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Abstract

In concerned article, we investigate a class of boundary value problem of non-linear fractional differential equations. The

aforesaid work is committed to the existence, uniqueness and stability analysis for boundary value problem of fractional

differential equation. We used the tools of analysis and fixed point theory to establish the conditions for deserted results.

At the end, we provided two examples to illustrate the concerned problem.
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Introduction

The Fractional Calculus is known as the generalization of traditional calculus. In the last few decades,
the aforesaid field attended more attention of researchers due to its verity of application in diverse field of
social science and physical science, like physics, chemistry, economics and mechanics. One of the important
aspects of aforementioned field that attended the attention of large number of researchers has existence of the
solution for boundary value problems (BVPs) of fractional differential equations (FDEs). FDEs are widely
applicable in image and signal processing, control theory, model identification, optimization theory, optics,
fitting of experimental data for further detail, we refers ???????? to the readers. Furthermore, some other
important applications of FDE are found in diverts fields of engineering, such as fluid dynamic like statistical,
electromagnetic, statistical mechanics, fluid flow, polarization, colored noise, solid mechanics, traffic model,
colored noise, processes, diffusion, economics and bioengineering see??????????, in references.
The researchers used various techniques and tools of analysis and fixed point theory to explored the concerned
theory, for more detail we refer the readers ???. However, the conditions for existence of solution of FDEs, in
aforementioned articles needs the operator must be compactness, which restrict the concerned area of research
to some specific limitions. Meanwhile, the researchers needs some weaker conditions for compactness of the
operator. In order to resolve the aforesaid problem, Mawhin ? used the tools of topological degree theory,
to developed the essential condition for existence of solution for BVPs of FDEs and IEs. Furthermore, Isais
?, used the degree theory to established some useful conditions for existence of solutions of FDEs. Recently,
Wang at el ?, used the techniques of topological degree theory to developed the conditions for existence of
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the following non-local cauchy problem given by

Dςv(t) = f(t, v(t)), t ∈ [0, T ],

v(0)− v0 = g(v),
(1)

where Dς represents the Caputo non integer order derivative, v0 ∈ R and f : R→ R is continuous function.
Furthermore, Ali and Khan ?, study the following BVPs of FDEs with non-local boundary conditions
involving fractional integral is given by

where cDς represents Caputo fractional derivatives and g(v) is non-local func-
tion, f : J × R→ R is continuous function.
One of the important feature of concerned field, due to which the researchers
paid more attention, has the area devoted of stability analysis of BVPs of FDEs.
There are various types stabilities present in the literature of fractional calculus.
Ulam in (1940) initiated an important type of stability. Ulam cyan(S. M. Ulam
& Sons, n.d.), proposed a question that “Under what conditions does there
exists an additive mapping near an approximately additive mapping?”. In re-
sponse to has question Hyers cyan(the stability of the linear functional equatio
Natl. Acad. Sci. U. S.A, n.d.; cyanthe stability of the linear transformation in
Banach space J. Math. Soc, n.d.), replied that ”additive mapping in complete
norm spaces”. Latter on it was tract out is a class of stability as so called
Hyers-Ulam stability. The aforementioned stability was very much explore for
conventional derivatives. However, for fractional differential equations the con-
cerned stability was very rarely investigate and need further exploration.
There are various class of stabilities present in literature of concerned field for
FDEs and IEs. Such as Lypunove stability cyan(2011), asymptotic stability
cyan(2016), exponential stability cyan(R. Agarwal, n.d.; cyanT. M. Rassias “On
the stability of the linear mapping in Banach space Proc. Amer. Math. Soc.
72(2), 1978) and many more. One of the interesting category of stability that
was origination by Ulam and Hyres commonly known as Hyres-Ulam stability in
(1940). Rassias [?, ]]28, initiated a particular kind of stability is known as Gen-
eralized Hyers-Ulam-Rassias stability. Obloza cyan(J. Wang & data dependence
for fractional differential, n.d.), was the author who investigate the concerned
stability for DEs. Although the concerned stability was will studded for tradi-
tional differential equations. Furthermore, for FDEs the area concerning to the
stability analysis was at its initial stages and a very few articles order had been
published, we refers [?, ]]30, in the references therein. This area of research need
more attention of researchers to furnished the theory further. Motivated by the
aforementioned importance of the concerned area, we consider the following non
integer order derivatives with boundary conditions involving conventional order
derivative is given by

(2)

where 3 < ς ≤ 4 and ∀ s, t ∈ AC4[0, 1], f : J×R→ R is continues and h(1) = v
is non-local function. In concerned work, we established necessary conditions for
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existence solutions and stability analysis for the proposed problem. We justified
the developed conditions with help of some examples.

Axillary results and definitions

The concerned section, is devoted to some fundamental definitions and results
of fractional calculus, which are necessary for further investigation. For further
detailed study, we refer to readers cyan(L. Zhou et al., 2008; cyanM. Raja,
2011; cyanA. Mohebbi & Whitam-Brore-Kaup Commun. Nonl. Sci. Numer.
Simulat. 17(12), 4610; cyanC. Goodrich “Existence of a positive solution to a
class of fractional differential equations J. Comp. Math. Appl. 23(9), 1055;
cyanMagin, n.d.; cyanS. F. Lacroix “Trait.6 du Calcul Differentiel et du Calc.
Integ. Paris. 3, 1819).
Definition 0.1. For all ς > 0, Gamma function is usually represented by Γ(ς)
and given by

Γ(ς) =

1∫
0

e−t(t)ς−1dt.

Definition 0.2. The fractional order (γ > 0) integral of a function u(t) : J → R
is given by

Iγu(t) =
1

Γ(γ)

t∫
0

(t− σ)γ−1u(σ)dσ,

provided that integral at the right is defined on (0,∞) point wise.
Definition 0.3. The famous non integer order Caputo’s function u(t) on any
closed interval [a, b] is given by

cDγ
0+u(t) =

1

Γ(n− γ)

∫ t

a

(t− σ)n−γ−1u(n)(s) dσ,

where n = [γ] + 1, where [γ] is greatest integer function, but not greater then γ.
Lemma 0.3.1. The solution of non-integer order differential equation

cDγu(t) = 0, γ ∈ (0,∞],

(1)

is given by

u(t) = u(t) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,
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where ci ∈ (−∞,∞), where i = 0, 1, 2, ...., n.
Lemma 0.3.2. For FDEs, the following result holds

IγDγu(t) = u(t) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

for arbitrary ci ∈ (−∞,∞), where i = 0, 1, 2, ...., n.
Definition 0.4. Let us defined

X = {u(t) ∈ CJ : ‖ u ‖= max
t∈[0,1]

|u(t)|},

then (X, ‖u‖) is a Banach Space.
Definition 0.5. Let T : V → U be a mapping, which is bounded and continuous.
Then T is ς-Lipschitz, if ∃ K ≥ 0, such that

ς((B)) ≤ Kς(B), ∀B ⊂ V bounded.

We also recall that T : V → U is Lipschitz, if ∃ K > 0 such that

‖Fx− Fy‖ ≤ K‖x− y‖, ∀ x, y ∈ V,

and T is strict contraction, if K < 1.
Proposition 0.1. If T,G : V → U are both ς-Lipschitz mapings with constant
K and K

′
, then T +G : V → U is also ς-Lipschitz with K +K

′
constant.

Proposition 0.2. The mapping T is ς-Lipschitz, if T : V → ς is Lipschitz with
constant K.
Proposition 0.3. If T : V → U is compact, then T is ς-Lipschitz with zero
constant.
Theorem 0.6. Let E be a measurable set and Let {fn} be a sequence of mea-
surable function such that

lim
n→∞

fn(v) = f(v) ∈ E, and for every n ∈ N, |fn(v)| ≤ h(v) ∈ E,

where g is integrable on E, then

lim
n→∞

∫
E

fn(v)dv =

∫
E

f(v)dv

Definition 0.7. The Banach space X is compact, if every sequence Sn contained
a convergent sub-sequence in X.

5



Definition 0.8. A space X, where every Cauchy sequence of elements of X
converges to an element of X is called a complete space.
Definition 0.9. If A ⊆ X is relatively compact, if every sequence of A contain
a sub-sequence is convergent in it.
Definition 0.10. The linear operator T : V → U continuous at v0, if for any
ε > 0, ∃ δ > 0 such that

|Tv − Tv0| < ε, ∀ |v − v0| < δ.

OR T is continuous, if vn → v, then

Fvn → Fv.

OR

lim
n→∞

|vn − v| → 0,

⇒ lim
n→∞

|Fvn − Fv| → 0.

Definition 0.11. The linear operator T : V → U is said to be uniformly con-
tinuous, if for ε > 0, ∃ δ > 0 such that

|Tv − Tv0| < ε, ∀ |v − v0| < δ.

OR T is continuous, if vn → v, then

Fvn → Fv.

OR

lim
n→∞

|vn − v| → 0,

⇒ lim
n→∞

|Fvn − Fv| → 0.

6



Definition 0.12. The linear operator T : V → U is said to be uniformly con-
tinuous, if for ε > 0, ∃ δ > 0 such that

|Fv − Fv∗| < ε ∀ |v − v∗| < δ.

Definition 0.13. A family T in C(I,R) is called uniformly bounded, if ∃ a
constant, where |f(t)| < k ∀ t ∈ P and f ∈ T .
A family T is equi-continuous, if

|f(v)− f(v∗)| < ε forall v, v∗ ∈ J,

with

|v − v∗| < δ.

Theorem 0.14. If a family T=(f(v)) in C(I,R) is uniformly bounded and equi-
continuous on P , then F has a uniformly convergent sub-equence (fn(v))=1.
Thus a subset T in C(I,R) is relatively compact, iff T equi-continuous and
uniformly bounded on J.
Theorem 0.15. Let X be a Banach space and T : X→ X is function, which is
completely continuous, then either
(1) v=λTv has a solation, if λ=1. OR
(2) { v ∈ X: v=λTv, for λ ∈ (0, 1)) } has a solution.
Definition 0.16. The solution of FDEs is Hyers-Ulam stable, if ∃ Kf > 0
and we can find Lf > 0, such that for each solution v(t) to the system there
exists a another solution v∗(t), such that

|v(t)− v∗(t)| ≤ Kf Lf .

Existence and Stability Analysis of FDEs

The concerned section, is devoted to the investigation of solutions and stability
results of the following PVBs for FDEs with conditions contains the conventional
derivatives is given by

(-1)
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where 3 < ς ≤ 4 and ∀ s, t ∈ AC4[0, 1], f : P × R → R is continues and
h(1) = v is non-local function. In the following theorems, we provides the
integral representation and the Green function for the concerned problem (??).
Theorem 0.17. If 3 < ς ≤ 4 and ∀ σ, t ∈ [0, 1], then the solution to fractional
differential equation subject to the condition involving ordinary derivatives

(-1)

is Given by,

v(t) = t3h(v) +

1∫
0

H(t, σ)ω(σ)dσ,

(-1)

where H(t, σ) is represents the Green’s function and given by ,

H(t, σ) =
1

Γ(ς)
{

(t− σ)ς−1 − t3(1− σ)ς−1, 0 ≤ σ ≤ t ≤ 1,
−t3(1− σ)ς−1, 0 ≤ t ≤ σ ≤ 1.

Proof. Consider f(t, v(t))=ω(t), then (??) become,

(-3)

Then in veiw of Lemma

v(t) = γ0 + γ1t+ γ2t
2 + γ3t

3 + Iςω(t), (-3)

By using the boundary conditions v(0) = 0 in ( , we get

γ0 = 0.
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Therefore equation (

v(t) = γ1t+ γ2t
2 + γ3t

3 + Iςω(t). (-3)

Now differentiating equation (

γ1 = 0.

Therefore equation(

D1v(t) = γ1 + 2γ2t+ 3γ3t
2 + Iς−1ω(t). (-3)

Again differentiating equation (

γ2 = 0.

Now using the boundary conditions v(1) = h(v) and putting the values of
γ1, γ2, γ3 in equation (

γ3 = h(u)− 1

Γ(ς)

1∫
0

(1− σ)ς−1ω(σ)dσ,

(-4)

Putting these values in equation (

v(t) = t3h(v) + 1
Γ(ς)

1∫
0

H(t, σ)ω(σ)dσ,

(-4)

where

H(t, σ) =
1

Γ(ς)
{

9



(t− σ)ς−1 − t3(1− σ)ς−1, 0 ≤ σ ≤ t ≤ 1,
−t3(1− σ)ς−1, 0 ≤ t ≤ σ ≤ 1.

In view of the established results for linear BVP (??), which is equivalent to the
following integral equation as

v(t) = t3h(v) +

1∫
0

H(t, σ)f(σ, v(σ))dσ.

(-4)

The equation ( is integral representation of our proposed problem (??).

Lemma 0.17.1. The function H(t, σ) satisfies the following properties
(i) H(t, σ) is continuous ∀ s, t ∈ [0, 1],

(ii) max
t,s∈[0,1]

H(t, σ) ≤ 6Γ(ς)
Γ(4+ς) .

max
t,s∈[0,1]

H(t, σ) = H(σ, σ)

max
t,s∈[0,1]

1∫
0

H(t, σ)dσ = max
t,s∈[0,1]

1

Γ(ς)

1∫
0

σ3(1− σ)ς−1dσ,

=
6Γ(ς)

Γ(4 + ς)
.

(-4)

Equation (, is deserted value of constructed Green function.

10



Existence, uniqueness and Data Dependence Re-
sults

In this section, we produced some results for existence, uniqueness and data
dependence. We also provides the following assumption must holds, which are
need for further investigation in this work.

(H1) For arbitrary v, u ∈ X, ∃ a constant Kh ∈ [0, 1), such that

|h(v)− h(u)| ≤ Kh ‖ v − u ‖;

(H2) For arbitrary v ∈ X, there exist Ch,Mh > 0, b1 ∈ [0, 1) such that

|h(v)| ≤ Ch ‖ v ‖b1 +Mh;

(H3) For arbitrary (t, v) ∈ X, ∃ Cf ,Mf > 0, b2 ∈ [0, 1), such that

|f(t, v)| ≤ Cf |v|b2 + Mf .

(H4) To derive uniqueness of solution the following assumption holds true for.
Lf > 0, such that is |f(t, v)− f(t, v∗)| ≤ Lf |v − v∗|.

Operator equations

In this section, we convert our obtained integral equation into operator equation.
For which we define T : C(P × R,R)→ C(P × R,R),

T (v) = v, v ∈ X,

where Tv = Fv +Gv, F : C(P ×R,R)→ C(P ×R,R) and G : C(P ×R,R)→
C(P × R,R). Where

Fv = t3h(v),

Gv =

1∫
0

H(t, σ)f(σ, v(σ))dσ.

Hence the proposed problem gained the of a operator equation Tv = Fv+Gv = v.
The fixed points of the constructed operator equation are the deserted solutions
of concerned BVP (??).

11



Theorem 0.18. The “operator F : C(P × R,R) → C(P × R,R) is Lipschitz
with constant Ch < 1 and satisfies the condition”

‖Fv‖ ≤ Ch‖v‖b1 + Mh.

Proof. We defined F : C(P × R,R)→ C(P × R,R) is given by

Fv = t3h(v),

to prove F is Lipschitz, we have

‖Fv − Fu‖ = max
t∈[0,1]

|t3h(v)− t3h(u)|,

using assumption of (H1), we have

‖Fv − Fu‖ ≤ ‖k‖v − u‖. where k = Kh < 1,

For growth condition we consider

‖Fv‖ = max
t∈[0,1]

|t3h(v)|,

using assumption of (H2), we get

‖Fv‖ ≤ Ch‖v‖b1 + Mh.

The above result shows that F satisfies the Lipschitz condition with constant
Ch.

Theorem 0.19. The operators G : C(P×R,R)→ C(P×R,R)→ is continuous
and satisfies the following

‖Gv‖ ≤ 2

(
Cf‖v‖b2 + Mf

Γ(ς + 1)

)
, for every v ∈ AC4[0, 1].

12



Proof. As G : C(P × R,R)→ C(P × R,R) is given as

Gv =

1∫
0

H(t, σ)f(σ, v(σ))dσ,

To prove that G is continuous. We will prove as,

‖Gvn −Gv‖ → 0 as n→∞

Let {vn} is a sequence in bounded set such that

BK = {‖v‖ ≤ K : v ∈ X)

Now as f is continuous, so f(σ, vn(σ))→ f(σ, v(σ)) as n→∞.

t3(1− σ)ς−1|f(σ, vn)− f(σ, u)| ≤ t3(1− σ)ς−1{2Cf + Mf},

is also integrable for all s ∈ [0, 1].
By convergent theorem (Lebesgue), we have

t∫
0

(t− σ)ς−1[f(σ, vn(σ))− f(σ, v(σ))]dσ → 0,

and

t3
1∫

0

(1− σ)ς−1[f(σ, vn(σ))− f(σ, v(σ))]dσ → 0 as n→∞,

so
‖Gvn −Gv‖ → 0 as n→∞.

Hence G is continuous.
Now to derive growth condition, we do the following

||Gv|| = max
t∈[0,1]

∣∣∣ 1

Γ(ς)

t∫
0

(t−σ)ς−1f(σ, v(σ))dσ− t3

Γ(ς)

1∫
0

(1−σ)ς−1f(σ, v(σ))dσ
∣∣∣,

Hence by assumption (H3) we get

||Gv|| ≤ Cf‖v‖b2 + Mf

Γ(α+ 1)
(1 + 1), ‖Gv‖ ≤ 2

(
Cf‖v‖b3 + Mf

Γ(ς + 1)

)
.

13



Thus G is satisfy the define growth condition.

Theorem 0.20. The operator G : C(P ×R,R)→ C(P ×R,R) is Compact and
α-Lipschitz with constant zero.

Proof. As G : C(P × R,R)→ C(P × R,R), is given by

Gv =
1

Γ(ς)

 t∫
0

(t− σ)ς−1f(σ, vn(σ))dσ + t3
1∫

0

(1− σ)ς−1f(σ.vn(σ))dσ

 ,

in order to prove G Compact. We have to show that G is both equi-continuous
and uniform bounded.
Let us consider D ⊆ Bk ⊆ X, for this is sufficient to show that G(D) is relatively
compact in X, Let vn in D ⊆ Bk, ∀ vn ∈ D,
in the light of Theorem

Gvn(τ) =
1

Γ(ς)

 τ∫
0

(τ − σ)ς−1f(σ, vn(σ))dσ + τ3

1∫
0

(1− σ)ς−1f(σ, vn(σ))dσ

 ,

Now by using assumption (H3), we have

As t→ τ , the R.H.S in above relation tends to 0, that is

|Gun(τ)−Gun(t)| → 0 as t→ τ.

Thus Gun is uniformly continuous.

Thus {Gun} is equi -continuous. Hence G(D) ⊂ G(D). Thus by Arzela As-
coli theorem G(D) is relatively compact in X. Further G is α− Lipschitz with
constant zero.

14



0.1 Uniqueness of solutions of BVP (??) Of PFDE

In this section, we developed the condition for uniqueness and boundness of BVP
(??).
Theorem 0.21. The consider BVP (??) has at least one solution and the set
of the solutions is bounded.

Proof. As the operators F,G, T : C(P × R,R) → C(P × R,R) are continuous
and bounded. Further F,G are α-Lipschitz with constant K and 0, and T is
α Lipschitz with Lipshitz constant K. Since Kh < 1 so T is a contraction
mapping.
Consider the set of solution

S = {v ∈ X : 0 ≤ λ ≤ 1, v = λTv} is bounded.

For boundness, consider

‖v‖ = max
t∈[0,1]

|λTv| ≤ max
t∈[0,1]

λ|Tv| ≤ max
t∈[0,1]

λ|Fv +Gv|,

‖v‖ ≤ λ
(
Ch‖v‖b1 + Mh + 2

(
Cf‖v‖b2 + Mf

Γ(ς + 1)

))

From above it is clear that S is bounded. If not, let ς = ‖v‖ → ∞ as 0 <
b1, b2 < 1,

‖v‖ = ‖λTv‖ ≤ λ‖Tv‖ ≤ λ‖Fv +Gv‖

1 ≤ λ

ς

(
Chςb1 + 2

(
Cf ςb2 + Mf

Γ(ς + 1)

))
,

as ς →∞, which means 1 ≤ 0 is not possible. Hence a set S is bounded.

Theorem 0.22. If δ = K +
2Lf

Γ(ς+1) and less then 1, then our proposed BVP ??

has a unique solution.

Proof. Consider u, v ∈ X, with Contraction principle

using assumption (H4), we have

|Tv(t)− Tu(t)| ≤
(
K +

2Lf
Γ(ς + 1)

)
|v − u|,

15



|Tv(t)− Tu(t)| = ∆|v − u| ≤ δ.

where

∆ = K +
2Lf

Γ(ς + 1)
,

there exist unique solution to BVP (??).

Stability analysis of BVP of FDEs

In the concerned section of this work, we established condition for the Hyers-
Ulam stability for the BVP of FDE (??).
Theorem 0.23. If the assumption (H1)–(H4) holds, then the solution is Hyers-
Ulam stable.

Proof. Let v and v∗ ∈ C4(I,R) be any two solution of BVPs ??. For stability

(-7)

v(t) = t3h(v) +

1∫
0

H(t, σ)f(σ, v(σ))dσ,

v∗(t) = t3h(v∗) +

1∫
0

H(t, σ)f(σ, v∗(σ))dσ.

Consider

16



|u(t)−v(t)| = max
t∈[0,1]

|t3h(v)+

1∫
0

H(t, σ)f(σ, v(σ))dσ]−t3h(v∗)+

1∫
0

H(t, σ)f(σ, v∗(σ))dσ|,

≤ max
t∈[0,1]

|t3h(v)−t3h(v∗)|+ max
t∈[0,1]

|
1∫

0

H(t, σ)[f(σ, v(σ)−f(σ, v∗(σ))]dσ|,

using assumption (H1) and (H4), we have

≤ Kh ‖ v − v∗ ‖ + max
t∈[0,1]

1∫
0

H(t, σ)dσLf ‖ v − v∗ ‖,

using maximum value of green function

‖ v(t)− v∗(t) ‖≤‖ v − v∗ ‖ [Kh +
6Γ(ς)

Γ(4 + ς)
Lf ],

‖ v(t)− v∗(t) ‖≤ K1 K2,

(-9)

where K1 =‖ v − v∗ ‖ and K2 = [Kh + 6Γ(ς)
Γ(4+ς)Lf ].

Hence the solution of BVP ??, is Hyers-Ulam stable.

Examples

In this section, we provide some examples which illustrate the our proposed
problem of BVP of FDEs.

Example 1. Consider the following BVP for FDEs

(-9)
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where ς = 7/2, Now where H(t, σ) is,

H(t, σ) =
1

Γ(7/2)
{

(t− σ)5/2 − t3(1− σ)5/2, 0 ≤ σ ≤ t ≤ 1,
−t3(1− σ)5/2, 0 ≤ t ≤ σ ≤ 1.

Now

|f(t, v)| ≤ Cf |v|b2 + Mf .

where

Cf = 1/40, Mf = 1/40, b2 = 1,

|f(t, v)| ≤ 0.05,

Now calculating

∆ = K +
2Lf

Γ(ς + 1)
,

where

K = 1/30, Lf = 1/40, ς = 7/2,

|Tv(t)− Tu(t)| ≤ 0.0376 < 1.
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Assumption (H1)− (H2), holds, therefore solution of concerned problem has at
least one solution.
For the stability of BVP

|v(t)− v∗(t)| ≤‖ v − v∗ ‖ [Kh +
6Γ(ς)

Γ(4 + ς)
Lf ].

Let

Kh = 1/30, Lf = 1/40andς = 7/2,

|v(t)− v∗(t)| ≤ 0.0045 < 1.

Hence the solution BVP

Example 2. Consider the BVP for FDEs

(-10)

where ς = 5/2,
where H(t, σ) is

H(t, σ) =
1

Γ(5/2)
{

(t− σ)3/2 − t3(1− σ)3/2, 0 ≤ σ ≤ t ≤ 1,
−t3(1− σ)3/2, 0 ≤ t ≤ σ ≤ 1.

Now

(-11)

Now calculating

∆ = K +
2Lf

Γ(ς + 1)
,
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where

K = 1/40, Lf = 1/50, ς = 5/2,

|Tv(t)− Tu(t)| ≤ 0.03074 < 1.

The assumption (H1) − (H2) holds. Hence the proposed BVP is at least one
solution.
For the stability of BVP ?? of FDE,

|v(t)− v∗(t)| ≤‖ v − v∗ ‖ [Kh +
6Γ(ς)

Γ(4 + ς)
Lf ],

Let

Kh = 1/40, Lf = 1/50andς = 5/2,

|v(t)− v∗(t)| ≤ 0.0011097 < 1.

Hence the solution BVP ?? has a unique solution and the solution has stable.
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