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Introduction

The article considers a system of two second order nonlinear differential equations with discontinuous func-
tions on the right sides. The aim of the work is to obtain sufficient conditions for the existence, local
uniqueness, and asymptotic stability of a stationary solution of a parabolic system with a large gradient in
the vicinity of the discontinuity points of the right-hand sides. The area where the function undergoes large
gradient is called the internal transition layer.

The authors arrived at this formulation of the problem during the development of the autowave model for
the development of megacities (Sidorova et al., 2018; Levashova et al., 2019). This model is based on the
activator-inhibitor system of two equations where the urban area acts as the activator, and the inhibitor is
determined by environmental or economic factors due to urban planning policies of a country. The presence
of barriers that prevent the propagation of the front of the activator, for example, large bodies of water, is
taken into account in the model as a jump in the functions on the right-hand sides. Obviously, the numerical
solution of such a problem should be preceded by an analytical study of the existence of the mentioned
solution, which was done in the present work.

The proof of the existence and asymptotic stability of the stationary solution of the initial-boundary-value
problem here is carried out using the asymptotic method of differential inequalities (Nefedov, 1995; Butuzov
et al., 2012), based on the method of super- and subsolutions.The latter was extended to problems with
a single discontinuity point of the first kind on the right-hand sides of the equations based on a modified
proof of the corresponding theorem from (Pao, 1992), where it was carried out for the case of C2 continuous
right-hand sides.

Problem statement

We consider the following initial-boundary-value problem:

1
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ε4yxx − yt = f(y, z, x, ε), x ∈ (0, 1), t > 0, yx(0, t) = yx(1, t) = 0, y(x, 0) = u0(x), (1)

ε2zxx − zt = g(y, z, x, ε), x ∈ (0, 1), t > 0, zx(0, t) = zx(1, t) = 0, z(x, 0) = v0(x),

(2)

where u0(x), v0(x) ∈ C([0, 1]) and u0x(0) = u0x(1) = v0x(0) = v0x(1) = 0, ε ∈ (0, ε0] is a small parameter.

The functions f(u, v, x, ε) and g(u, v, x, ε) have the first kind discontinuities across the surface {u ∈ Iu, v ∈
Iv, x = x0 ∈ (0, 1)}, where Iu and Iv are respectively permissible u and v change intervals:

f(u, v, x, ε) ={
f (−)(u, v, x, ε),

f (+)(u, v, x, ε),
g(u,v,x,ε) =

{
g(−)(u, v, x, ε), u ∈ Iu, v ∈ Iv, 0 < x ≤ x0 ,
g(+)(u, v, x, ε), u ∈ Iu, v ∈ Iv, x0 < x ≤ 1 ,

f (−)(u, v, x, ε) and g(−)(u, v, x, ε) are of class C4(Iu×Iv×[0, x0]×[0, ε0]), f (+)(u, v, x, ε) and g(+)(u, v, x, ε) are
of class
C4(Iu × Iv × [x0, 1]× [0, ε0]).

Denote DT := (0, 1)× R+, D
(−)
T := (0, x0)× R+, D

(+)
T := (x0, 1)× R+.

A pair of functions (yε(x, t), zε(x, t)) in C1,0
(
DT

)
∩C2,1

(
D

(−)
T ∪D(+)

T

)
is called the solution to problem (1)

if it satisfies equations (1) in D
(−)
T ∪D(+)

T , the boundary and initial conditions.

Each of the equations f (∓)(u, v, x, 0) = 0 is solvable with respect to u and the functions u = ϕ(∓)(v, x) are
the isolated solutions to these equations, respectively, in domains Iv × [0, x0] and Iv × [x0, 1], the inequality

ϕ(−)(v, x0) < ϕ(+)(v, x0) holds for all v ∈ Iv and f
(∓)
u (ϕ(∓)(v, x), v, x, 0) > 0 in respective domains.

Denote h(∓)(v, x) = g(∓)(ϕ(∓)(v, x), v, x, 0).

Each of the equations h(∓)(v, x) = 0 is solvable with respect to v and the functions v = ψ(∓)(x) are the
isolated solutions to these equations, respectively, in the segments [0, x0] and [x0, 1], and the inequalities

h
(∓)
v (ψ(∓)(x), x) > 0 hold in respective segments.

The main aim of this article is to obtain the existence and stability conditions for the stationary solution
to problem1 that is close to functions (ϕ(−), ψ(−)) to the left of point x0 close to functions (ϕ(+), ψ(+))
to the right of this point and has a large gradient in the vicinity of point x0, changing rapidly from values
(ϕ(−), ψ(−)) to (ϕ(+), ψ(+)). Obviously the stable stationary solution of problem1 is a solution to the following
problem

ε4u′′ = f(u, v, x, ε), ε2v′′ = g(u, v, x, ε), x ∈ (0, 1), u′(0) = u′(1) = 0, v′(0) = u′(1) = 0.

(3)

2
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A pair of functions (uε(x), vε(x)) in C1([0, 1])∩C2((0, 1)\x0) is called the solution to problem (3) if it satisfies
equations (3) in x ∈ (0, x0) ∪ (x0, 1) and the boundary conditions.

(Quasi-monotonicity) Let the inequalities hold: f
(∓)
v (u, v, x, ε) > 0, g

(∓)
u (u, v, x, ε) < 0 for all (u, v, x) ∈

Iu × Iv × [0, 1].

Let’s consider so-called associated equations for problem3:

d2ṽ

dτ2
= h(−)(ṽ, x0), τ < 0,

d2ṽ

dτ2
= h(+)(ṽ, x0), τ > 0, τ :=

x− x0
ε

(4)

d2û

dσ2
= f (−) (û, v, x0, 0) , σ < 0,

d2û

dσ2
= f (+) (û, v, x0, 0) , σ > 0, σ :=

x− x0
ε2

.

(5)

Each of the associated equations is equivalent to related associated system

dṽ

dτ
= Φ(∓),

dΦ(∓)

dτ
= h(∓)(ṽ, x0);

dû

dσ
= Ψ(∓),

dΨ(∓)

dσ
= f (∓) (û, v, x0, 0) .

By Propositions and the points (ψ(∓), 0) are the saddle-type rest points respectively for the first pair of
systems on the phase plain (ṽ,Φ) and the points (ϕ(∓)(v, x0), 0) for each parameter v ∈ Iv are respectively
the saddles of the second pair of associated systems on phase plane (û,Ψ).

The functions

Φ(∓)(v) =

√√√√√ 2

v∫
ψ(∓)(x0)

h(∓)(s, x0)ds , Ψ(∓)(u, v) =

√√√√√ 2

u∫
ϕ(∓)(v,x0)

f (∓)(s, v, x0, 0)ds

are the separatrixes of respective saddle points. If the function ṽ → ψ(−)(x0) as τ → −∞ and ṽ → ψ(+)(x0)
as τ → +∞ then the separatrixes Φ(−) and Φ(+) intersect. If the function û→ ϕ(−)(v, x0) as σ → −∞ and
û→ ϕ(+)(v, x0) as σ → +∞ then the separatrixes Ψ(−) and Ψ(+) intersect. We denote

Hv(ṽ) := Φ(−)(ṽ)− Φ(+)(ṽ), Hu(û, v) := Ψ(−)(û, v)−Ψ(+)(û, v).

(6)

3
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Let there exist the values q0 in the interval
(
ψ(−)(x0), ψ(+)(x0)

)
and p0 in the interval(

ϕ(−) (ψ(−)(x0), x0
)
, ϕ(+)

(
ψ(+)(x0), x0

))
such that q0 is the unique solution of the equation Hv(ṽ) = 0,

p0 is the unique solution of Hu(û, q0) = 0 in the respective intervals and

dHv

dv
(q0) = h(−)(q0, x0)− h(+)(q0, x0) > 0,

∂Hu

∂u
(p0, q0) = f (−)(p0, q0, x0, 0)− f (+)(p0, q0, x0, 0) > 0.

We introduce the functions

ν(∓)(v, x) := g(∓)v (ϕ(∓)(v, x), v, x, 0) +
f
(∓)
v (ϕ(∓)(v, x), v, x, 0)

f
(∓)
u (ϕ(∓)(v, x), v, x, 0)

·g(∓)u (ϕ(∓)(v, x), v, x, 0), ν̄(∓)(x) := ν(∓)(ψ(∓)(x), x).

(7)

In the respective segments ν̄(∓)(x) > 0. Also, ν̃(∓)(ṽ(∓)(τ)) are such that

ṽ∫
ψ(−)(x0)

ν̃(−)(s)ds > 0, ṽ ∈ (ψ(−)(x0), ψ(+)(x0)],

ṽ∫
ψ(+)(x0)

ν̃(+)(s)ds > 0, ṽ ∈ [ψ(−)(x0), ψ(+)(x0)).

Asymptotic approximation

Further to prove the existence and stability theorems we will use the method of differential inequali-
ties(Nefedov, 1995; Butuzov et al., 2012). The method is valid for problems with internal transition layers
and it is based on the method of upper and lower solutions(Pao, 1992). It implies construction of the upper
and lower solutions as modifications of it’s asymptotic approximations.

The asymptotic approximation of problem3 here is quite similar to that constructer in paper(Butuzov et al.,
2012), where a similar system with continuous right-hand sides was considered. We define an asymptotic
approximation of (3) as

U1(x, ε) ={
U

(−)
1 (x, ε), 0 ≤ x ≤ x0 ,

U
(+)
1 (x, ε), x0 ≤ x ≤ 1 ,

V1(x, ε) =

{
V

(−)
1 (x, ε), 0 ≤ x ≤ x0 ,
V

(+)
1 (x, ε), x0 ≤ x ≤ 1 .

(8)

4
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The functions U (∓) and V (∓) are the sums of the following terms:

U
(∓)
1 = ū(∓)(x, ε)+Q(∓)u(τ, ε)+M (∓)u(σ, ε)+P

(∓)
1 u(ζ(∓), ε), V

(∓)
1 = v̄(∓)(x, ε)+Q(∓)v(τ, ε)+P

(∓)
1 v(ζ(∓)),

(9)

• ū(∓)(x, ε) = ū
(∓)
0 (x) + εū

(∓)
1 (x), v̄(∓)(x, ε) = v̄

(∓)
0 (x) + εv̄

(∓)
1 (x) are the regular part. These functions

define the solution behavior far from borders x = 0, x = 1, x = x0.

• Q(∓)u(τ, ε) = Q
(∓)
0 u(τ) + εQ

(∓)
1 u(τ), Q(∓)v(τ, ε) = Q

(∓)
0 v(τ) + εQ

(∓)
1 v(τ), M (∓)u(σ, ε) = M

(∓)
0 u(σ) +

εM
(∓)
1 u(σ) are the functions describing the two-scaled transition layer,

• P
(∓)
1 u(ζ(∓)), P

(∓)
1 v(ζ(∓)) are the boundary layer functions, where ζ(−) = x/ε, ζ(+) = (1− x)/ε.

The demand the equality holds

U
(−)
1 (x0, ε) = U

(+)
1 (x0, ε) = p∗; V

(−)
1 (x0, ε) = V

(+)
1 (x0, ε) = q∗.

(10)

that provides functions U1 and V1 continuity.

The systems of equations for regular part functions are obtained by aggregating the coefficients with the
same ε exponents in Taylor expansion of equalities

f (∓)(ū(∓)(x, ε), v̄(∓)(x, ε), x, ε)− ε4 dū
(∓)

dx
(x, ε) = 0, g(∓)(ū(∓)(x, ε), v̄(∓)(x, ε), x, ε)− ε2 dv̄

(∓)

dx
(x, ε) = 0.

Particularly for the 0-th order we have v̄
(∓)
0 (x) = ψ(∓)(x), ū

(∓)
0 (x) = ϕ(∓)(ψ(∓)(x), x).

We obtain the equations for the transitional layer functions by aggregating the coefficients for the same
exponents of ε in Taylor expansions of equalities:

ε4
d2Q(∓)u

dτ2
= Q(∓)f, ε2

d2Q(∓)v

dτ2
= Q(∓)g,

(11)

where

5
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Q(∓)f(τ, ε) := f (∓)(ū(∓)(x0 + ετ, ε) +Q(∓)u(τ, ε), v̄(∓)(x0 + ετ, ε) +Q(∓)v(τ, ε), x0 + ετ, ε)− (12)

−f (∓)(ū(∓)(x0 + ετ, ε), v̄(∓)(x0 + ετ, ε), x0 + ετ, ε)

and Q(∓)g(τ, ε) have similar meaning;

ε4
d2M (∓)u

dσ2
= M (∓)f,

(13)

where

andM (∓)g(σ, ε) have similar meaning. Additionally we demandQ
(∓)
i u(τ)→ 0, Q

(∓)
i v(τ)→ 0 when τ → ∓∞,

M
(∓)
i u(σ)→ 0 when σ → ∓∞ for i = 0, 1.

0-th order transition layer functions

Denote

ũ(∓)(τ) := ϕ(∓)(ψ(∓)(x0), x0) +Q
(∓)
0 u(τ), ṽ(∓)(τ) := ψ(∓)(x0) +Q

(∓)
0 u(τ), Φ(∓)(τ) =

dṽ

dτ
.

(14)

From equalities11 in 0-th order we obtain equation. f (∓)
(
ũ(∓)(τ), ṽ(∓)(τ), x0, 0

)
= 0 from which it comes

ũ(∓)(τ) = ϕ(∓)(ṽ(∓)(τ), x0). Using this from the second equation11 in 0-th order and the joining condition10
we obtain problems to determine functions ũ(∓)(τ)

d2ṽ(∓)(τ)

dτ2
= h(∓)(ṽ(∓)(τ), x0), ṽ(∓)(0) = q∗, ṽ(∓)(∓∞) = ψ(∓)(x0).

(15)

These equations are similar to associated equations4 which have solutions with exponential estimates(Fife
& McLeod, 1977)

6
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∣∣∣ṽ(∓)(τ)− ψ(∓)(x0)
∣∣∣ ≤ C̃0e

−κ0|τ |,
∣∣∣ũ(∓)(τ)− ϕ(∓)

(
ψ(∓)(x0), x0

)∣∣∣ ≤ C̃0e
−κ0|τ |.

Analogously we denote functions

û(∓)(σ) := ϕ(∓)(q∗, x0) +M
(∓)
0 u(σ), Ψ(σ, q∗) =

dû

dσ
.

(16)

To determine functions û(∓)(σ) we obtain problems

d2û(∓)(σ)

dσ2
= f (∓)

(
û(∓)(σ), q∗, x0, 0

)
, û(∓)(0) = p∗, û(∓)(∓∞) = ϕ(∓)(q∗, x0).

(17)

These equations are similar to associated equations5 which have exponentially bounded solutions (Fife &
McLeod, 1977): ∣∣∣û(∓)(σ)− ϕ(∓) (q∗, x0)

∣∣∣ ≤ Ĉ0e
−K0|σ|.

1-th order transition layer functions

Denote

f̃ (∓)(τ) := f (∓)(ϕ(∓)(ṽ(∓)(τ), x0), ṽ(∓)(τ), x0, 0), g̃(∓)(τ) := g(∓)(ϕ(∓)(ṽ(∓)(τ), x0), ṽ(∓)(τ), x0, 0),

f̂ (∓)(σ) := f (∓)
(
û(∓)(σ), q0, x0, 0

)
, ĝ(∓)(σ) := g(∓)

(
û(∓)(σ), q0, x0, 0

)
,

ϕ̃(∓)(τ) := ϕ(∓)(ṽ(∓)(τ), x0), h̃(∓)(τ) := h(∓)(ṽ(∓)(τ), x0),

and the same meaning have the derivatives.

For the functions Q
(∓)
1 u(τ) and Q

(∓)
1 v(τ) we obtain the following systems of equations from11 with boundary

conditions from10:

7
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0 = f̃
(∓)
u (τ)Q

(∓)
1 u(τ) + f̃

(∓)
v (τ)Q

(∓)
1 v(τ) +Q

(∓)
1 f̃(τ),

d2Q
(∓)
1 v

dτ2
= h̃

(∓)
v (τ)Q

(∓)
1 v(τ) +Q

(∓)
1 g̃(τ), Q

(∓)
1 v(0) = −v̄(∓)1 (x0), Q

(∓)
1 v(∓∞) = 0.

(18)

For the functions M
(∓)
1 u(σ) we obtain the following problems from13 with boundary conditions from10:

d2M
(∓)
1 u

dσ2
= f̂ (∓)u (σ)M

(∓)
1 u(σ) +M

(∓)
1 f̂(σ), M

(∓)
1 u(0) = −ū(∓)1 (x0)−Q(∓)

1 u(0), M
(∓)
1 u(∓∞) = 0,

(19)

The functions Q
(∓)
1 f̃(τ), Q

(∓)
1 g̃(τ) and M

(∓)
1 f̂(σ) in18 and 19 are known and they exponentially decrease

to zero as τ → ∓∞, σ → ∓∞ respectively. The problems18 and 19 are linear and thus solvable and the
following exponential estimates are valid:∣∣∣Q(∓)

1 u(τ)
∣∣∣ ≤ C̃1e

−κ1|τ |,
∣∣∣Q(∓)

1 v(τ)
∣∣∣ ≤ C̃1e

−κ1|τ |,
∣∣∣M (∓)

1 u(σ)
∣∣∣ ≤ Ĉ1e

−K1|σ|.

The higher order functions

As it is mentioned in(Butuzov et al., 2012) to construct the upper and lower solutions we have to define

the boundary layer functions P
(∓)
i u(ζ(∓)) and P

(∓)
i v(ζ(∓)) for i = 1, 2 R

(∓)
3 u(η(∓), where η(−) = x/ε2,

η(+) = (x− 1)/ε2, and also the transition layer functions M
(∓)
i v(σ) for i = 2, 3.

The boundary layer functions are standardly defined as in(Butuzov & Nedelko, 2000).

The problems for functions M
(∓)
i v(σ) for i = 2, 3. can be determined analogously to problems for functions

M
(∓)
i u(σ) from equalities ε2 d

2M(∓)v
dσ2 = M (∓)g, where M (∓)g has the similar sense as??.

The derivatives joining condition

Let’s assume the following conditions for derivatives

(
dM

(−)
0 u

dσ
− dM

(+)
0 u

dσ

)∣∣∣∣∣
σ=0

+ ε

[ (
dQ

(−)
0 u

dτ
− dQ

(+)
0 u

dτ

)∣∣∣∣∣
τ=0

+

(
dM

(−)
1 u

dσ
− dM

(+)
1 u

dσ

)∣∣∣∣∣
σ=0

]
+O(ε2) = 0

8
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We also assume the following representation for values q∗ and p∗ that are parameters of Q− and M−
functions (see settlements 15 and 17: q∗ = q0 + εq1 and p∗ = p0 + εp1.

Zeroth order in ε exponents of?? yields Hv(q0) = 0, Hu(p0, q0) = 0, (see notations6,14 and16). The values q0
and p0 exist due to Proposition. Denote Φ(0) := Φ(−)(q0) = Φ(+)(q0), Ψ(0) := Ψ(−)(p0, q0) = Ψ(+)(p0, q0).
First order, in??, yields

1

Φ(0)

dHv

dv
(q0) · q1 = Hv

1 (p0, q0),
1

Ψ(0)

∂Hu

∂u
(p0, q0) · p1 = Hu

1 (p0, q0),

where Hv
1 (p0, q0), Hu

1 (p0, q0) are known functions.

UPPER AND LOWER SOLUTIONS

Denote

Lu,ε(u, v) := ε4
d2u

dx2
− f(u, v, x, ε), Lv,ε(u, v) := ε2

d2v

dx2
− g(u, v, x, ε).

Pairs of functions
(
Ū , V̄

)
and

(
Ũ , Ṽ

)
in C([0, 1]) ∩ C2((0, 1)\x0) are called respectively upper and lower

solutions of the problem (3) if

(A1). Ũ(x) ≤ Ū(x), Ṽ (x) ≤ V̄ (x), x ∈ [0, 1];

(A2). L1,ε(Ū , v) ≤ 0 ≤ L1,ε(Ũ , v) Ṽ ≤ v ≤ V̄ , x ∈ (0, 1)\x0, L2,ε(u, V̄ ) ≤ 0 ≤ L1,ε(v, Ṽ ) Ũ ≤ u ≤ Ū , x ∈
(0, 1)\x0;

(A3). Ūx(0) ≤ 0 ≤ Ũx(0), Ūx(1) ≥ 0 ≥ Ũx(1), V̄x(0) ≤ 0 ≤ Ṽx(0), V̄x(1) ≥ 0 ≥ Ṽx(1);

(A4).
(
Ū

(−)
x − Ū (+)

x

)∣∣∣
x=x0

≥ 0,
(
Ũ

(−)
x − Ũ (+)

x

)∣∣∣
x=x0

≤ 0,
(
V̄

(−)
x − V̄ (+)

x

)∣∣∣
x=x0

≥

0,
(
Ṽ

(−)
x − Ṽ (+)

x

)∣∣∣
x=x0

≤ 0.

In case of Proposition the inequality (A2) will hold if

Lu,ε(Ū , Ṽ ) < 0 < Lu,ε(Ũ , V̄ ), Lv,ε(Ū , V̄ ) < 0 < Lv,ε(Ũ , Ṽ ), x ∈ (0, 1)\x0

(20)

9
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In this article the upper and lower solutions are of the analogous structure to (8)-(9) with two separate
parts — left and right relative to x0. Functions Ū (∓), Ũ (∓), V̄ (∓), Ṽ (∓) are the modifications of asymptotic
approximation of the solution in respective regions:

Ū (∓) = U
(∓)
1 + ε

(
α(∓)(x) + q(∓)U(τ) +m(∓)U(σ)

)
+ εΩ̄u(x, ε),

Ũ (∓) = U
(∓)
1 − ε

(
α(∓)(x) + q(∓)U(τ) +m(∓)U(σ)

)
+ εΩ̃u(x, ε),

V̄ (∓) = V
(∓)
1 + ε

(
β(∓)(x) + q(∓)V (τ)

)
+ εΩ̄v(x, ε),

Ṽ (∓) = V
(∓)
1 − ε

(
β(∓)(x) + q(∓)V (τ)

)
+ εΩ̃v(x, ε),

where functions Ω̄u, Ω̃u, Ω̄v, Ω̃v are additions to provide the inequalities (A3) (A2) in the vicinities of
boundary points x = 0 and x = 1 and are similar to(Butuzov et al., 2012). The continuity condition in x0
yields

Ū (−)(x0, ε) = Ū (+)(x0, ε), Ũ
(−)(x0, ε) = Ũ (+)(x0, ε), V̄ (−)(x0, ε) = V̄ (+)(x0, ε), Ṽ

(−)(x0, ε) = Ṽ (+)(x0, ε).

Assuming A, B to be arbitrary positive constants we define the systems for α(∓)(x) and β(∓)(x) as

f̄ (∓)u (x)α(∓)(x)− f̄ (∓)v (x)β(∓)(x) = A, ḡ(∓)u (x)α(∓)(x) + ḡ(∓)v (x)β(∓)(x) = B,

(21)

The systems are solvable due to Propositions- and and the functions α(∓)(x) and β(∓)(x) have positive values
for sufficient A and B.

Moving forward, for sufficiently big values du and Du and also sufficiently small values ku and Ku we
determine the following problems for functions qU (∓)(τ) and qV (∓)(τ).

f̃ (∓)u (τ)qU (∓)(τ)−f̃ (∓)v (x)qV (∓)(τ)+
[
f̃ (∓)u (τ)− f̄ (∓)u (x0)

]
α(∓)(x0)−

[
f̃ (∓)v (τ)− f̄ (∓)v (x0)

]
β(∓)(x0) = due−k

u|τ |,

(22)

d2qV (∓)(τ)

dτ2
= ν̃(∓)(τ) · q(∓)V (τ) + G̃(∓)(τ), q(∓)V (0) = δv − β(∓)(x0), q(∓)V (∓∞) = 0.

(23)

10
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where functions ν̃(∓)(τ) are defined in7,

The following lemma is true:

Lemma 1 . Assume ν̃(∓)(ṽ(∓)(τ)) satisfy Proposition. Then on R∓ for the equations W
(∓)
ττ (τ) −

ν̃(∓)(ṽ(∓)(τ))W (∓)(τ) = 0 there exist positive fundamental solutions W (∓)(τ) such that W (∓)(τ) ≤ Cγe−γ|τ |

and W
(−)
τ (0, q0)/W (−)(0, q0) > 0, W

(+)
τ (0, q0)/W (+)(0, q0) < 0.

The proof of Lemma 1 is included in Appendix.

If we choose the value Dv sufficiently large then the functions G̃(∓)(τ) are negative and explicit solutions to
problems23 are positive:

q(∓)V (τ) =
(
δv − β(∓)(x0)

) W (∓)(τ, q0)

W (∓)(0, q0)
+W (∓)(τ, q0)

τ∫
0

dτ1[
W (∓)(τ1, q0)

]2
τ1∫
∓∞

W (∓)(τ2, q0)G̃(∓)(τ2)dτ2.

The functions m(∓)U(σ) we define as solutions to problems

d2m(∓)U

dσ2
= f̂ (∓)v (σ) ·m(∓)U(σ) + F̂ (∓)(σ), m(∓)U(0) = δu − α(∓)(x0)− q(∓)U(0), m(∓)U(∓∞) = 0.

where

F̂ (∓)(σ) :=
[
f̂ (∓)u (σ)− f̃ (∓)u (0)

] (
α(∓)(x0) + q(∓)U(0)

)
+
[
f̂ (∓)v (σ)− f̃ (∓)v (0)

]
δv −Due−K

u|σ|.

For sufficiently large coefficient Du these problems have positive solutions

11
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Due to the choice of functions α(∓)(x), β(∓)(x), q(∓)U(τ), q(∓)V (τ), and m(∓)U(σ) the inequalities (A1)
and (A2) are satisfied.

To satisfy conditions in x0 we consider for the upper solutions the following equations (in case of lower
solutions right-hand sides have negative sign):

(
dÛ (−)

dx
− dÛ (+)

dx

)∣∣∣∣∣
x=x0

= ε2
(
dm(−)U

dσ
− dm(+)U

dσ

)∣∣∣∣
σ=0

+O(ε3), (24)(
dV̂ (−)

dx
− dV̂ (+)

dx

)∣∣∣∣∣
x=x0

= ε

(
dq(−)V

dτ
− dq(+)V (+)

dτ

)∣∣∣∣
ξ=0

+O(ε2).

As

and

The right-hand side of24 can be made positive by choosing sufficiently big δv, δu and sufficiently small ε due
to Lemma 1 and Proposition.

The existence of stationary solution

Suppose Propositions- hold. Then for sufficiently small ε > 0 there exists a solution (uε(x), uε(x)) of the
problem (3), for which the pair of functions (U(x, ε), V (x, ε)) is a uniform asymptotic approximation with
the accuracy of O(ε2), that is, for all x ∈ [0, 1], the inequality holds

|U(x, ε)− uε(x)|+ |V (x, ε)− vε(x)| ≤ Cε2, x ∈ [0, 1],

where C is positive constant independent on ε.

12
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Proof of the theorem is based on the proof of Pao (Pao, 1992) with slight modifications concerning presence
of simple discontinuity in x0. We define the iterative process as

−ε4 d
2u(k)

dx2
+cu(k) = F (k−1)

1 (x), −ε2 d
2v(k)

dx2
+cv(k) = F (k−1)

2 (x),
du(k)

dx

∣∣∣∣
x=0

=
du(k)

dx

∣∣∣∣
x=1

=
dv(k)

dx

∣∣∣∣
x=0

=
dv(k)

dx

∣∣∣∣
x=1

= 0,

(25)

where c > 0 is a sufficiently big constant and

F (k−1)
1 (u(k−1), v(k−1), x) := −f(u(k−1), v(k−1), x, ε)+cu(k−1), F (k−1)

2 (u(k−1), v(k−1), x) := −g(u(k−1), v(k−1), x, ε)+cv(k−1).

The solutions to (25) can be expressed explicitly as

û(k)(x) =

1∫
0

G1(x, s)F (k−1)
1 (u(k−1), v(k−1), s)ds, v̂(k)(x) =

1∫
0

G2(x, s)F (k−1)
2 (u(k−1), v(k−1), s)ds

(26)

and are of C1[0, 1] ∩ C2((0, 1)\x0) for u(0), v(0) ∈ C([0, 1]) class (Stakgold & Holst, 2011).

Following Pao (Pao, 1992) we consider monotone sequences

Ũ ≤ ũ(k−1) ≤ ũ(k) ≤ ū(k) ≤ ū(k−1) ≤ Ū , Ṽ ≤ ṽ(k−1) ≤ ṽ(k) ≤ v̄(k) ≤ v̄(k−1) ≤ V̄ .

It is worth noting that in (Pao, 1992) monotonicity is proven for C2 functions on the basis of maximum
principle, in our case we use

Lemma 2 . Assume w(x) ∈ C1[0, 1] ∩ C2((0, 1)\x0) for some continuous c(x) > 0 satisfies

−w′′(x) + c(x)w(x) ≥ 0, x ∈ (0, 1)\x0, w′(x0 − 0) ≥ w′(x0 + 0), w′(0) ≤ 0 ≤ w′(1),

(27)

then w(x) ≥ 0, x ∈ [0, 1].

From now on we consider (25) for the supersequence (for the subsequence reasoning is analogous). In (26)
there exist limits of the left-hand sides therefore there exist limits of the left-hand sides.

13
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Utilizing Levi’s Theorem from explicit form (26)

ūε(x) =
1∫
0

G1(x, s)F̄1(s)ds, v̄ε(x) =
1∫
0

G2(x, s)F̄2(s)ds, (28)

F̄1(s) = limk→∞ F (k)
1 (u(k), v(k), s)

(
= F (k)

1 (ūε, v̄ε, s)
)
, F̄2(s) = limk→∞ F (k)

2 (u(k), v(k), s)
(

= F (k)
2 (ūε, v̄ε, s)

)

we conclude continuity of the limits which coupled with expressions in parentheses allows then to conclude
from (26) that ūε(x), v̄ε(x) ∈ C1[0, 1]∩C2((0, 1)\x0) and are indeed solutions of the stationary problem (3)
in the sense of Definition 1.

The locally uniqueness and stability of the stationary solution

Suppose Proposition- hold. Then for sufficiently small ε > 0 there exists locally unique and asymptotically
stable in the sense of Lyapunov solution (uε(x), vε(x)) to the problem (1) having the internal transition layer
in the vicinity of the point x0 with the domain of attraction not less than [Ũ(x, ε), Ū(x, ε)]×[Ṽ (x, ε), V̄ (x, ε)].

Proof of this theorem is based on sub-supersolutions method. Introduce in DT functions:

ŨT (x, t, ε) = uε(x) +
(
Ũ − uε(x)

)
e−ελt, ṼT (x, t, ε) = uε(x) +

(
Ṽ − vε(x)

)
e−ελt, (29)

ŪT (x, t, ε) = uε(x) +
(
Ū − uε(x)

)
e−ελt, V̄T (x, t, ε) = uε(x) +

(
V̄ − vε(x)

)
e−ελt,

(30)

where (uε(x), vε(x)) - any solution of (3). Also for the initial functions in (1) we demand for all x ∈ [0, 1]

ŨT (x, 0, ε) = Ũ(x, ε) ≤ u0(x) ≤ Ū(x, ε) = ŪT (x, 0, ε), ṼT (x, 0, ε) = Ṽ (x, ε) ≤ v0(x) ≤ V̄ (x, ε) = V̄T (x, 0, ε).

These functions (29) are indeed the lower and the upper solutions as defined and proven in (Mel’nikova,
2019) .

We define the iterative process for the initial boundary value problem as

∂y(k)

∂t
− ε4 ∂

2y(k)

∂x2
+ cy(k) = F (k−1)

1 (y(k−1), z(k−1), x, t), y
(k)
x (0, t) = y

(k)
x (1, t) = 0, y(k)(x, 0) = u0(x),(31)

∂z(k)

∂t
− ε2 ∂

2z(k)

∂x2
+ cz(k) = F (k−1)

2 (y(k−1), z(k−1), x, t), z
(k)
x (0, t) = z

(k)
x (1, t) = 0, z(k)(x, 0) = v0(x).

14
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where

F (k)
1 (y(k), z(k), x, t) := −f(y(k), z(k), x, ε) + cy(k), F (k)

2 (y(k), z(k), x, t) := −g(y(k), z(k), x, ε) + cz(k).

Following Pao (Pao, 1992) and using a proposition analogous to Lemma 1 for parabolic systems (Levashova
et al., 2018) we obtain monotone sequences

ŨT ≤ ỹ(k−1) ≤ ỹ(k) ≤ ȳ(k) ≤ ȳ(k−1) ≤ ŪT , ṼT ≤ z̃(k−1) ≤ z̃(k) ≤ z̄(k) ≤ z̄(k−1) ≤ V̄T .

Denote

κ(k)
1 (t) := f (−)(y(k)(x0, t), z

(k)(x0, t), x0, ε)− f (+)(y(k)(x0, t), z
(k)(x0, t), x0, ε),

f
(k)
0 (x, t) := f(y(k)(x, t), z(k)(x, t), x, ε) + Θ(x− x0)κ(k)

1,sub(t),

κ(k)
2 (t) := g(−)(y(k)(x0, t), z

(k)(x0, t), x0, ε)− g(+)(y(k)(x0, t), z
(k)(x0, t), x0, ε),

g
(k)
0 (x, t) := g(y(k)(x, t), z(k)(x, t), x, ε) + Θ(x− x0)κ(k)

2 (t),

therefore

f(y(k)(x, t), z(k)(x, t), x, ε) ≡ f (k)0 (x, t) + Θ(x− x0)κ(k)
1 (t), g(y(k)(x, t), z(k)(x, t), x, ε) ≡ g(k)0 (x, t) + Θ(x− x0)κ(k)

2 (t),

F (k−1)
1 (y(k−1), z(k−1), x, t) ≡ F (k−1)

1,0 (x, t) + Θ(x− x0)κ(k)
1 (t), F (k−1)

2 (y(k−1), z(k−1), x, t) ≡ F (k−1)
2,0 (x, t) + Θ(x− x0)κ(k)

2 (t).

Here we introduce

Y (k)(x, t) :=

1∫
0

G1(x, s, t)u0(s)ds+

t∫
0

dτ

1∫
0

G1(x, s, t−τ)F (k−1)
1,0 (s, τ)ds, U (k)(x, t) :=

t∫
0

dτ

1∫
x0

G1(x, s, t−τ)κ(k)
1 (τ)ds

The function Y (k)(x, t) is obviously a classical solution to the problem

∂Y (k)

∂t
− ε4 ∂

2Y (k)

∂x2
+ cY (k) = F (k−1)

1,0 (x, t), Y (k)
x (0, t) = Y (k)

x (1, t) = 0, Y (k)(x, 0) = u0(x).

15



P
os

te
d

on
A

u
th

or
ea

10
F

eb
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

13
68

59
.9

00
38

11
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

(32)

Considering U (k)(x, t) as a function defined on Da
T , utilizing the reasoning of Friedman (Friedman, 1983)

and the estimates (Sobolevsky, 1961) it can be proven that U (k)(x, t) ∈ C
(
Da
T

)
and

Ũ (k)
x (x, t) :=

t∫
0

dτ

1∫
x0

∂

∂x
G1(x, s, t− τ)κ(k)

1 (τ)ds ∈ C
(
Da
T

)
,

moreover, U
(k)
x (x, t) ≡ Ũ

(k)
x (x, t) for x ∈ Da

T . Lagrange’s Theorem provides that U
(k)
x (x0, t) = Ũ

(k)
x (x0, t),

U
(k)
x (1, t) = Ũ

(k)
x (1, t) for t ∈ (0, T ] and due to (Sobolevsky, 1961) or (Ladyzenskaja et al., 1968) U

(k)
x (x, t) ≡

Ũ
(k)
x (x, t) ⇒ x ∈ [−a, 1 + a]t→ +00 ≡ U

(k)
x (x, 0), hence U

(k)
x (x, t) ∈ C

(
DT

)
⊂ C

(
Da
T

)
. Furthermore, with

regard to (Friedman, 1983; Sobolevsky, 1961) the equation Ũ
(k)
t −ε4Ũ

(k)
xx +cŨ (k) = Θ(x−x0)κ(k)

1 (t), (x, t) ∈
D

(−)
T ∪D(+)

T is being satisfied in the classical sense, therefore it concludes in y(k)(x, t) = Y (k)(x, t)+U (k)(x, t)
being the solution to (32) in the sense of Definition and having an explicit form

y(k)(x, t) =

1∫
0

G1(x, s, t)u0(s)ds+

t∫
0

dτ

1∫
0

G1(x, s, t− τ)F (k−1)
1 (y(k−1), z(k−1), s, τ)ds, .

Same for z(k)(x, t).

Now we consider, for example, supersequence — using the same steps as in the previous paragraph it can
be proven firstly that

(
ȳ(k)(x, t), z̄(k)(x, t)

)
⇒ DT k →∞ (ȳε(x, t), z̄ε(x, t)) ∈ C

(
DT

)
, then that the pair

ȳε(x, t) =
1∫
0

G1(x, s, t)u0(s)ds+
t∫
0

dτ
1∫
0

G1(x, s, t− τ)F̄1(s, τ)ds,

z̄ε(x, t) =
1∫
0

G2(x, s, t)v0(s)ds+
t∫
0

dτ
1∫
0

G2(x, s, t− τ)F̄2(s, τ)ds,

F̄1(s, τ) = limk→∞ F (k)
1 (y(k), z(k), s, τ) (= F1(ȳε, z̄ε, s, τ)) , F̄2(s, τ) = limk→∞ F (k)

2 (y(k), z(k), s, τ) (= F2(ȳε, z̄ε, s, τ))

is indeed the solution to (1) in the sense of Definition ().

Finally, due to uniqueness of the solution (Pao, 1992) to the initial boundary value problem we have yε(x, t) :=
ȳε(x, t) = ỹε(x, t), zε(x, t) := z̄ε(x, t) = z̃ε(x, t). and from (29) follows that

lim
t→+∞

‖yε(x, t)− uε(x)‖C[0,1] = 0, lim
t→+∞

‖zε(x, t)− vε(x)‖C[0,1] = 0.
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Conclusion

Though only the one-dimensional problems are considered in this paper it is already sufficient for development
and justification of various models in physics especially when numerical experiments are preferable or simply
unavoidable. Moreover, as a natural step forward our approach with several slight adjustments can be
extended to the 2D problems which are proven to be extremely prolific for modelling.

The Proof of Lemma 1

.

The existence of the fundamental exponentially bounded solution immediately follows from the fact that
ν̃(∓)(ṽ(∓)(τ)) are bounded continuous functions on R∓ and the book(Coppel, 1978). The inequalities for
derivatives and positivity are the result of linearity of the equation in question and functions

W
(∓)

(τ) := exp

−ṽ
(∓)(τ)∫
q∗

ds1(
Φ(∓)(s1)

)2
ψ(∓)(x0)∫
s1

ν̃(∓)(s2)ds2

, W (∓)(τ) =
Φ(∓)(ṽ(∓)(τ))

Φ(∓)(q∗)

being respectively super- and subsolutions to problems

W (∓)
ττ (τ)− ν̃(∓)(ṽ(∓)(τ))W (∓)(τ) = 0, τ ∈ (0, T (∓)), W (∓)(0) = 1, W (∓)(T (∓)) = δ(∓)

for any T (+) > 0, T (−) < 0 and δ(∓) such that W (∓)(T (∓)) ≤ δ(∓) ≤W (∓)
(T (∓)).
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