP),
holoprosencephaly (HPE), Dandy-Walker malformation and variant (DWNv), Megacisterna magna (MCM),
Blake’s pouch cyst, hydrocephaly, ventriculomegaly, arachnoid cyst, choroid plexus cyst (CPC), midline cyst
and subependymal cyst. All the prenatal ultrasonic diagnoses were confirmed by prenatal or postnatal MRI,
follow-up examination or autopsy. Ultrasound examinations of the abnormal pregnancies over a period
of four weeks were included as part of this study. The mean gestational age was 21+5 weeks and 25+4
weeks for normal and abnormal cases, respectively. Ultrasound examinations were performed using various
machines from six different manufacturers (GE Voluson 730 Expert/E6/E8/E10, Aloka SSD-a10, Siemens
Acuson S2000, Toshiba XARIO 200 TUS-X200, Samsung UGEO WS80A, Philips IU22). This retrospective
study was approved by Institutional Review Board of The First Affiliated Hospital of Sun Yat-sen University.
Informed consent from patients was waived because of the retrospective nature of the study.

Two-dimensional neurosonographic grayscale images were employed to develop and testing the AI system.
If the images were 3D volume data or were with split-view, we would export it or divide it into qualified
single two-dimensional grayscale images before use according to the methods introduced in our previously
published study21. All the two-dimensional grayscale images should meet the following criteria of inclusion:
1) neurosonographic images of the standard axial planes, namely the transventricular (TV) plane, transtha-
lamic (TT) plane or transcerebellar (TC) plane, acquired according to the guidelines of the International
Society of Ultrasound in Obstetrics & Gynecology (ISUOG) 22,23; 2) images with an integrated skull, properly
magnified without measurement caliper overlays and without the obvious acoustical shadow. Consequently,
after excluding unqualified images and redundant normal images in the test dataset at Xiamen hospital, the
overall dataset contained 20,689 normal images and 17,573 abnormal images. The pixel sizes of images were
1920 × 1080, 1408 × 712, 1400 × 700, 1300 × 870, 960 × 720, 800 × 600, 768 × 576, 720 × 576 and 640 ×
480. The detailed constitutions of the ultrasound image datasets for the development and testing of the AI
system are shown in Table 1, and the workflow diagram is shown in Figure 1.
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Image labeling and pretraining process

All images were labeled by a team of seven doctors with 3 to 23 years of experience using LabelImg software
(v. 2.0) following two steps. First, five doctors with 3–8 years of experience identified lesions in the images
independently and labeled them with minimum bounding rectangles. In addition, six normal structures
were labeled if visible, including cavity of septum pellucidum, thalamus, lateral ventricles, Sylvian fissures,
cerebellar and cisterna magna. Next, two senior independent ultrasound specialists with over 20 years of
experience verified the labels for each image. After labeling, images from The First Affiliated Hospital of Sun
Yat-sen University and Dongguan M&C Health Hospital were randomly assigned for training and evaluation
with a ratio of 8:2. The assignment was made on a case level rather than an image level, ensuring that the
testing dataset did not contain any images originating from the training cases. Details are shown in Figure
1. To make the algorithms robust, training datasets were augmented before training by randomly rotating
images from 0° to 60°, and flipping the images horizontally and vertically to simulate various fetal positions.
Additionally, the images were zoomed up and down across the whole image and were pseudo-color processed.
After augmentation, all images were resized to 1600 × 900.

AI model development

Our AI model was developed based on the algorithm of YOLO (you only look once, V3) , a unified, real-
time, efficient object detection algorithm, which was recently proposed in deep learning computer vision
field24-26. Object detection algorithms were designed not only to recognize what objects are present but also
to localize where they are, no matter how many objects are there. Thus, object detection is more complex
and challenging compared with classification algorithms. It was initially used in face recognition in security
field and self-driving. In the ultrasound imaging field, there might be unknown number of structures and
lesions within one image that need to be recognized and precisely located. Also, we chose YOLO for its
efficiency considering dynamic data analysis may be needed. We added a logic output network to YOLO in
our current AI model, which would eliminate redundant labels on the same structure by comparing label
scores. For example, for the same image, normal and abnormal labels could not simultaneously exit on the
same side of the lateral ventricles. As a result, the model had only one input and two outputs. The input
of the model was the ultrasound image of fetal brain. The first output was a bounding box with labels and
scores (numbers range from 0 to 1). The second output was the final result which consisted of remaining
bounding boxes with labels after label elimination in the logic output, as shown in Figure 2 and Figure 3.
Note that, due to the logic output network, lesions detected by AI were not made only based on label scores
which were continuous number from 0 to 1 but also on the higher score. Therefore, when we drew ROC,
the data were treated as binary data (yes/no) like human making diagnosis, rather than continuous variable
data.

AI tests and comparison with human doctors

An external test set of 812 images from 449 patients was used to evaluate the performance of AI networks.
The diagnostic accuracy, specificity, and sensitivity of AI in identifying CNS malformations were calculated,
and the ROC curves were generated to evaluate the performance of the established AI algorithm. The
performance of AI was then compared with that of doctors, who reviewed the same images in a separate
testing. In this testing, images were shown one by one on the personal computer screen in a random order,
and each image was along with 13 diagnosis choices (12 types of CNS abnormalities and normal). Ultrasonic
doctors from different hospitals with varying degrees of expertise, who had experience >10 years (expert),
5-10 years (competent), and 1 year (trainee), reviewed one image with an optimal diagnosis and turned
to the next image without returning to the previous one. The processing time for reading each image was
recorded. All the doctors were blind to the diagnoses of images.

AI assistance strategy

Two months after the first reading, the doctors read the 812 ultrasonic images again (second reading) with
a concurrent reading mode. This meant that, for each image, there would be two images (image without and
with an AI diagnosis) shown on the screen side-by-side, and the doctors would read these two images and
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make a diagnosis. The diagnostic performance and time of the first and second readings were compared to
evaluate the capability of AI in assisting diagnosis.

Statistical Analysis

The diagnostic performance of AI model and human doctors was assessed by multiple metrics, including
accuracy, sensitivity, specificity and AUC. These parameters were defined as following:

Accuracy= the number of correctly labeled images divided by the total number of test images;

Type-specific sensitivity = the number of images correctly labeled with one type of abnormality divided by
total number of images with that type of abnormalities;

Overall sensitivity=total number of images correctly labeled with each type of abnormality divided by total
number of images with any type of abnormalities;

Type-specific specificity = the number of images correctly labeled without one type of abnormality divided
by total number of images without that type of abnormalities;

Overall specificity=total number of images correctly labeled without corresponding type of abnormalities
divided by total number of images without any types of abnormalities.

The mean accuracy, sensitivity, specificity, and AUC with 95% confidence intervals (CIs) were calculated.
ROC curves were plotted by the sensitivity (true positive rate) versus the 1- specificity (false positive rate).
The ROC curve shows the performance of a classification model at all classification thresholds. One sample
t-tests were applied to compare the overall performance of AI to that of 13 doctors, as well as to that
of doctors of three degrees respectively (AI vs. doctors, and AI vs. expert, competent or trainee). Paired
t-tests were applied to comparing the performance of doctors without and with AI assistance. Analysis of
variance was applied to compare the average improvement in performance level of doctor of three degrees and
Bonferroni correction was applied for all multiple comparisons. All analyses were performed using statistical
software (Stata, version 15.0; StataCorp LLC., College Station, TX), and a P value of less than 0.05 was
considered significant for all analyses.

Results

AI performance

The AI system achieved an overall accuracy of 79.8% (95% CI 77.0-82.6%) in correctly identifying each
type of CNS malformation, with a sensitivity of 78.4% (75.3-81.3%), specificity of 94.4% (86.2-98.4%) and
an AUC of 0.864 (0.833-0.895). The performance of CPC identification was the best among all types of
malformations detection, with a sensitivity of 92.0% (74.0-99.0%), specificity of 99.9% (99.3-100%)and AUC
0.959(0.905-1.000). Whereas, the performance of Blake’s pouch cyst diagnosis was the lowest in terms of
sensitivity of 42.9% (21.8- 66.0%), specificity of 99.6% (98.9-99.9%), and AUC 0.712 (0.604- 0.821). The
diagnostic efficacy for the total and specific types of anomalies identification were shown in Table 2.

Comparison of performance between AI network and doctors

The AI outperformed the average efficacy of 13 doctors with respect to the overall types of malformations
detection as shown in Table 3 and Figure 4a, the doctors’ diagnostic accuracy [65.4% (95% CI 57.3-73.7%),
p = 0.002], sensitivity [88.2% (82.3%-94.1%), p = 0.003], specificity 63.3% [(54.6-72.0%), p = 0.041] and
AUC[ 0.758 (0.694, 0.821), p = 0.004] were all lower to that of AI system.

When compared AI performance with that of three groups of doctors respectively, we found the performance
of AI model was similar to that of the expert doctors in terms of accuracy [ 78.9% (95%CI 75.2-82.5%), p =
0.528], sensitivity [77.5% (95%CI 73.7-81.4%), p = 0.521], and AUC [0.853 (95% CI 0.800-0.905), p = 0.681],
while the performance of AI was higher than that of the competent {[accuracy: 69.6% (95% CI 75.2-85.2%), p
= 0.016]; [sensitivity: 67.5% (95% CI 59.7-75.3%), p = 0.021]; [AUC: 0.793 (95% CI 0.777-0.809), p = 0.001]}
and that of the trainees as well{[ accuracy: 51.5%, 95% CI (39.4-63.6%), p = 0.001]; [sensitivity: 48.6% (
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95% CI 36.0-61.2%), p = 0.003]; [AUC: 0.654( 95% CI 0.538-0.770), p = 0.008) ]}. However, specificity of
AI did not differ to those of three categories of doctors. The comparison in performance between AI system
and the various doctors is shown in Table 3 and Figure 4b.

The developed AI algorithm could analyze 7–8 images per second(s) and took only 113s to complete the
diagnosis of 812 ultrasound image. The time consuming was significantly less than the average time of the
13 doctors (113s vs. 11571s, p = 0.001). When compared with the subgroups, the time of the diagnosis
process were also shorter than three groups of doctors respectively [113s vs. 8864s (expert), p=0.02; 12801s
(competent), p=0.003; 12663s (trainee). p = 0.001].

AI improved the doctors’ performance on CNS malformations identification

When facilitated with the AI diagnosis, the overall diagnostic efficacy of three subgroups of doctors got
significantly improved (Table 3, Figure 5a, b, c) in terms of accuracy, sensitivity, and AUC. For the experts,
the accuracy, sensitivity and AUC were improved from 78.9% to 84.7% (p = 0.002), from 77.5% to 83.4% (p
= 0.003), and from 0.853 to 0.910 (p = 0.019), respectively. For the competent doctors, the improvements for
accuracy was from 69.6% to 85.1% (p = 0.005), sensitivity was from 67.5% to 84.0% (p = 0.006), and AUC
from 0.793 to 0.905(p = 0.002). For trainee doctors, the progress was shown in accuracy (51.5% vs. 80.2%,
p = 0.001), sensitivity (48.6% vs.78.7%, p = 0.001), and AUC (0.654 vs. 0.872, p = 0.006), respectively.
Whereas, no significant difference was noted in specificity with and without AI assistance. Among the three
groups of doctors, the trainee group received maximum improvement with AI assistance, whose diagnostic
performance advanced to the level of expert group in terms of accuracy[ (80.2% (95% CI 75.0-85.3%) vs. 78.9
%(95% CI 75.2-85.2%), P = 0.593] and AUC [0.872 (95% CI 0.861-0.882) vs. 0.853(95% CI 0.809-0.905), p
= 0.238]. (Table 4).

The average time for diagnosis required by 13 doctors reduced significantly (7040s vs. 11571s, p < 0.001)
with AI assistance, compared to that without AI assistance. Compared the time in subgroup, the time
required by trainee doctors (7383s vs. 12663s, p = 0.008) and competent doctors (7729s vs. 12801s, p =
0.018) also decreased. However, for experts, no significant time-saving was observed (5923s vs. 8864s, p =
0.114).

Discussion:

Main findings

We developed an AI model to detect 12 types of CNS malformations in fetal ultrasound images by training
on 37450 images from 15264 fetuses and testing on 812 images from 449 fetuses, our AI system achieves
performance on par with expert doctors demonstrating an artificial intelligence capable of detecting congen-
ital malformations with a level of competence comparable experience doctors. Furthermore, with AI system
assistance, the performance of all the groups doctors get improved, especially for the trainee doctors.

Strengths and limitations

There are some limitations to our study. First, although the brain is traditionally examined in the axial plane
and the evaluation of this plane is widely used as a screening tool, to make a more comprehensive anatomy
examining, coronal and sagittal planes are also required22. Our AI system was established only based on
image of axial view and it was unable to provide a fully assessment of lesions, we will continue to train
the current AI model with images of other planes to optimize its performance. Second, although transfer
learning allows the development of an accurate model with a relatively small training dataset, our sample
size might be relatively small considering for multiple kinds of anomalies identification, we will continue to
optimize our system with larger amount of data13. Finally, our AI was trained and validated using datasets
from southern China, and its efficacy for other populations is yet to be investigated.

The strength of our study is the multicenter design, AI system was training on data from two different
hospitals and the high performance of the AI system was validated by the data from the third external
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hospital, the doctors took part in the test also came from different hospital all over the country, which
contribute to the generalizability of AI system and ensure the objective assessment of AI performance.

Interpretation

To the best of our knowledge, this is the first attempt to develop AI system to detect specific CNS malforma-
tions. Previous studies showed that images of normal transventricular (TV) and transcerebellar (TC) planes
could be recognized and biometric measured by CNN-based deep learning algorithms 14, 18. For example,
the AI system established by Yaqub et al. 14can identify normal TV planes by detecting the fetal head and
the visibility of the cavi septi pellucidi. Baumgartner et al.18 reported a method for real-time detection and
localization of 13 fetal standard planes, including the TV and TC planes. Nevertheless, rare studies involved
cases with congenital malformations, and training to classify images as normal or abnormal, let alone to make
a diagnosis for specific structural anomalies. Our previous study21 used 15372 normal and 14047 abnormal
fetal CNS ultrasound images to establish binary classification of an AI system, and the results showed that
that AI system had a sensitivity of 96.9%, specificity of 95.9%, and AUC 0.989 (95% CI: 0.986–0.991) when
identifying images as normal or abnormal. Thus, we verified the feasibility of CNN-based deep learning
algorithms for binary classification. On the basis of that work, we established this multi-classification model
to perform specific malformations diagnosis. This new AI system achieved a 0.798 (95% CI 0.770, 0.826)
accuracy and an AUC of 0.86 (0.83–0.89) in identifying 12 types of CNS based on ultrasound images. The
results demonstrated an artificial intelligence is capable of detecting specific congenital malformations.

In the clinical testing, our AI system assisted doctors of all expertise levels in improving their detection
performance of fetal CNS malformations. This was especially prominent for the trainee doctors, whose
performance was improved to a level comparable with that of expert doctors after AI assistance. This might
be attributed to the lesion localization function of the AI model, which can help doctors to recognized the
lesions then to make diagnosis. This advantage would be especially useful in clinical practice. As we know,
the prenatal diagnosis for CNS anomalies is one of the most difficult and challenging task and needs a special
technique, namely neurosonography, a targeted ultrasound examination of the fetal brain performed by an
expert 27. However, such expertise requires years of experience and cannot be equivalent in all centers,
especially in undeveloped countries and remote areas28. Hence, with our AI assistance, the detection rate
of fetal CNS anomalies is expected to be improved even in clinical unit lacking of expert. Additionally,
the ultrasound images used for training and validation in current AI system were collected by a variety of
ultrasound equipments from different companies, which will indicate it can be used universally.

Conclusions

In a short summary, we developed an AI system to help diagnose congenital CNS malformations based
on ultrasound images of fetal craniocerebral standard transverse planes. Our AI model achieved a high
diagnostic performance compared with that of experienced doctors and can support unexperienced doctors
by improving their diagnostic accuracy to an expert-level.
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Table 1 Details of ultrasound images datasets (images/pregnancies) included in development
and test of AI system

1st Hospital of SYSU Dongguan M&C Health Hospital W&C Hospital of Xiamen University
Normal 17610/11370 3008/1904 71/42
ACC 3610/222 139/14 135/54
ASP 1076/64 22/4 50/25
DWMv 1063/115 54/13 30/18
HPE 762/103 228/36 95/53
MCM 922/331 377/75 88/64
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Hydrocephaly 2793/184 655/83 139/70
Ventriculomegaly 972/153 362/67 57/45
Blake’s pouch Cyst 798/55 14/3 21/10
Arachnoid Cyst 1363/83 125/18 31/13
CPC 614/154 39/10 25/14
Midline Cyst 361/88 52/15 29/23
Subependymal Cyst 375/91 56/9 40/18
Total 32319/13013 5131/2251 812/449

SYSU, Sun Yat-sen University; M&C, Maternal and Child; W&C, Women and Children’s; ACC, Absence
of corpus callosum; ASP, absence of cavum septi pellucidi; DWNv, Dandy-Walker malformation or variant;
HPE, holoprosencephaly; MCM, Megacisterna magna; CPC, choroid plexus cyst.

Table 2 The performance of AI of overall and each type of anomalies identification

Accuracy (%) Sensitivity (%) Specificity (%) AUC
ACC 93.6(91.9 - 95.3) 64.4(55.8 - 72.5) 99.4(98.5 - 99.8) 0.819 (0.779 -

0.860)
ASP 98.7(97.8 - 99.4) 78.0(64.0 - 88.5) 100(99.5 - 100) 0.890 (0.832 -

0.948)
DWMv 98.0(97.1 - 99.0) 86.7(69.3 - 96.2) 98.5(97.3 - 99.2) 0.926 (0.864 -

0.988)
HPE 97.5(96.5 - 98.6) 91.6(84.1 - 96.3) 98.3(97.1 - 99.1) 0.950 (0.921 -

0.981)
MCM 98.0(97.1 - 99.0) 84.1(74.8 - 91.0) 99.7(99.0 - 100) 0.919 (0.881 -

0.958)
Hydrocephaly 95.4(94.0 - 96.9) 87.1(80.3 - 92.1) 97.2(95.6 - 98.3) 0.921 (0.893 -

0.950)
Ventriculomegaly 95.0(93.4 - 96.5) 87.7(76.3 - 94.9) 95.5(93.8 - 96.9) 0.917 (0.873 -

0.960)
Blake’s pouch
Cyst

98.2(97.2 - 99.1) 42.9(21.8 - 66.0) 99.6(98.9 - 99.9) 0.712 (0.604 -
0.821)

Arachnoid Cyst 97.4(96.3 - 98.5) 51.6(33.1 - 69.8) 99.2(99.2 - 99.3) 0.754 (0.665 -
0.844)

CPC 99.6(99.2 - 100) 92.0(74.0 - 99.0) 99.9(99.3 - 100) 0.959 (0.905 -
1.000)

Midline Cyst 97.5(96.5 - 98.6) 56.7(37.4 - 74.5) 99.1(98.2 - 99.6) 0.779 (0.689 -
0.869)

Subependymal
Cyst

98.9(98.2 - 99.6) 80.0(64.4 - 90.9) 99.8(99.3 - 100) 0.899 (0.837 -
0.962)

Overall 79.8(77.0 - 82.6) 78.4(75.3 - 81.3) 94.4(86.2 - 98.4) 0.864 (0.833 -
0.895)

ACC, Absence of corpus callosum; ASP, absence of cavum septi pellucidi; DWNv, Dandy-Walker malforma-
tion or variant; HPE, holoprosencephaly; MCM, Megacisterna magna; CPC, choroid plexus cyst.

Table 3 Detailed performance comparisons between AI and ultrasonic doctors alone, doctors
with and without AI assistance.

Accuracy (%) Sensitivity (%) Specificity (%) AUC
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AI model 79.8 (77.0 - 82.6) 78.4 (75.3 - 81.3) 94.4 (86.2 - 98.4) 0.860 (0.830 -
0.890)

Doctors Only Expert 78.9 (75.2 - 85.2) 77.5 (73.7 - 81.4) 93.0 (84.1 -
100.0)

0.853 (0.800 -
0.905)

Competent 69.6* (75.2 -
85.2)

67.5* (59.7 -
75.3)

91.2 (84.7 - 97.7) 0.793* (0.777 -
0.809)

Training 51.5* (39.4 -
63.6)

48.6* (36.0 -
61.2)

82.0 (65.8 - 98.2) 0.654* (0.538 -
0.770)

Doctors with AI
Assistants

Expert 84.7# (82.4 -
86.9)

83.4# (80.8 -
85.9)

98.3 (96.1 - 100) 0.910# (0.897 -
0.923)

Competent 85.1# (82.9 -
87.4)

84.0# (81.6 -
86.4)

96.9 (92.6 - 100) 0.905# (0.884 -
0.925)

Training 80.2# (75.0 -
85.3)

78.7# (72.6 -
84.8)

95.8 (91.7 - 99.9) 0.872# (0.861 -
0.882)

* a statistically significant difference between AI and doctors alone. #: a statistically significant difference
between doctors with and without AI assistance.

Table 4 The improvement of diagnostic performance with AI assistance

Accuracy difference
(%)

Sensitivity
difference (%)

Specificity
difference (%)

AUC difference

Trainee 28.7(19.5 - 37.8)
a,b

30.1(21.2 - 39.1)
a,b

13.8(-1.4 - 29.0) 0.218(0.011 -

0.330) b

Competent 15.6(8.9 - 22.3) a 16.6(9.2 - 24.0) a 5.7(-0.1 - 11.5) 0.113(0.077 -
0.148)

Expert 5.8(3.9 - 7.7) b 5.9(3.7 - 8.0) b 5.3(-2.1 - 12.7) 0.058(0.018 -

0.097) b

p<0.001 p<0.001 p=0.270 p=0.007

abc: represent the results of bonferroni comparison,a significant difference between trainee and competent,
p<0.05;b significant difference between trainee and expert, p<0.05

Figure 1 Flowchart for the development and test of the algorithms. M&C, Maternal and Child;
W&C, Women and Children’s; CNS, central nervous system; AI, artificial intelligence.

Figure 2 Flow chart illustrating the entire process of the network. As shown in the figure, our
process contains one input and two outputs. In the first output, two labels were detected on the same side
of ventricle by the model, which were lateral ventricle (green box, the label score was 0.597146) and tear-
ventricle (lower yellow box, the label score was 0.871927). After label elimination in the logic output network
according to the scores, only one label with the higher score remained in output image (tear-ventricle, lower
yellow box).

Figure 3 The composite image shows the AI output correctly labeled with corresponding
type of specific malformations in each image, as well as normal image. ACC, Absence of corpus
callosum; ASP, absence of cavum septi pellucidi; DWNv, Dandy-Walker malformation or variant; HPE,
holoprosencephaly; MCM, Megacisterna magna; CPC, choroid plexus cyst.

Figure 4 The performance of the AI system and Ultrasonic doctors in CNS malformations
identification a. AI system outperforms the average of the ultrasonic doctors at CNS malformations
identification. Each point represented the sensitivity and specificity of a single ultrasonic doctors, the blue
points are the average of the doctors, with error bars denoting one standard deviation. The AI system
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achieves superior performance to a doctor if the sensitivity–specificity point of the lies below the blue curve,
which most do. b, The performance of AI model versus that of experts, competent and trainee doctors.

Figure 5 The improvement of overall performance of three degrees of doctors in CNS malfor-
mations identification with AI assistance (a. trainee, b. competent, c. expert).
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