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Abstract

The temporal and spatial distribution of water resources over China has changed and may continue changing in the future

under ongoing global warming. Scientific water resources management requires reliable forecasting of the change. Meanwhile,

the performance of deep learning in achieving it has not been comprehensively explored. To fill this gap, deep learning, i.e.,

multilayer perceptron (MLP) in this study, is used to study the change of streamflow over China under climate changes. MLP

is compared with other machine learning methods for investigating its strengths, and three river basins (i.e., Xiangxi, Jinghe

and Zhongzhou) in central, northwestern and southeastern China, respectively are selected to represent hydrologic regimes

over China. Four regional climate models are used to drive MLP for forecasting streamflow from 2021 to 2050 under two

greenhouse-gas emission scenarios (i.e., RCPs 4.5 and 8.5). Modeling results show that MLP is more accurate than the other

methods, especially in terms of peak streamflow volumes. Annual average temperature in the three basins will increase, while

precipitation shows different changing trends. The simulation accuracies among the regional climate models (RCMs) are slightly

different. Correspondingly, streamflow will increase, and the increments decrease from Jinghe, through Xiangxi, to Zhongzhou

River Basins. Due to climate changes, flooding will become more frequent in Jinghe and Xiangxi River Basins, Jinghe River

Basin will experience no runoff in winter, and the timing of peak runoffs in Zhongzhou River Basin will move forward. Compared

with the RCP 4.5 scenario, the above trends are more obvious under the RCP 8.5 scenario.

1 Introduction

In recent years, due to the development of social economy and the impact of human activities, the trend of
global climate change has become more apparent. Climate change may cause dramatic effects in hydrological
processes (Hoang et al., 2016). These effects may lead to more frequent hydrological extremes such as
droughts (Puri et al., 2011) and floods (Gu et al., 2015; Ahmad and Simonovic, 2001) and pose a potential
threat to water security. IPCC reports (2001; 2007) also show that the spatial and temporal distributions
of water resources have changed and are expected to change in the future.

In the past 100a, the temperature in China increased about 0.5-0.8 (Ding et al., 2006). Strong evidences
show that warming climate mainly affect some large-scale basins in China (Yang et al., 2012; Zhang et
al., 2006; He, 2017), such as Yangtze River, Yellow River, and Pearl River. Wang et al. (2012) found the
annual runoff in the whole China may increase by about 3-10 percent by 2050 with quite uneven spatial
and temporal distributions. Meanwhile, large-scale basins usually play significant roles in water supply,
energy production, and navigation. Climate changes also may cause severe social and economic damages to
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humanity (Simonovic and Ahmad, 2005). Thus, it is particularly essential to study and predict the change
in the hydrological cycle regarding future climate for guaranteeing water security.

Currently, one commonly-used method for projecting river discharges under climate change scenarios is using
hydrological models fed by the outputs of climate models (Ghosh and Mujumdar, 2008; Gardner, 2009;
Shivam et al., 2019). One approach of hydrologic modeling is physical models (e.g., SWAT, TOPMODEL
and HYPE) fed with data on climate, land use, vegetation, etc. A physical model focuses on the analysis
of hydrological processes by its abundant components. Although widely used, it still has the limitations
of too complex structures and high data requirements (Partington et al., 2012). In addition, many model
parameters only depend on experiences (Gao et al., 2009), which may affect accuracies of physical models.
Another approach is data-driven models which just focuses on the relationship between inputs and outputs
rather than the internal structure (Modarres, 2009). Due to the simple focus, data-driven models always
have less demand on data. In general, precipitation and climate data are easily to obtain compared with soil,
vegetation, and groundwater data (Shoaib et al., 2014). Thus, data-driven models have obvious advantages
than physical models in terms of predicting discharge changes regarding future warm climate (Inmaculada
et al., 2007).

Lots of statistical and autoregressive models are chosen frequently in hydrological forecasting (Drogue et al.,
2004; Cheng et al., 2016; Okkonen and Klove, 2010). In addition to using traditional regression analysis
methods, some papers focus on machine learning recently. However, most of them are based on “shallow”
machine learning methods, such as stepwise cluster analysis (Fan et al., 2016), back propagation (Wang,
2010), support vector machine (Ajay et al., 2013) and artificial neural network (Zeng et al., 2012). It can
be seen that machine learning shows better performances than traditional regression models in hydrological
forecasting. Nevertheless, the shallow learning category is always limited by overfitting and local optimum
(McInerney et al., 2017), restricting its reliability in hydrological forecasting.

At the same time, deep learning is effective at identifying complex data features, has relatively high accu-
racies, and promotes development of data-driven models. Due to its great advantage in solving complex
problems, this approach has been widely used in many fields recently, such as image recognition (Chen et
al., 2016; Postadjian et al., 2018), speech recognition (Graves et al., 2013), and human behaviors (Vu et
al., 2015). Its application in system simulation has significantly improved forecasting efficiencies, beyond
shallow learning methods drastically. In this sense, deep learning provides an advanced tool for hydrological
forecasting (LeCun et al., 2015).

Comparisons of deep learning and physical models in hydrologic modeling showed the former has better
performances (Tian et al., 2018). However, few comprehensive study of deep learning methods for hydrolog-
ical modeling was reported in literature (Shen et al., 2018), especially those regarding watersheds in China.
Existing related studies focused on runoff series, so linking hydrology with other variables (e.g., meteorology)
deserves more attempts (Bai et al., 2016; Cheng et al., 2016). Furthermore, hydrological application of deep
learning has often been probed just in a single basin (Hu et al., 2018), lacking of effective comparisons for a
variety of scenarios. Generally, one study applying deep learning into hydrological prediction under climate
change over multiple typical basins in China has not been explored.

Thus, this study aims to explore the potential advantages of deep learning methods in hydrological prediction
and to reveal the response of hydrological systems over three typical basins in China under climate change
conditions. These explorations will provide scientific support for flood control and reduction, and water
resources planning and management under climate change conditions. In this article, Section 2 introduces
the data and methods in the study, including climate models, hydrological models, and simulation methods.
Section 3 describes the research area. Section 4 presents the simulation and projection results, mainly
including climate simulation, hydrological simulation, climate projection, and hydrological forecast. Section
5 concludes the contributions, findings and limitations of this study.
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2 Methodology

2.1 Framework

In order to predict the hydrological response to climate change, four regional climate models (RCMs), i.e.,
RSMGE, HadGEM3 RA, RegCM4, and WRF, are used to drive hydrological models for future runoff fore-
casting. Climate projection results from CORDEX-East Asia, that were bias-corrected by linear regression,
are used as inputs, and the runoff is used as the output of hydrological models. Hydrological predictions are
carried out by using four learning methods, i.e., multiple linear regression (MLR), support vector machine
(SVM), artificial neural network (ANN) and multilayer perceptron (MLP), which are trained by hydrological
simulation. Critical forecasting results are daily and monthly runoffs during the period of 2021-2050 under
two greenhouse gas emission scenarios, i.e., RCP4.5 and RCP8.5. The framework of this study is shown in
Fig. 1.

2.2 Regional climate modelling

General circulation model (GCM) is a common and typical method for forecasting future climates factors.
GCM can predict future climate in large-scale regions (around 1000 km) on a global scale. However, its
forecasting scale is so large that the resolution is relatively inadequate to represent hydrological processes
(Giorgi and Marinucci, 1996). Coordinated Regional Climate Downscaling Experiment (CORDEX) is a
framework for the World Climate Research Program. This framework aims to assess simulated performances
of regional climate models (RCMs) through a series of predictive experiments. Compared with GCMs, RCMs
have higher resolutions (about 25-50 km) and can capture climate characteristics within regions. Therefore,
RCMs can better meet the needs of hydrological forecasting. The RCMs this paper used are from the high-
resolution CORDEX-East Asia project, namely RSMGE, HadGEM3 RA, RegCM4 and WRF. In order to
study the runoff changes under different greenhouse gas emission scenarios, this paper selected two RCP
scenarios, i.e., high-emission RCP8.5 scenarios and medium-emission RCP4.5 scenarios.

The simulations of climate variables may be full of uncertainties (Cheng et al., 2017; Wu et al., 2019). The
biases in the outputs of RCMs are corrected by a simple and easy-to-operate method, i.e., linear regression.
The specific steps of bias correction are: (1) The time overlap between the simulation results of climate
models and the observed data is taken as the overall sample for bias correction. The first 2/3 of the sample
is used for calibrating the bias-correction model, and the remaining 1/3 is used for verifying bias-correction
accuracies; (2) The RCMs simulation data and observation data in the calibrated and verified samples
are sorted in an ascending order according to the values. Establish linear regression model by disturbing
sequences, to fit the relationship between simulated and observed climate data. (3) Bringing the simulation
data by verification sample into the established bias-correction equation, the corrected climate data will
be obtained; (4) the pre-correction and post-correction climate data are compared with the observed data
respectively, to analyze the correction effect of the bias-correction model.

The mean absolute error (MAE) is used as the evaluation index for the bias-correction model. MAE is
calculated as:

MAE = 1
n •

∑n
i=1 |yi − y∗i |(1)

where: yi is the observed climate data, y∗i is the simulated climate date, n is the sample size.

2.3 Deep learning

Among the existing runoff forecasting methods, MLR is widely used because of its simple principle and
operation (Bauer and Curran, 2005). In addition to MLR, SVM and ANN as machine learning methods
have also been successfully applied in several hydrological forecasting recently (Asefa et al., 2006; Lin et
al., 2010; Pan et al., 2007; Leahy et al., 2008). SVM is a pattern recognition approach basing on statistical
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learning theory (Vapnik, 1995). Prediction error and structural complexity are simultaneously minimized
in SVM. ANN is a mathematical model that simulates the processing mechanism of complex information in
the human brain’s nervous system (Marcoulides, 2004). Therefore, MLR, SVM and ANN are also used for
hydrological forecasting in this study for comparative analysis.

Deep learning are powerful tools in system simulation field, which are widely used in image recognition
(Smirnov et al., 2014), big-data analytics (Wang et al., 2018). Compared to shallow machine learning, deep
learning transforms the original data features layer by layer, and it has a more hierarchical learning of data
features. MLP (Fig. 2) is one of the typical deep learning. MLP has strong learning and representation
ability for nonlinear relationships among variables. In this study, MLP is selected to be applied in runoff
forecasting, and its potential advantages in hydrological forecasting compared with traditional machine
learning are explored. The number of neurons in the input and output layers are consistent with the number
of input and output variables, respectively. And the number of neurons in the hidden layer is determined
by parameter adjustment. In this study, the input layer of the MLP network contains 4 neurons, the output
layer contains 1 neuron, and there are two hidden layers. Each hidden layer contains 64 nodes.

Commonly used transfer functions are sigmoid, tanh, relu, etc. Compared with other transfer functions,
relu can effectively alleviate the gradient disappearance. The MLP in this study uses relu as the transfer
function.

The transmission of information in MLP is as:

xij = fi (WiXi−1 + bi−1) (2)

where xij is the output of layer i, node j, fi is the transfer function at layer i, Wi is the weights between
layer i-1 and layer i, Xi−1 is the output of layer i-1, andbi−1 is the bias of layer i-1.

2.4 Hydrological simulation

Based on historical data, the correlation coefficient between each climatic factor and runoff is calculated
(Table 1, Table 2). The climatic factors with strong correlation coefficient are selected as the inputs.

The daily results show that the effect of precipitation on runoff is stronger than temperature. Time lag
between precipitation and river discharge is about two days. Temperature has weak effect on the runoff, and
time lag is insignificant. Therefore, daily precipitation observed two days ago, one days ago and in the same
day as daily runoff are chosen as inputs, and daily temperature observed in the same day as daily runoff is
also chosen.

The monthly correlation results show that the correlation of precipitation on runoff is still slightly higher
than temperature, and time lag of both is about one month. Therefore, the average monthly precipitation
and temperature observed one month ago and in the same month are chosen as inputs, in the monthly runoff
forecasting.

In this study, Pearson correlation coefficient (ρ), Spearman correlation coefficient (ρs), root mean square
error (RMSE), Nash coefficient (Nash) and relative square root error (RRSE) are used to assess accuracy of
model simulation. The calculation formula is as:

ρ =

∑n
i=1 (yi−y)

(
y∗
i −y∗

)
√∑n

i=1(yi−y)
2•
√∑n

i=1

(
y∗
i −y∗

)2
(3)

ρs = 1− 6
∑n

i=1 d2
i

n(n2−1) (4)

RMSE =

√∑n
i=1(yi−y∗

i )
2

n (5)
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Nash = 1−
∑n

i=1(yi−y∗
i )

2∑n
i=1(yi−y)

2 (6)

RRSE =

√∑n
i=1(yi−y∗

i )
2∑n

i=1(yi−y)
2 (7)

where: yi is the observed runoff, y∗i is the modelled runoff, y is the average of observed runoff,y∗ is the
average of modelled runoff;di is the grade difference between observed runoff and modelled runoff; n is the
sample size.

ρ and ρs reflect the strength of correlation between simulated value and observed value. The closer their
value is to 1, the stronger the correlation is. RMSE reflects the error of the simulated value, that is, the
magnitude of deviation. The closer its value is to 0, the more accurate the simulation is. Nash and RRSE
reflect the prediction error. Nash approximates to 1 and RRSE approximates to 0, showing the error is
minimized.

3 Case Study

3.1 Study Areas

The research object of this study is three basins, i.e. Xiangxi River, Jinghe River and Zhongzhou River.
They are tributaries of three state-level basins in central, northwestern and southeastern China, i.e. Yangtze
River, Yellow River and Pearl River, respectively.

Xiangxi River (110°25’˜116deg06’E, 30deg57’˜31deg34’N, Fig. 3a), also known as Zhaojun River, is located
in the western part of Hubei Province, China. It is a first tributary of Yangtze River. Its waterway is 97.3
kilometers and catchment area is about 3,100 square kilometers. It originated from Shennongjia and has
two sources. The east source is in the Shenmadian, Shennongjia, and the river turns from east to west and
then to southeast. Since the west is from the south of the Great Shennongjia Mountain, the river is from
the northwest to the southeast. And the Xiangxi River Basin is located in subtropical monsoon climate with
four distinct seasons.

Jinghe River (106deg14’˜108deg42’E, 34deg46’˜37deg19’N, Fig. 3b) is a secondary tributary in Yellow River
and one of the first tributary in Weihe River. It is located in the middle of the Loess Plateau. Its waterway
is 455.1 kilometers and catchment is 45,421 square kilometers. The river flows from northwest to southeast.
The flood and dry in Jinghe River Basin vary greatly, and the flood peak period is from July to August.
According to the hydrological data from 1960 to 1987, the average monthly runoff is more than 160 times
the difference between flood and dry. In addition, due to its location in the Loess Plateau, the soil erosion
is serious. The sediment concentration of Jinghe River is the highest in the three basins.

Zhongzhou River (107deg55’˜108deg22’E, 24deg42’˜25deg34’N, Fig. 3c), also known as Xiaohuan River, is
located in Huanjiang Autonomous County in Guangxi province, China. It is a tributary of Pearl River.
With a total length of 136.5 kilometers and drainage area of 2,328 square kilometers, Zhongzhou River is the
second largest river in Huanjiang County. It starts from the Zaibian District in Congjiang County, Guizhou
Province, and flows into Longjiang River from north to south. The flood peak in Zhongzhou River usually
appeares in June and July, and the runoff was greatly affected by precipitation.

3.2 Hydro-Climatic Features

According to historical observation data, the climatic and hydrologic characteristics of the three basins are
analyzed. It can be seen from the monthly average results (Fig. 4) that annual distribution of precipitation
in Xiangxi River and Jinghe River is relatively uniform, and the two basins have basically the same ten-
dency. The peak precipitation in Zhongzhou river is obvious, from April to June. The annual temperature
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distribution in three basins are similar, and the overall temperature decreases with the increase of latitude
where the basin in. In terms of runoff, no significant difference between Xiangxi River Basin and Zhongzhou
River Basin, with an average annual runoff of about 30 m3/s. However, the scale of Jinghe River Basin is
small, and the average annual runoff is only 1.9m3/s. The flood periods of the three basins are very close,
July and August in Xiangxi and Jinghe River, June in Zhongzhou river.

The interannual variations of climate factors in the three basins are all not obvious. Interannual coefficient
variation (CV) values of temperature are less than 0.1, and that of precipitation are less than 0.3. However,
the variation of runoff has different performance. The interannual CV of Xiangxi River is 0.30, Jinghe River
is 0.62, and Zhongzhou river is 0.42. One important reason for the large value of runoff in Jinghe River is
the runoff is not plenty in itself. It is worth mentioning that the correlation coefficient between precipitation
and runoff in Zhongzhou River basin reaches 0.69. In the monthly data, the correlation coefficient can reach
0.85 which is the highest in the three basins.

3.3 Data

Hydrological models need to be calibrated and verified firstly. Observation data is used as the training
sample. The above 2/3 of the training sample is used as the calibrated sample, and the remaining 1/3 is
used for verification. Observed precipitation, temperature and runoff from 1991/1/1 to 2002/12/31, 1960/1/1
to 1978/3/31 and 2009/1/1 to 2012/4/30 are used for model calibration in three basins, i.e. Xiangxi River,
Jinghe River and Zhongzhou River, respectively. And the same data during 2002/1/1-2008/12/31, 1978/4/1-
1987/12/31 and 2012/5/1-2013/12/31 are used for verifying, respectively.

4 Climate Modeling

4.1 RCM Bias Correction

Linear regression was used to correct the RCM simulation results. The climate correction sequence in the
Xiangxi River Basin is from 1991 to 2005, in the Jinghe River Basin is from 1981 to 1987, and in the
Zhongzhou River Basin is 2009-2013. The variability of MAE in the three basins is calculated (Fig. 5).

The climate simulation corrected for precipitation and temperature, respectively. As can be seen from Fig.
5, the correction has different effects in the two climatic factors. In general, this method has a better
correction on temperature. Among the three basins, Zhongzhou River has the best correction effect, with
an average of 83.66%; the correction effect of Xiangxi River ranks the second, with an average of 78.05%;
and the correction effect of Jinghe River is worse than the others, with an average of 77.42%. The results on
precipitation is not ideal, and the correction effect are achieved just in Xiangxi River and Zhongzhou River,
i.e. 17.37%, 2.63%. This is because the RCM simulation sequence and the measured sequence are arranged
in the ascending order firstly when the correction method is used. The climate correction is performed on the
basis of the climate sequence that disturbs the one-to-one correspondence. Although this method may have
negative bias growth in precipitation correction, it has a more accurate forecast effect on extreme weather
during the whole forecast period for long-term climate simulation.

At the same time, the results show that the climate simulation accuracy by the four RCMs, i.e., RSM3,
HadGEM3 RA, RegCM4 and WRF, has not much different among the three basins. Therefore, in the
subsequent part of this paper, only the mean analysis results of the four RCMs are presented.

4.2 Annual Climate Changes

Using RSM3, HadGEM3 RA, RegCM4 and WRF to forecast climate in the period 2021-2050, the forecast is
carried out in Xiangxi River, Jinghe River and Zhongzhou River, respectively. And the forecast results are
corrected by the above climate bias-correction method. Since the four RCMs have similar climate simulation

6
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accuracy, this section takes the average forecast data of the four RCMs as forecast results. Taking the mean
historical observation data as baseline, the climate change trend under two emission scenarios was analyzed
as follows.

The annual analysis results are shown in Fig. 6. It can be seen that annual average temperature in the
three basins will increase in the next 30 years. Under the RCP8.5 emission scenario, the temperature rise
trend is more obvious. Temperature rise in Jinghe River is the strongest, and the highest temperature under
the RCP8.5 emission scenario appears in 2047, an increase of 43.39%. Compared with Jinghe River, the
temperature changes of the others are more gradual. The increase in Xiangxi River does not exceed 30%, and
in Zhongzhou River does not exceed 10%. Under the RCP4.5 emission scenario, temperature in Zhongzhou
River has a negative growth in a few years.

Future average annual precipitation in the three river basins show different trends. The value in Xiangxi
River in the next 30 years shows a significant upward trend. And there was no significant difference in Xiangxi
River under the two emission scenarios, all of which are around 16%. The annual average precipitation in
Jinghe River shows a great swing change in the next 30 years. The variability under RCP8.5 emission scenario
is higher than that under RCP4.5 emission scenario. Therefore, it is more likely that extreme weather will
occur in Jinghe River in the next 30 years, and this situation is even more serious under the RCP8.5 emission
scenario. Different from the other two basins, the annual average precipitation in Zhongzhou River has a
downward trend, with an average decline of 16.27% under RCP4.5 emission scenario and 18.32% under
RCP8.5 emission scenario.

4.3 Monthly Climate Changes

Like annual climate changes analysis, based on historical observation data, the climate monthly change trend
of the three basins in the next 30 years under two emission scenarios was analyzed. The analysis results are
shown in Fig. 7.

As can be seen from the figure, the monthly average temperature in the three basins has an upward trend.
The rise in Jinghe River is the most obvious, especially in the summer (June-August) and winter (December-
February). And the growth rate is larger under RCP8.5 emission scenario. Therefore, the summer temper-
ature in Jinghe River will be higher than the original, and the “warm winter” phenomenon may continue to
occur. Temperature rise in Xiangxi River mainly occurs in the summer and autumn (September-November),
while the temperature in spring (March-May) and winter show a downward trend. Therefore, the tempera-
ture difference among four seasons in Xiangxi River may be even more different in the future. That means,
the four seasons in Xiangxi River may more distinct. The rise in Zhongzhou River mainly occurs in the
spring, while in the other three seasons have not obvious change. Therefore, the temperature difference
among four seasons in Zhongzhou River may decrease in future.

There is a significant difference in the monthly average precipitation. In the next 30 years, monthly average
precipitation in Xiangxi River and Zhongzhou River during the precipitation peak period (July) will increase.
Therefore, the probability of extreme weather in these two basins may increase in the future. In particular,
the precipitation decreased significantly in April and May when precipitation was less in Zhongzhou River,
which would aggravate the occurrence of extreme weather. However, Jinghe River did not show significant
changes. Significantly, it was analyzed that the annual average precipitation in the Jinghe River has a swing
change. Therefore, no significant change in monthly average precipitation does not indicate that there is no
change in future precipitation.
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5. Hydrologic Simulation

5.1 Overall sequence analysis

The four machine learning methods, i.e., MLR, SVM, ANN and MLP, were used to simulate the runoff,
and the historical observation climate and hydrological data were brought into the model for calibration and
verification. In order to fully analyze the simulation accuracy of hydrological models, this part carries out
daily and monthly runoff simulation respectively. And the performance of the hydrological simulation in the
three basins is illustrated in Table 3 and Table 4.

Daily simulation result of verification period in Xiangxi River shows Pearson correlation coefficient and the
Nash of MLP are the highest, meanwhile RMSE and RRSE are the smallest. This means MLP has the best
simulation accuracy. And Nash is 0.71, indicating the simulation results are credible. In addition to MLP,
the other three hydrological models have similar simulation effects. Simulation results of ANN are slightly
lower than MLR and SVM. Compared with daily runoff simulation, simulation accuracy in monthly runoff
are significantly improved. The average Spearman correlation coefficient is increased by 48%, and Nash is
increased by 53%. Compared with the other three models, ANN has a slightly poorer simulation effect in
the monthly runoff simulation.

In Jinghe River, the MLR, SVM and MLP show better daily simulation accuracy than ANN, and MLP is
slightly better than the others. Monthly runoff simulation effect is better than the daily. In monthly runoff
simulation, there is no significant difference in simulation results of four hydrological models. MLP has
smaller simulation bias and slightly better simulation performance, but the correlation between simulated
and actual runoff value is slightly lower than the others. In general, the four hydrological models have
a general runoff simulation accuracy in Jinghe River. This may be due to the fact that the two climatic
factors of precipitation and temperature have little impact on the overall runoff, and the relationship between
climatic factors and runoff is not strong.

In daily performance of hydrological simulation in Zhongzhou River, the effects of the four models show
strong differences. Simulation effect of MLP is significantly better than the others. In verification period,
RMSE in MLP is about 38% of the SVM model. It can be seen simulation accuracy of MLP is significantly
higher than the others. Fig. 8 shows the simulation sequence of the daily runoff of SVM and MLP. It
can be seen MLP can better restore the runoff condition and simulation of runoff peak also has a higher
accuracy. MLR is the best but MLP in hydrological simulation, and it exhibits superior simulation results
in daily runoff simulation. This may be due to the fact that precipitation has a greater impact on runoff
and presents a strong linear relationship in Zhongzhou River. SVM and ANN behave similarly, and the
simulation performance is general. In the monthly runoff simulation, the simulation performance of MLP is
slightly higher than the other three hydrological models. In general, MLP has obvious advantages in runoff
simulation.

Based on the hydrological simulation above, it can be found runoff simulation accuracy of MLP is better
than the other three models. SVM and ANN have similar simulation performance. MLR exhibits excellent
simulation effects when there is a strong linear relationship between inputs and outputs, while the overall
performance is slightly worse than the SVM and ANN models in opposite cases. In different basins, the
simulation effects of hydrological models vary greatly. Simulation accuracy in Zhongzhou River are the best,
while in Jinghe River are the worst. This is because there are large differences in the effects of climatic
factors, i.e., precipitation and temperature, on runoff in different watersheds. Within the scope of climate
factor impact, MLP can more fully explore its potential relationship with runoff.

5.2 Seasonality of Modeling Accuracies

Through overall sequence analysis for hydrological simulation, it can be seen MLP shows its greatest advan-
tage in hydrological forecast in daily runoff forecast at Zhongzhou River. Therefore, this part selects the
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daily runoff forecast at Zhongzhou River as research object to analyze runoff simulation of four hydrological
models during the four seasons. The data sequence is divided into four parts, i.e., spring (from March to
May), summer (from June to August), autumn (from September to November), and winter (from December
to February). Select simulation results of MLR, the most commonly used method, as baseline. Since Nash
has negative value and RRSE is consistent with Nash on certain extent, this part does not analyze Nash.
Analysis results in verification period are shown in Fig. 9.

It can be seen from the results that MLP shows the best simulation accuracy in four seasons compared with
the others. Simulation performance in spring and summer is significantly higher. RMSE value of MLP in
summer is 54.08% lower than that of MLR, and simulation deviation is greatly reduced. SVM and ANN
models show a slightly worse simulation performance than MLR, which is consistent with performance of
the four models in the hydrological simulation. It can be seen from the seasonal analysis that, compared
with the others, the accuracy of MLP for the prediction in summer runoff peaks is significantly improved.

5.3 Streamflow Magnitudes

In order to further understand the simulation effect of hydrological models in each runoff interval, simulation
sequence was subjected to magnitudes analysis. The sequence is arranged in ascending order according to
observed runoff, and magnitudes are divided into 0-5%, 5-15%, 15-25%, 25-50%, 50-75%, 75-85%, 85-95%
and 95-100%. Results of daily runoff simulation in Zhongzhou River are shown in Fig. 10.

From analysis results of Pearson correlation coefficient and RMSE, runoff simulation effects of the four
hydrological models are not much different in 0-95% quantile interval. Overall, MLP is slightly better than
the others. In 95-100% interval, the difference is significantly increased. MLP has obvious advantages and
simulation accuracy is greatly improved. From the results of RRSE analysis, SVM shows the best simulation
effect in 0-50% quantile interval. MLP is similar to MLR, while ANN is slightly worse. In 50-100% interval,
difference among simulation results of the four models are reduced. Especially in ANN and SVM, and
simulation results are almost identical. However, MLP is stable and exhibits better simulation results than
the other three models.

5.4 Inter-Annual Variation of Runoff Changes

The RCM-driven hydrological model was used to forecast runoff during the period 2021-2050. MLP was
used for runoff forecasting. Corrected RCMs climate prediction results were used as inputs. The forecast
was carried out in Xiangxi River, Jinghe River and Zhongzhou River, respectively. Hydrological forecast
results were analyzed based on historical hydrological simulation data.

The annual variability is shown in Fig. 11. It can be seen that annual runoff in the three basins all have
upward trend in the next 30 years. And this trend is more obvious under RCP8.5 emission scenario. Among
them, average annual runoff of Jinghe River is increasing year by year, and the increase is the largest in the
three basins. Hydrological forecast results show that average annual runoff in Jinghe River will increase by
about 50% until 2050. While the annual average runoff in Xiangxi River is increasing slightly. Under the
RCP4.5 emission scenario, the annual average runoff in Xiangxi River reached its highest level in 2036, an
increase of 27.04%. The future annual average runoff in Zhongzhou River is more gradual than that of the
other two basins, but the overall trend is increased.

5.5 Intra-Annual Variation of Runoff Changes

Like inter-annual variation, based on historical observation data, intra-annual runoff change trend in three
basins under two emission scenarios was analyzed. The results are shown in Fig. 12.

It can be seen that monthly average runoff in the three river basins in the next 30 years show different
trends. The average monthly runoff in Xiangxi River increased slightly, and the increase mainly occurred in
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the peak period (from May to August) of the runoff. Like the Xiangxi River, the runoff growth in Jinghe
River is mainly concentrated in summer. The increase is significantly larger than that in Xiangxi River, and
this trend is more obvious under RCP8.5 emission scenario. In addition, the future winter (December to
February) runoff in Jinghe River has also increased significantly, which may improve the winter runoff in the
basin. Future monthly average runoff variation trend in Zhongzhou River is different from the others. The
runoff growth is mainly concentrated from February to April, while the flow in other months has no obvious
change trend. This means that the peak runoff in Zhongzhou River may move forward.

6 Conclusions

The research shows that deep learning has a good application effect in runoff simulation. Compared with
traditional statistical models, MLP can better learn the potential relationship between climatic factors
and runoff, which is more obvious in hydrological simulations with stronger precision (e.g., daily runoff
simulation). Moreover, in simulation of the peak runoff (5%), deep learning is more accurate than traditional
hydrological models, showing obvious advantage.

Meanwhile, future climate and runoff is forecasted for a period of 2020-2050. The result shows that futere
temperature in the three basins all showed upward trend, and the increment decrease from Jinghe, through
Xiangxi to Zhongzhou River Basins. In the average annual precipitation, Xiangxi River shows growing trend,
Jinghe River shows swinging change, and Zhongzhou River shows downward trend. The same trend was
given by Wang et al. (2019), who found that precipitation and temperature is projected to increase in the
Upper Yangze River Basin. In Yellow River Basin, Guan et al. (2019) found the temperature presented a
significant rising trend, but precipitation had a decline trend.

Average annual runoff in the three basins all have upward trend. The increments ranking is consistent with
the temperature increase. Runoff growth in Jinghe River and Xiangxi River is mainly in the summer, so the
frequency of summer disasters may increase. There is also an upward trend in winter runoff in Jinghe River,
which may improve the winter shutdown phenomenon. The runoff growth in Zhongzhou River is mainly
concentrated in February to April, so the peak runoff may be advanced. Under the RCP8.5 emission scenario,
the above trends are more obvious. What’s more, the four regional climate models used in this study have
little difference in climate simulation accuracy in the study basins. This is not the same as trend by Chen
et al. (2014), which annual runoff exhibited a decrease trend in the Yangtze, Yellow and Pearl Basins. The
different results may result from the different methodology, RCMs and baseline period. However, future
runoff change also is stronger under the RCP8.5 scenario than the RCP4.5 scenario in Chen’s study.

Although the results of this study are relatively abundant and reliable, there is still room for improvement. In
the future research, more kinds of deep neural network methods can be applied to hydrological simulation, i.e.,
Convolutional Neural Network (CNN) and Cyclic Neural Network (RNN). In addition, the linear regression
was used as the only bias-correction method for RCMs in this paper, so more methods can be used in the
future study.
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