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Abstract

Assuming non-Fourier thermal effects, Tzou’s dual-phase-lag model has been applied to introduce the governing heat conduc-

tion equation in the presented mathematical model. Moreover, in order to design a well-posed stable dual-phase-lag model,

the governing time fractional dual-phase-lag heat equation has been established by introducing conductive temperature and

thermodynamical temperature, satisfying the two-temperature theory. Due to the application of phase-lags the heat conduc-

tion equation became hyperbolic. The corresponding governing equations of motion and stresses have been considered in

two-dimensional bounded spherical domain. The spherical boundaries are assumed to be traction free. The Laplace and the

Legendre integral transforms have been applied to obtain the analytical solutions of conductive and thermodynamical temper-

atures, displacement components and thermal stresses. The Gaver-Stehfest algorithm has been employed to achieve the time

domain inversions of Laplace transforms numerically, satisfying the Kuznetsov convergence criteria. Classical, fractional and

generalized thermoelasticity theories has been recovered theoretically and numerically as well for various fractional orders and

phase-lags values.
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thermoelastic-two-dimensional-model-of-a-hollow-sphere

1. Introduction

According to the classical theory of thermoelasticity, it was presumed that the change in temperature of a
solid due to external or internal thermal loading is independent of the mechanical forces applied to the solid
body. Biot [1] has introduced coupled thermoelasticity theory, and claimed that thermal and mechanical
forces applied to a solid are not independent rather these forces are dependent on each other. Assuming
very small variations from the reference temperature, Chen and Gurtin [2] have designed two-temperature
theory, using thermodynamical and conductive temperatures. Moreover,the coupled and two-temperature
theories as well were not successfully able to achieve the finite speed of thermal wave propagation. Cattaneo
[3] has introduced the relaxation time τ and generalized the classical Fourier law of heat conduction. Follow-
ing Cattaneo, Lord and Shulman [4] have derived the generalized coupled thermoelasticity by applying the
relaxation time τ , to the heat conduction equation and hence achieved the finite speed of thermal waves. To
support the generalized theory of thermoelasticity Sherief et al. [5− 6] have proved the uniqueness theorem
and provided the corresponding fundamental solutions. Youssef [7] has generalized the two-temperature the-
ory of thermoelasticity introduced by Chen and Gurtin [2], where due to the hyperbolic nature of the newly
obtained heat conduction equation the finite speed of thermal wave propagation was achieved. Youssef has
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also recovered the classical and coupled theories as a special case by using the generalized two-temperature
theory. Tzou [8] has shown that Cattaneo-Vernotte constitutive relation has only taken account of the
fast transient effects, but not the microstructural interactions. To investigate the lagging behaviour of the

heat conduction, delay time translations τΩ and τΘ, to the heat flux vector
−→
Ω and temperature gradient

OT respectively and proposed the dual-phase-lag law of heat conduction. Quintanilla [9] has claimed that
whenever a DPL is coupled with an energy equation, then the resulting heat conduction model could be
unstable. Moreover, as per Quintanilla, under certain conditions, the dual-phase-lag heat conduction law
could be made stable if coupled with the energy equation in the context of linearized two-temperature theory
of thermoelasticity.

As per the various physical conditions, the upcoming states of every dynamical system does not depend on
its present state; rather it is important to consider all of its previous states. Due to the non-local properties
of fractional derivatives over classical integer order derivatives, scientists preferably uses arbitrary ordered
derivatives to express various heat transfer problems, modelling of heat exchangers, categorization of various
conducting materials to fabricate semiconductors, study the heating effects of thermoviscoelastic materials,
magneto thermoelastic problems of heat conduction related problems from last so many years. This must be
the reason why fractional calculus is becoming more popular in scientific research and modelling. Povstenko
[10] has derived fractional heat conduction equation by replacement of ordinary derivative with respect to
time variable by Caputo [11] time fractional derivative in classical Fourier law of heat conduction and initi-
ated the fractional theory of thermoelasticity. Sherief et al. [12] have derived the fractional order theory of
thermoelasticity in context with one relaxation time. Moreover, a brief discussion has been made for several
limiting cases, followed by a uniqueness, reciprocity theorems and corresponding variational principle.

Sherief and Hamza [13] have formulated a two-dimensional thermoelastic problem under axisymmetric tem-
perature distributions using generalized thermoelasticity with one relaxation time. The general solutions of
temperature, thermal displacement components and thermal stresses were obtained in the Laplace domain
by the direct method in the absence of the use of regular potential functions. The results were used to solve
two problems of a stress-free solid sphere and a spherical cavity of infinite space subjected to axisymmetric
thermal distribution. Recently, Mittal and Kulkarni [14] have derived a fractionally ordered dual-phase-lag
heat conduction equation in the context of the two-temperature theory of thermoelasticity. The formulation
has been implemented to a one dimensional hollow sphere whose boundary surfaces were free of mechanical
loading and subjected to external heat flux. The analytical results were obtained in the Laplace domain,
where corresponding inversions were computed for various phase-lags, fractional orders. The classical, gen-
eralized cases were recaptured.

Following Mittal and Kulkarni [14] the piece of work presented has been reconstructed as a two dimensional
model in the bounded spherical domain. The boundary surfaces of the hollow sphere are traction free and
subjected to sinusoidal heat flux. The governing heat conduction equation has been derived using Tzou
dual-phase-lag intuitive law of heat conduction where two different translations τΩ , τΘ are called phase-lags,
that has been applied to heat flux vector and temperature gradient respectively. The governing equations of
motion, thermal stresses have been given in the two-dimensional bounded spherical domain. The analytical
solutions of non-dimensional governing equations subject to boundary conditions have been obtained using
the Laplace and the Legendre integral transforms. The numerical inversion of the Laplace transform has
been obtained using the Gaver-Stehfest algorithm [15, 16]. The Legendre inversions involved in results has
been computed in terms of the Legendre polynomials for a specified Legendre parameter. The numerical
solutions have been plotted in radial direction considering the various phase-lags case and different fractional
orders. The results obtained have been compared with classical and generalized thermoelasticity theories.

The materials like glass, ceramics, polymers, steel become brittle due to application of stress occuring either
due to thermal loading or pressure etc. applied to the surface. Galanov et al. [17] have presented a model
describing the elastic deformations of spherical cavity developed in the brittle materials using the concept of
mechanics of compressive porous and powder materials. Marin et al. [18] have investigated the theory of mi-
cropolar thermoelastic bodies whose micro-particles possess microtemperature. The mixed initial boundary
value problem has been converted into a temporally evolutionary equation on a Hilbert space. The solution

2
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obtained has been examined for its existence and uniqueness.

The presented dual-phase-lag heat conduction model has been constructed using the two-temperature theory
to investigate the thermal effects of microstructural interactions occurring inside the hollow sphere whose
boundaries are subjected to sinusoidal heat flux. This model could be employed to classify the various con-
ducting materials as per their conductive capacity by using either phase-lags or fractional order variations.
To the best of authors knowledge so far no one has designed a two dimensional fractional dual-phase-lag heat
conduction model in the context of two-temperature theory within the bounded spherical domain. This is
the newest and novel contribution to the field of material science.

2

Nomenclature

β : Fractional order;
αt : Coefficient of linear

thermal expansion;
ξ : Temperature discrepancy;
η : Reciprocal of thermal

diffusivity;
ε : Dimensionless coupling

constant;
k : Thermal conductivity;
λ, µ : Lamé constants ;
γ = αt(3λ+ 2µ) : Material constant;
ϕ : Thermodynamical

temperature;
ϑ : Non-dimensional

thermodynamical
temperature;

ρd : Material density;
σij : Thermal stresses;

Θ : Non-dimensional
conductive temperature;

P : The position vector;
H : Internal heat generation;
T : Conductive temperature;
T0 : Reference temperature;
c : Constant of two

temperature theory;
τ : Relaxation time;
τΘ, τΩ : Phase-Lags;
ce : Speed of iso-thermal

elastic wave;
cs : Specific heat capacity;
e : Cubical dilatation;
−→
Ω : Heat flux vector;
ur, uθ : Displacement Components;
t : Time;
(r, θ, φ) : Spherical coordinate system;
∇ : Gradient operator;
∇2 : Laplacian operator.

3
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2. The heat conduction equation

Since the governing heat equation of classical thermoelasticity, results an infinite speed of thermal wave
propagation, this must be the reason why, Lord and Shulman [4] has applied Maxwell-Cattaneo law with
one relaxation time and derived the generalized coupled heat conduction equation given by

(
1 + τ

∂

∂t

){
∂

∂t
(ρdcsT + γT0e)−H

}
= k∇2T, (1)

Following Caputo time fractional derivative [11] of order β ∈ (0, 1], Sherief et al. [12] have updated the
generalized theory of thermoelasticity as

(
1 + τ

∂β

∂tβ

){
∂

∂t
(ρdcsT + γT0e)−H

}
= k∇2T, (2)

To investigate the consequences of small scale inner particle communications aroused within the solid heat
conductor at a microscopic level, Tzou [8] has considered the non-Fourier effects of heating and proposed
the dual-phase-lag law given below

−→
Ω (P, t+ τΩ) = −k∇T (P, t+ τΘ), (3)

where, τΩ and τΘ are the intrinsic properties of the medium. Expanding both sides of equation (3) using
Taylor’s series with respect to the time fractional derivatives till 2β and taking divergence, one obtains

Moreover, Quintanilla [9] has claimed that, if equation (4) couples with the energy equation given by

−∇
−→
Ω (P, t) = d

.

T (P, t), (4)

then consequently, Tzou’s [8] DPL model would be ill-posed and not stable. Moreover, under certain physical
restrictions, a DPL could also be made stable and well-posed if derived in the context of two-temperature
theory where two different temperatures are known as thermodynamical temperature ϕ and conductive
temperature T , satisfies

Coupling the equation (4) and (6) and neglecting the differential operators of order more than ∇2, one will
have the following time fractional dual-phase-lag heat conduction equation in the context of two-temperature
theory given by

4
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2.1 Specific cases

a. For [τΘ = τΩ = 0, T = ϕ, H = 0], equation (7) represents the heat conduction equation of Biot’s theory
shown below

b. For [β → 1.0, τΘ = 0, τΩ = τ > 0, τ2
Ω → 0, T = ϕ, H = 0], equation (7) expresses the heat conduction

equation of Lord-Shulman thermoelasticity as follows

c. For [β ∈ (0, 1), T = ϕ, H = 0], equation (7) is identified as the fractional generalization of Cattaneo
approach.

d. For [β → 0.0, τΘ, τΩ ∈, T 6= ϕ], equation (7) stands for governing equation of the generalized two-
temperature theory of thermoelasticity derived by Youssef [7] as

e. For [β ∈ (0, 1], τΘ = 0, τΩ ≡ τ, τ2
Ω → 0, T 6= ϕ], equation (7) converts as

equation (11) represents two-temperature thermoelastic models proposed by Ezzat and Karamany [19, 20].

2.2 Mathematical model

Assume a spherically symmetrical, isotropic, homogeneous and ideally thermoelastic medium, where a hollow
sphere has been placed with traction free boundary surfaces. The object under study is supposed to occupy
the space S ⊂3 in the bounded spherical domain as shown below

where a and b are the positive real number represents the radius of inner and outer spherical boundaries.

For the sake of mathematical simplicity it has been assumed that, there is neither external body force has

5
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been applied to the solid nor the per unit volume heat has been generated inside the solid. For (H = 0), the
heat conduction equation (7) reduces to

where ∇2 is two dimensional Laplacian operator in spherical domain has the form

Following Eslami et al. [21], for the displacement
−→
U = (ur, uθ, 0), the strain components are given as

err =
∂ur
∂r

, (5)

eθθ =
1

r

∂uθ
∂θ

+
ur
r
, (6)

eφφ =
cot θ

r
uθ +

ur
r
, (7)

erθ =
1

2

[
uθ
r

+
1

r

(
∂ur
∂θ
− uθ

)]
, (8)

Thus the cubical dilatation e takes the form

e = err + eφφ + eθθ, (9)

Considering no external forces applied to the body then the equation of motion are reduces to

6
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(λ+ 2µ)
∂e

∂r
− 2µ

r sin θ

∂

∂θ

[
1

2r

(
r
∂uθ
∂r

+ uθ −
∂ur
∂θ

)
sin θ

]
− γ ∂

∂r
(T − T0) = ρd

∂2ur
∂t2

, (10)

The normal and shear stress functions are expressed by following equations

σrr = 2µ
∂ur
∂r

+ λe− γ(T − T0), (11)

σθθ = 2µ

(
ur
r

+
1

r

∂uθ
∂θ

)
+ λe− γ(T − T0), (12)

σφφ = 2µ
(ur
r

+ cot θ
uθ
r

)
+ λe− γ(T − T0), (13)

σrθ = µ

[
uθ
r

+
1

r

(
∂ur
∂θ
− uθ

)]
, (14)

σrφ = σθφ = 0. (15)

Equations (12)−(28) describes the governing equations of heat conduction model for hollow spherical region.

2.3 Non-dimensional governing equations

To convert the dimensionless system of governing equations the following non-dimensional quantities are
introduced as

The dimensionless form of the governing equations of the model are given below (dropping asterisk sign for
simplicity)

7
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Θ− ϑ = ξ∇2Θ, (16)

e =
∂ur
∂r

+ 2
ur
r

+ cot θ
uθ
r

+
1

r

∂uθ
∂θ

, (17)

∂

∂r

[
α2e− ℘Θ

]
+∇2ur −

1

r2

∂

∂r

[
r2 ∂ur

∂r

]
− 1

r2 sin θ

∂2

∂r∂θ
[r sin θuθ] = α2 ∂

2ur
∂t2

, (18)

1

r

∂

∂θ

[
α2e− ℘Θ− ∂ur

∂r

]
+

1

r2

∂

∂r

[
r2 ∂uθ

∂r

]
= α2 ∂

2uθ
∂t2

, (19)

σrr = 2
∂ur
∂r

+
(
α2 − 2

)
e− α2Θ, (20)

σθθ = 2

(
∂ur
∂r

+
1

r

∂uθ
∂θ

)
+
(
α2 − 2

)
e− α2Θ, (21)

σφφ = 2
(ur
r

+ cot θ
uθ
r

)
+
(
α2 − 2

)
e− α2Θ, (22)

σrθ =
1

r

∂ur
∂θ
− uθ

r
+
∂uθ
∂r

. (23)

Equations (29)− (38) represents the dimensionless form of the governing equations.

2.4 Physical restrictions

The spherical boundary surfaces of hollow sphere are subjected to sinusoidal heat flux Θ(r, θ, t) given below:

{
0, r = a,

Θ0 sin θH(t) r = b,

where −π ≤ θ ≤ π, and constant Θ0 stands for the strength of the heat flux applied.

Mathematically, the stress free boundary conditions are defined as follows

8
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σrr = σθθ = σrθ = 0|r=a, (24)

Assuming quiescent state, the initial conditions are given as

Θ(r, θ, 0) = Θ̇(r, θ, 0) = 0, (25)

σrr(r, 0) = σ̇rr(r, 0) = 0, (26)

Equations (39) − (44) describe the physical restrictions imposed on the mathematical model of the hollow
sphere in the bounded spherical domain.

3. Mathematical treatment

3.1 Transformation in the Laplace domain

Theorem : Following Liang et al. [22], if β > 0, m = [β]+1, and functions ω(P, t) and its partial derivatives
up to the order (m − 1) with respect to the variable t exists and continuous in + are of exponential order,

where CDβ
0ω(t) of fractional order β is piecewise continuous in + , then the Laplace transform of CDβ

0ω(t)
is given by

For the Liang theorem described above, considering zero initial conditions one must have the following
equation

9
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Using equations (45) − (46), applying the Laplace transforms to the dimensionless governing equations
(30)− (38) the transformed equations are given as

Θ̄− ϑ̄ = ξ∇2Θ̄, (27)

ē =
dur
dr

+ 2
ūr
r

+ cot θ
ūθ
r

+
1

r

dūθ
dθ

, (28)

d

dr

[
α2ē− ℘Θ̄

]
+∇2ūr −

1

r2

d

dr

[
r2 dūr

dr

]
− 1

r2 sin θ

d2

drdθ
[r sin θūθ] = α2p2ūr, (29)

1

r

d

dθ

[
α2ē− ℘Θ̄− dūr

dr

]
+

1

r2

d

dr

[
r2 dūθ

dr

]
= α2p2ūθ, (30)

σ̄rr = 2
dūr
dr

+
(
α2 − 2

)
ē− α2Θ̄, (31)

σ̄θθ = 2

(
dūr
dr

+
1

r

dūθ
dθ

)
+
(
α2 − 2

)
ē− α2Θ̄, (32)

σ̄φφ = 2
( ūr
r

+ cot θ
ūθ
r

)
+
(
α2 − 2

)
ē− α2Θ̄, (33)

σ̄rθ =
1

r

dūr
dθ
− ūθ

r
+
dūθ
dr

, (34)

Combining the equations (50) and (51) one will have

where ς =
℘

α2
.

Consider the following term replacements

10
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Ω1 =

[
p+ pβ+1 τβΩ

Γ(β + 1)
+ p2β+1 τ2β

Ω

Γ(2β + 1)

]
, (35)

Ω2 =

[
1 + pβ

τβΘ
Γ(β + 1)

+ p2β τ2β
Θ

Γ(2β + 1)

]
. (36)

Using the above replacements equation (47) reduces to

Ω2∇2Θ̄ = Ω1

(
ϑ̄+ εē

)
, (37)

Eliminating ϑ and Θ between the equations (59)− (60) in context of equation (48), one obtains the following
differential equation for ē given below:

Equation (60) can be factored as

where q2
1 , q

2
2 are the positive real roots of the following characteristic equation

where

L =
p2Ω1ξ + Ω2p

2 + ςΩ1ε+ Ω1

Ω1ξ + Ω2
, (38)

Equations (47)− (64) represents the dimensionless governing equations in the Laplace domain.
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3.2 Analytical results in the Laplace domain

The analytical solutions of conductive temperature, thermodynamical temperature, displacement compo-
nents and thermal stresses has been achieved through the application of Legnedre transform to the equations
(47)-(64) in the variables p, r and ζ = cos θ.

Solving equation (61), the dilatation function ē(r, p, ζ) is given as

ē(r, p, ζ) = ē1(r, p, ζ) + ē2(r, p, ζ), (39)

The functions ē1(r, p, ζ), ē2(r, p, ζ) are components of dilatation function bounded at origin and infinity
respectively.

Substituting results from equations (66)−(67) to equation (56) the conductive temperature function Θ̄(r, p, ζ)
in the Laplace domain is given as

where

The functions Θ̄1(r, p, ζ), Θ̄2(r, p, ζ) are components of conductive temperature function Θ̄ bounded at origin
and infinity respectively.

Substituting components of conductive temperature Θ̄1(r, p, ζ), Θ̄2(r, p, ζ) from equations (69)−(70) in two-
temperature theory relation given by equation (48), one gets the thermodynamical temperature ϑ̄(r, p, ζ)
as given below:

12
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where

The functions ϑ̄1(r, p, ζ), ϑ̄2(r, p, ζ) are components of conductive temperature function ϑ̄(r, p, ζ) bounded
at origin and infinity respectively.

The radial displacement ūr(r, p, ζ) is given by

where

ūr1(r, p, ζ) =
ς

r3/2

∞∑
m=0

{
2∑
i=1

Pm(ζ)Ami[qirIm+3/2(qir) +mIm+1/2(qir)] + Im+1/2(αpr)

}
, (40)

Similarly following mathematical equation (32), displacement component uθ(r, p, ζ) has been obtained

where

ψ̄1(r) = Amim(m+ 1)Im+1/2(qir) + Cm
[
(m+ 1)Im+1/2(αpr) + αprIm+3/2(αpr)

]
, (41)
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On integrating equation (77), using
∫
Pm(ζ)dζ =

ζPm(ζ)− Pm−1(ζ)

(m+ 1)
, one gets

where the displacement component uθ is given as

The stress functions are obtained by substituting the above results of dilatation, temperature and displace-
ment functions to the equations (35) − (38), one will have the following results for radial stresses given
below:

where

Similarly the shear stress σ̄rθ(r, p, ζ) is given by

14



P
os

te
d

on
A

u
th

or
ea

13
A

p
r

20
20

—
C

C
B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

6
7
90

02
.2

79
48

42
7

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

where

Likewise, one gets σ̄θθ(r, p, ζ) as given below:

where

Finally the hoop stress σ̄φφ(r, p, ζ) is obtained as under,

where,

15
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To fix the constants Ami(p), Bmi(p), Cm(p), Dm(p) depending upon the Laplace parameter p, one will make
use of boundary conditions to obtain the simultaneous equations given below:

Equations (65)−(98) represents analytical solutions obtained for conductive temperature Θ(r, p, ζ), thermo-
dynamical temperature ϑ((r, p, ζ), displacement components ur(r, p, ζ), uθ(r, p, ζ) and stresses σ̄rr(r, p, ζ), σ̄θθ(r, p, ζ), σ̄φφ(r, p, ζ), σ̄rθ(r, p, ζ)
in the Laplace domain. Here Im(·),Km(·) denotes modified Bessel functions of first and second kind respec-
tively and Pm(ζ) denotes the Legendre polynomial of order m of argument ζ = cos θ lying between [−1, 1]
and p is the Laplace domain parameter.

3.3 The Gaver-Stehfest algorithm

Finally in order to find the results for conductive temperature, thermodynamical temperature, radial and
angular displacement components of thermal stresses in the time domain, the inversion of the Laplace
transform of analytical results obtained in the equations (65)− (98) has been carried out numerically by the
Gaver-Stehfest algorithm.
Following the Gaver Stehfest [15, 16], the numerical inversion of the analytical results in the Laplace domain
has been approximated to the time domain solutions as

f(t) ≈ fK(t) =
loge(2)

t

2K∑
k=1

(−1)K+k


l=min(k,K)∑
l=

k + 1

2


lK+1 · KCl · 2lCl · lCk−l

K!


· F
(
k loge(2)

t

)
 , (42)
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and byc is the flooring function and 2K is an even integer whose value depends on the word length of the
computer used.

The Gaver-Stehfest algorithm discussed above has been implemented using Matlab 6.1. The trial value
of K depending upon the word length of the computer system has been fixed as K = 12. Assuming the
constant physical properties of the medium described in section 4.2, the starting iteration value for the
Laplace parameter p has been obtained for K = 0, for the small input of fixed time value t = 0.2s. An initial
solution of resulting thermal parameters of the Laplace domain shown by the equations (65)−(98) have been
computed for starting numerical value of the Laplace parameter p for K = 0. This iteration process has
been repeated to cumulate the values of the required Laplace inversions given in terms of the infinite series
of modified Bessel functions for all values of K ranging from 0 to 12. Finally the infinite series representing
the thermal results have been approximated to achieve the finite numerical values of the inverse Laplace
transform, where only the real values of the Laplace inversions have been considered for concerned thermal
parameters.
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The convergence of the numerical inversion described by the Gaver-Stehfest algorithm has been discussed
by Kuznetsov [23].

The Kuznetsov convergence criterion : If f : (0, ∞) −→ is a locally integrable function such that
its Laplace transform F (p) exists for all p > 0 and the sequence fK(t) is defined by equation (99), then
the convergence of sequence fK(t) depends on the values of the function f(t) in the neighbourhood of
t. If the function f(t) is of bounded variation in the neighbourhood of t then the sequence fK(t) −→
f(t+ 0) + f(t− 0)

2
as K −→∞.

Referring above Kuznetsov convergence criterion, it has been observed that as K increases, the resulting
numerical values of the Laplace inversions are found to be stable and convergent to the finite real number.
Accordingly K = 12 has been chosen in the Matlab programming.

4. Numerical scheme

Mathematically, one can say that the distribution of temperature and thermal stresses inside the hollow
spherical region subjected to fixed external heat flux is always influenced by variations of phase-lags. Ad-
ditionally, as per fractional order theory proposed by Sherief et al. [12], the importance of fractional order
applied to time variable to the governing dual-phase-lag heat conduction equation could not be ignored.

Therefore the numerical calculations have been carried out for conductive temperature Θ, thermodynami-
cal temperature ϑ, displacement components ur, uθ and stresses σrr, σθθ, σφφ, σrθ by considering classical,
fractional and generalized theory of thermoelasticity. Following Ignaczak and Ostoja-Starzewski [24], the
results have been computed for various phase-lags by fixing (β = 0.45, 0.90) and referring fractional theory
of thermoelasticity by Povstenko [25] for different fractional orders (τΩ = 0.4ps, τΘ = 0.2ps) and shown
pairwise respectively by figures 1− 8, for each thermal parameter under consideration at time t = 0.2s.

4.1 The dimensions

The inner radius of hollow sphere a = 0.02m.
The outer radius of hollow sphere b = 0.07m.

4.2 Material characteristics

Following Luecke et al. [26] and Childs et al. [27], the numerical scheme has been applied to find the
non-dimensional thermal variations for pure steel material with physical characteristics in (SI-units ) given
as

18
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4.3 Results and discussion

6
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Θ

CTE (τ=0, α=0.0)
FDPL (τ>0, α=0.45)
FDPL (τ>0, α=0.90)
LSTE (τ>0, α=1.0)

0

2

4

0.02 0.03 0.04 0.05 0.06 0.07

Θ

r

6

8
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12

Θ

CTE (α=0.0)

FDPL (α=0.5)

FDPL (α=0.95)

LSTE (α=1.0)

0

2

4

0.02 0.03 0.04 0.05 0.06 0.07

Θ

r

Fig: 1(a). Distribution of conductive Fig: 1(b). Distribution of conductive

temperature Θ(r, θ, t) inside the hollow temperature Θ(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.45,

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90,

LS theory τ > 0, τΩ = 0.4ps, τΘ = 0.
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Fig: 2(a). Distribution of thermodynamical Fig: 2(b). Distribution of thermodynamical

temperature ϑ(r, θ, t) inside the hollow temperature ϑ(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.45,

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90,

LS theory τ > 0, τΩ = 0.4ps, τΘ = 0.
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Fig: 3(a). Distribution of radial displacement Fig: 3(b). Distribution of radial displacement

component ur(r, θ, t) inside the hollow component ur(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.45

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90

LS theory τ > 0, τΩ = 0.4ps, τΘ = 0.
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Fig: 4(a). Distribution of angular displacement Fig: 4(b). Distribution of angular displacement

component vθ(r, θ, t) inside the hollow component vθ(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.45,

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90,

LS theory τ > 0, τΩ = 0.4ps, τΘ = 0.
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Fig: 5(a). Distribution of radial stress Fig: 5(b). Distribution of radial stress

component σrr(r, θ, t) inside the hollow component σrr(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.45,

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90,

LS theory τ > 0, τΩ = 0.4ps, τΘ = 0.
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Fig: 6(a). Distribution of hoop stress Fig: 6(b). Distribution of hoop stress

component σθθ(r, θ, t) inside the hollow component σθθ(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps τΘ = 0.2ps,β = 0.45,

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90,

LS theory τ > 0, τΩ = 0.4ps, τΘ = 0.
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Fig: 7(a). Distribution of hoop stress Fig: 7(b). Distribution of hoop stress

component σφφ(r, θ, t) inside the hollow component σφφ(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.45,

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90,

LS theory τ > 0, τΩ = 0.4ps, τΘ = 0.
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Fig: 8(a). Distribution of hoop stress Fig: 8(b). Distribution of hoop stress

component σrθ(r, θ, t) inside the hollow component σrθ(r, θ, t) inside the hollow

sphere for phase-lag variations sphere for time-fractional derivative order β

CTE theory τ = 0, τΩ = τΘ = 0, for τ = τΩ − τΘ > 0, τΘ = 0.2ps, τΩ = 0.4ps.

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.45,

FDPL theory τ > 0, τΩ = 0.4ps, τΘ = 0.2ps, β = 0.90,

LS theory τ > 0, τΩ = 0.4ps, τΘ = 0.

Figure 1(a) & 1(b), describes the variations of conductive temperature inside the hollow spherical region.
It can be noticed from figure-1(a) that, whenever both phase-lags τΩ , τΘ are equal then FDPL model ex-
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hibits results corresponding to the classical coupled theory of thermoelasticity (CTE). For a higher value of
phase-lag corresponding to heat flux τΩ as compared to temperature gradient τΘ, it has been observed that

the heat transfer takes place in a waveform with finite speed

√
Γ(β+1)

ητβ
Ω

. Wavefronts plotted in figure-1(b)

shows that the conductive temperature corresponding to generalized theory is dominating over classical and
fractional theory of thermoelasticity. Mathematically, it has been found that the conductive temperature is
directly proportional to fractional order β.

Figure 2(a) & 2(b), illustrates the effect of variation of phase-lags τΩ , τΘ and fractional order β on thermody-
namical temperature ϑ(r, θ, t) within the bounded spherical region. Results obtained are similar to those of
classical coupled theory when the phase-lags are identically the same. If the phase-lag corresponding to heat
flux vector precedes the phase-lag of temperature gradient (τΩ > τΘ), then the wave fronts for fractional
(β = 0.45, β = 0.90) and generalized theories (β = 1.0) are seems to be closer to each other. One may notice
from the results shown by figure-2(b) that the thermodynamical temperature inside the solid is directly
proportional to the fractional order β under consideration.

Figure 3(a) & 3(b), contains the wave fronts representing the non-dimensional radial displacement compo-
nent ur(r, θ, t) for different values of phase-lags τΩ , τΘ and fractional order β. In both figures it has been
shown that the radial displacement is merely increasing and becomes zero at the outer boundary. The results
shown also explore the fact that the wave fronts corresponding to generalized theory (β = 1, τΩ > τΘ) are
fluctuating faster than the classical thermoelasticity theory (β = 0, τΩ = τΘ). From figure-3(b), collectively
it has been found that the radial displacement component variations are directly proportional to the frac-
tional order β.

Figure 4(a) & 4(b), represents the angular displacement component uθ(r, θ, t) within the hollow sphere. The
displacement variation is increasing along radial distance and finally approaches to some non-zero value.
Comparing the variations it could be seen that wave fronts corresponding to τΩ = τΘ are lagging to the wave
fronts subjected to case τΩ > τΘ. The wave fronts obtained for fractional theory corresponding to τΩ > τΘ
shows similar results. Moreover, the thermal investigations corresponding to various fractional orders by
fixing phase-lags, it could be reasonably inferred that the displacement components are directly proportional
to the fractional order β.

Figure 5(a) & 5(b), shows radial thermal stress variations for classical, fractional and generalized thermoe-
lasticity theory considering various phase-lags and fractional orders are found to be compressive. It has
been noticed in the results that stress variations are more inside the spherical region as compared to outer
boundaries. Moreover, figures reveal that results obtained for fractional order β = 0.95 are dominating
as compared to classical and generalized theory. The traction free boundary condition is satisfied in both
investigations.

Figure 6(a) & 6(b), exhibits hoop thermal stress σθθ(r, θ, t) variation for classical, fractional and generalized
thermoelasticity theory considering various phase-lags and fractional orders. It has been found that the
wave front expresses the tensile stress variations corresponding to τΩ = τΘ that shows negligible fluctuations
however the significant fluctuations have been found for the wave fronts corresponding to τΩ > τΘ. Hoop
stress component σθθ is compressive for 0 < r < 0.4 and tensile for the rest of the region.
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Figure 7(a) & 7(b), shows that the spherical boundaries are free of hoop stress σφφ(r, θ, t) . Hoop stresses
are found to be compressive for 0 < r < 0.3, however the wave fronts are quite close for classical τΩ = τΘ
fractional and hyperbolic τΩ > τΘ theories except for one of the FDPL corresponding to β = 0.90. Observ-
ing figure 7(b), it can be observed that the hoop stress variations are found to be inversely proportional to
fractional order applied to the model.

Figure 8(a) & 8(b), describes the shear thermal stress σrθ(r, θ, t) present inside the hollow sphere for classi-
cal, fractional and generalized thermoelasticity cases on varying the lags and fractional orders respectively.
Graphically the results are similar and satisfying the traction free boundary conditions.

5. Conclusions

A well-posed fractionally ordered dual-phase-lag heat conduction model within the framework of two-
temperature thermoelasticity theory has been derived in the presented manuscript. The generalized heat
conduction equation (7) has been re-examined for several variations in phase-lags and fractional orders ap-
plied, depending upon the numerical values of phase-lags τΩ , τΘ and fractional order β, the classical coupled
and generalized theory of thermoelasticity has been recovered.

Implementation of the delay time translations of heat flux vector (
−→
Ω ) denoted by τΩ and temperature gradi-

ent (∇T ) represented by τΘ where τ = τΩ − τΘ > 0, converts the governing heat equation in the hyperbolic

form, that leads to attain the definite speed of thermal wave propagation given by

√
Γ(β + 1)

ητβΩ
.

The formulation shown in the current article, revealed that several cases of early derived classical, coupled
and generalized thermoelastic models have been found to be compatible with the presented model in the
context of two-temperature theory.

Resulting time domain numerical values of several thermal parameters obtained in this fractional order DPL
model derived in reference to the two-temperature theory are found to fulfill all the imposed physical restric-
tions prescribed in the given model for different values of fractional order and phase-lag variations.

Subjected to the hyperbolic (τΩ − τΘ > 0) and parabolic (τΩ = τΘ = 0) status of governing equation (13)
remarkably distinguished outcomes have been detected for these two cases, moreover the couple of sets of
results obtained for the phase-lag and fractional order variations are found to be closely similar to each other.

As per the resulting outcomes found in the given model, it is reasonably good to claim that fractional order
of time derivative β and applied phase-lags τΘ, τΩ could be scientifically applied to classify distinct materials
according to their capacity to conduct the heat.
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