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Abstract

Ecological network theory hypothesizes a link between structure and stability, but this has mainly been investigated in-silico. In
an experimental manipulation, we sequentially removed four generalist plants from real plant-pollinator networks and explored
the effects on, and drivers of, species and interaction extinctions, network structure and interaction rewiring. Cumulative
species and interaction extinctions increased linearly with removing plants, and both species and interactions disappeared
faster than expected by co-extinction models, which even predicted several false cases. Networks were not stable and symptoms
of fragility emerged with removing plants: nestedness decreased, modularity increased, and opportunistic random interactions
and structural unpredictability emerged. Conversely, interactions reorganization (“rewiring”) was high, asymmetries between
network levels emerged as plants increased their centrality and no change was found in stochastic robustness index. Our study
shows that experimental manipulations of real networks indicate how species and interaction occurrences are altered when key
resources are removed from the system.

Introduction

The patterns of ecological interactions that emerge after disturbances provide information on the ability of
systems to keep functioning or to collapse (Memmott et al. 2004; Kaiser-Bunbury et al. 2010; Santamaŕıa et
al. 2016). However, it is hard to predict the consequences of extinctions and co-extinctions on the establish-
ment of interactions and on species survival. Also, the buffering capacity resulting from the re-organization
of interactions by using new resources is not well understood (Brodie et al. 2014; Biellaet al. 2019b; Vizen-
tin-Bugoni et al. 2019). Yet, insights into the network responses to species loss will lead to more efficient
conservation decisions based on the ecological role of species (Pigotet al. 2016; Biella et al. 2017; Brodie et
al.2018).

For understanding the consequences of species loss on ecosystem functioning and for planning conservation
and restoration measures, the root mechanisms underlying network structure and interaction dynamics have
to be described first. One such mechanism is the foragers’ ability to exploit novel resources when the former
ones are depleted or disappear after a disturbance event (Valdovinos et al. 2013; CaraDonna et al. 2017),
so called interaction “rewiring”. Yet, describing this rewiring seems particularly challenging, especially when
interactions are complex and involve multitudes of species with heterogeneous traits, local population sizes,
and life history characteristics (Vizentin-Bugoni et al. 2014; Timoteo et al. 2018). So far, ecologists have used
a range of methods to explore this topic. For example, responses to simulated anthropogenic disturbance
in silico have provided some general insights into the resilience of species networks to disturbances and
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extinctions (Pocock et al. 2012; Evans et al. 2013; Fortuna et al. 2013). In the field, species and interaction
turnover triggered by ecological or habitat alteration gradients has been used to investigate the mechanisms
of the assembly and disassembly of interaction networks (Sabatino et al. 2010; Carstensen et al. 2014; Nielsen
& Totland 2014). However, manipulative experiments have the greatest potential for understanding causal
relationships and identifying the processes leading to rewiring and species co-extinction, but the few studies
performed so far involve small-scale or light manipulations and often show contradictory results (Ferrero et
al. 2013; Goldstein & Zych 2016; Kaiser-Bunbury et al. 2017; Stavert et al.2019). So far, the heterogeneity of
the approaches used in previous studies, the difficulty of an ecologically-meaningful interpretation of network
indices, and the challenges of field-testing the reliability of computer-based simulations have prevented clear
conclusions to be drawn. Thus, deeper field manipulations are needed, from which mechanisms governing
network structure could be inferred and used as a tool for ecological conservation.

In this study, we performed an attack tolerance test on real plant-pollinator networks. An attack tolerance
test is usually aimed at verifying whether the functionality of a system is maintained after knocking down
several of its important components (Burgos et al.2007). For plant-pollinator networks, this topic was in-
vestigated by relating the amount of co-extinctions to robustness and redundancy within networks (Dunne
et al. 2002). However, this has been addressed only theoretically with numerical simulations of sequential
species extinctions in a trophic level and afterwards calculating the fraction of species that lost all inter-
actions (Memmott et al.2004; Kaiser-Bunbury et al. 2010; Fortuna et al. 2013). In this study we set up
a field experiment in which generalist plant species were sequentially removed in order to investigate the
consequent effect on plant-pollinator networks and rewiring, and on extinctions of species and interactions.
This experiment is the first one involving such deep alterations of a plant-pollinator network by sequentially
removing as many as four of the most generalist plants.

It can be expected that after removing key floral resources, several pollinators will either disappear from the
network or they will start utilizing alternative resources at higher rate. In the latter case, if high interaction
shifts (i.e., rewiring) take place as a result of adaptive foraging (Valdovinos et al. 2013), the network
modularity (i.e., compartmentalization of a network as a result of selectivity for food sources) will decrease
because foragers will use a progressively broader range of the remaining resources (Thebault & Fontaine
2010). In contrast, as core generalists usually occupy a central position in a network and keep it cohesive
(Jordano et al. 2006), and a network could fragment into disconnected units when such core elements are
removed (Reis et al. 2014). This would result in a higher modularity and specialization, as interactions will
be segregated uniquely within isolated compartments.

To test these hypotheses, during the sequential removal experiment we investigated (a) if the extinction rate
of species and interactions is similar to what is expected from simulations in-silico ; (b) alterations in the
structure of plant-pollinator networks and the rate of interaction rewiring; and (c) what ecological factors
(species abundance, morphology, amount of sugar in the nectar) can explain these changes.

Material and methods

The study included three treatment and one control sites, located at a mean distance of 2.01+-0.95
km from each other, near Český Krumlov, in the Czech Republic (treatments: 48°49’26.8”N-14°16’26.2”E;
48°49’51.63”N-14°17’34.12”E; 48°49’35.07”N-14°18’8.2”E; control: 48°49’26.8”N-14°16’26.2”E). Each site was
a small grassland with a barrier of trees (see details in Biella et al. 2019a). The experiment consisted of
sequentially removing all inflorescences of the most generalist plant species from the entire surface of the
treatment sites, one species at a time until four species were removed. We sampled flower-visiting insects in
six 10m x 1m transects per site during two days for each experimental phase (before and after each species
was removed), and synchronously in the control site. After each “before” phase, flower-visitors were counted
and this was used as a proxy of generalization to determine which plant species to be removed; as detailed in
Biella et al. (2019a), this proxy was reliable and in fact we later verified that these plants were visited by the
most diverse set of pollinators, similarly to Goldstein & Zych (2016). We identified all insects to species where
possible, otherwise morpho-species were used when necessary (after pre-sorting into families and genera). In
addition, we counted the number of flowers or inflorescences of all plant species within transects over the
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sampling period.

Species co-extinctions

We compared the rate of pollinator and of interaction extinctions from the field after the removal of each
generalist plant to what was expected from two co-extinction models, the Topological (TCM, Memmottet
al. 2004) and the Stochastic co-extinction models (SCM, Vieira & Almeida-Neto 2015). TCM is based on
the topology of a qualitative binary network and secondary extinctions (i.e. pollinators) are considered
as when a species has no surviving partners after a primary extinction has occurred (i.e. plants). The
SCM uses quantitative data, as it calculates an extinction probability based on the interaction strength
between species and the dependency on the interaction (R ), and allows cascading extinction chains (Vieira
& Almeida-Neto 2015). Separately for each plant removal stage of the treatment sites, these co-extinction
models were triggered by removing the same generalist plant species as the field manipulations, and the
number of extinctions were counted. In the SCMs, we ran 103 SCM simulations, and, following Dalsgaard et
al. (2018), we assigned random R values to plants and pollinators, and later grouped each of them in either
“low” (R =[0-0.33]), “low-medium” (R =[0-0.66]), “medium” (R =[0.33-0.66]), “medium-high” (R =[0.33-1])
or “high” (R =[0.66-1]).

We counted as extinctions the number of pollinators or the amount of interactions recorded before a plant
removal that did not occur after a plant removal, for both the observed networks and the models. To
avoid overestimations, in the observed networks we considered (i) as extinct species those pollinators that
had interacted with the plant targeted of removal that were not recorded after the removal, and (ii) the
interactions of those pollinators that occurred in both before and after removal phases and of those ones that
had interacted with the plant removed. In addition, all singletons (i.e. species with interaction abundance
of 1) were removed from the observed networks and also from the simulations, to avoid overestimations due
to species with extremely small populations and sampling stochasticity (Kantsa et al.2019). We tested the
trends in the cumulative extinctions of species or of interactions during the sequential removal as proportions
of the total pollinator richness or of the total interaction quantity with generalized mixed models in the
glmmTMB package (Bates et al. 2015) in R (R Core Team 2017). The number of pollinator extinctions
(or of interactions) was the response variable, the number of removed plant species was included as a
numeric predictor and the observed/TCM/SCM was a categorical one, the total number of pollinators (or
of interactions) was an Offset term (Reitan & Nielsen 2016); site identity was used as a random intercept.

In addition, we also recorded the amount of species extinctions predicted by the models that were true posi-
tives (predicted extinctions which happened in the observed networks), false positives (predicted extinctions
which did not happened), true negatives (extinctions not predicted which did not happen in the observed
networks) or false negatives (extinctions not predicted which did happen in reality) with both TCM and
each SCM simulation at each plant removal stage.

Networks indices and beta-diversity components

We assembled interaction matrices for each stage of the experiment in all sites and calculated the follow-
ing network-level indices: the binaryConnectance , the proportion of realised links among all possible links
(range 0-1); the weighted Nestedness NODF (Nestedness based on Overlap and Decreasing Fill) quantifies the
tendency of specialized species to interact with generalists and ranges 0-100 (fully nested); the weighted Mod-
ularity measures the interactions partitioning into groups, it was computed by the algorithm DIRTLPAwb+
and ranges 0-1 (full compartmentalization); the weightedH2’ measures specialization based on Shannon en-
tropy and ranges 0-1 (perfect specialisation). The following species-level indices were also calculated: the
weightedConnectivity and Participation , which express the ability of a species to connect partners of differ-
ent modules (Connectivity ) or to interact with species of the same module (Participation ). All these indices
were calculated with thernetcarto and bipartite packages for R (Dormann et al. 2008; Doulcier & Stouffer
2015). In addition, an index of network robustness that we name Stochastic robustness was calculated as
the area under a curve drawn from the rate of pollinators surviving a sequential removal of all plants from
the most generalist to the most specialist as simulated by 103 SCM (Vieira & Almeida-Neto 2015); this was
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drawn as a mean number of pollinator extinctions across simulations and was calculated separately for each
experimental plant removal phase.

We quantified the turnover of interactions across the removal stages using the approach developed in Poisot
et al. (2012). This method quantifies the total interaction turnover as βΩΝ = βΣΤ + βΟΣ and partitions it
into species turnover (i.e., βΣΤ , the interaction diversity in the pool of species that are not shared between
two networks) and interactions rewiring (i.e. βΟΣ , switching of interacting partners in species occurring
in both networks). These were calculated for all sites and consecutive stages of the experimental removal
(before - 1 sp. removed, 1 sp. removed – 2 spp. removed, and so forth) with Whittaker’s beta-diversity
index and its components extracted with the package betalink (Poisot 2016). Values for these indices range
from 0 to 1; higher values indicate higher turnover or rewiring.

Two types of interaction matrix were used for the turnover analyses; one, as in Poisot et al. (2012), uses
binary matrices and focuses on the number of interaction links per species. In addition, to account for the
frequency of interactions, we also employed a quantitative version of beta-diversity that is calculated as
above but in which the sum of interaction frequency per species is used instead of the number of links.

The effects of plant species removal on network indices and on beta-diversity components were tested with
generalized linear mixed models (GLMM) with the glmmTMB package in the R environment (Bates et al.
2015); a given index was the response, the site identity was a random intercept, and Beta or Gaussian
distributions were used depending on the response variable. For the beta-diversity components, pairs of
successive removal stages were used as categorical predictor variables. For the network indices, the number
of removed plants was used as numerical predictor. As in Olesen & Jordano (2002), network size (AxP ,
with A =the number of animal species andP = the number of plant species in the matrix) and the number
of network interactions (the quantitative matrix sum) were included in the models in order to account for
their effects on index variation over the experiment. We favoured this approach rather than the delta-
or z-transformations because those can cause biases (Chagnon 2015) and they are more useful for testing
departures from a random expectation (Biellaet al. 2017), while we aimed at testing the effect of a treatment
in causing specific trends (i.e. increase or decrease of an index). To compare the trend of a given index with
that of the control, the values from the control site during the experiment were included as an Offset term
in the GLMM.

For Connectivity and Participation , plants and pollinators were analyzed separately in GLMMs with a
given index as a response variable, the number of removed plant species as numerical predictor and species
identity within site as the random intercept. Here, it was not possible to include the control site for direct
comparison because not all species were shared with the removal sites.

Drivers of interactions

For each site and for each plant removal stage, several simulation models were constructed from different
probability matrices to explore the factors driving the observed interactions and indices. The matrices used
for the models were: NULL(N) explores the effect of randomness and all species have the same probability
of interactions (=1); ABUNDANCES investigates the role of abundances of either or both network levels
and the matrix is filled with either the number of flowers of a plant(P), or the abundance of the pollinator
species calculated as total abundance of flower visitors of that species over the entire study period (I), or
the element-wise multiplication of these two A=PxI ; (3) in MORPHOLOGICAL-MATCH(M), the matrix
is filled with 1 only when a morphological match between length of insect mouthparts and a flower’s nectar
allocation depth occurs (Stang et al. 2009), for example an insect’s “long-mouthparts” with a flower’s
“hidden-nectaries”, “intermediate mouthparts” with “semi-hidden nectaries” and “short-mouthparts” with
“accessible nectaries”. As in Olito & Fox (2015), insects were categorized as having a long tongue (>9
mm), intermediate tongue (4-9 mm) or short (<4 mm), and plants for having nectar hidden in flower
structures (e.g. larger Fabaceae and flowers with tubular corolla), semi hidden nectaries (more open tubes,
smaller Fabaceae) and accessible nectaries (very short tubes or open flowers); (4) SUGAR-RESOURCES(S)
assumes that the probability of interaction is proportional to amount of sugar per flower in the nectar and
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the matrix is filled with the amount of sugar/flowers per plant species (Junker et al. 2013); these values
were obtained as detailed in Biella et al. (2019a) by sampling nectar from flowers bagged for 24h and with
high performance anion exchange chromatography. For each matrix, probabilities were obtained by dividing
the cells of the matrices by the matrix sum. In addition, the interactions of these drivers were included by
building models based on multiplying two or three of the matrices described above, specifically: AxM , AxS
, MxS , andAxMxS . We ran 103 simulated networks with themgen function of the bipartite R package that
distributes the interaction quantities of the real networks according to the probabilities of the model matrix.
For each simulated network, network indices and beta-diversity components were calculated as for the real
networks (see above). A given driver is considered as consistent with the empirical observations when its
95% confidence interval includes the real network index (Vázquez et al. 2009).

To investigate which of the above drivers provided the best fit in terms of predicting the occurrence and
frequency of the species pairwise interactions in the observed networks, we used a likelihood approach.
Following (Vázquez et al. 2009), a multinomial distribution was calculated from the interaction frequencies of
the observed network and from a given probability matrix. Then, the delta of the Akaike information criteria
(ΔAIC) was used to evaluate the ability of each probability model to predict the likelihood of pairwise
interactions. As in (Vizentin-Bugoni et al. (2014), in the AIC calculation, the number of parameters was
set as the number of species in each probability matrix multiplied by the number of matrices used in order
to weight each model’s complexity.

Results

The plant-flower visitor networks of the experimental sites were similar in species richness (plants P =28,
pollinators I =157 in Site1; P =24, I =171 in Site2; P =20, I =106 in Site3).

Species co-extinctions

The cumulative proportion of observed and predicted extinctions increased linearly with the number of
removed plants for both species and interactions (βspecies= 0.158, likelihood ratio test χ2plant removal= 176.356,
df=1, p<0.001; βinteractions= 0.178, likelihood ratio test χ2plant removal= 3838.7, df=1, p<0.001, Fig. 1).
The observed networks (OBS) registered more species extinctions than the TCM and the SCM models
(βOBS-TCM=1.03, βOBS-SCM=0.958, likelihood ratio test χ2OBS/TCM/SCM=42.493, df=1, p<0.001). Similarly,
the observed networks lost more interactions than what was predicted by the two models (βOBS-TCM= 0.9,
βOBS-SCM= 0.713, likelihood ratio test χ2observed/TCM/SCM= 359.1, df=1, p<0.001).

Predicted extinctions which were observed in the field (true positives) were on average (across sites and plant
removal stages) the 85.33 % relative to the observed extinctions in the case of the TCM (range across sites:
33 - 100%) and were on average the 26.62 % of cases based on SCM (range: 10 – 37.7 %); the remaining
predicted extinctions were not confirmed in reality (false positives). Extinctions not predicted which also
did not take place in the field (true negatives) were on average 33.66% of the cases based on TCM (range
15 – 50 %) and 41.29 % based on SCM (range 10.88 – 85.53 %), the remaining proportion were extinctions
not predicted which were instead observed in the field (false negatives).

Network structure and interaction turnover during plant removal

Network modularity and specialization significantly increased with the number of removed plants, while
nestedness decreased significantly (Fig. 2, Table 1). However, when the values from the control site were
used as an offset, the statistical significance of the increase in modularity and decrease in nestedness was
confirmed, but the significance of specialization was not confirmed (Table 1). The trends of other network
indices were not significant during the sequential plant removal. In the species-level indices, plants and
pollinators differed in responses (Fig. 2, Table 1), where only the plant Connectivity increased significantly,
while plant Participation and the pollinator indices were nearly constant during the sequential plant removal.

The interaction turnover was high in both quantitative and binary versions (Fig. 3), with a larger proportion
attributable to rewiring than to species turnover; however, no statistically significant trend was found in these
indices in response to the treatment (Table 1).
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Drivers of network structure and interaction turnover

In the likelihood analysis (Table 2), models based on species abundance usually provided the best fit to the
observed species interactions, especially in the case of the pollinator abundances model (I ); the null model
assuming equal probability of all interactions (NU) predicted the observed interactions as the plant removal
progressed; theS model based on the amount of sugars in nectar (S ) also contributed to describing the
interactions (i.e. it had low ΔAIC values).

In the networks and beta-diversities (Fig. 4, and S1, S2, S3, S4 Figures), none of the models generated CI
including every observed index. The Connectance and H2’ were particularly poorly predicted. Remarkably,
both P and I models and the multiplication of abundances with others were explaining the observed indices
in multiple cases (e.g. NODF, Modularity, WN, OS, ST ) andMxS predicted NODF in most cases. In
addition, the predictors usually changed as the removal of plants progressed, such asM and S predicting
both OS and ST after the first removal, and, before removal, both M predicting theModularity and M with
abundances predicting H2’ . In some cases, the complexity of the models (i.e. from the multiplication of
probability matrices) either increased the predicting power (Modularity , NODF, WN, OS ) or decreased it
(H2’ ,ST ) as the removal progressed.

Discussion

In the networks of this study, the removal of generalist plants caused a linear decrease in nestedness, a
possible symptom of instability (Burgoset al. 2007) because specialist species may be less entangled into the
generalist pool (Jordano et al. 2006). Concurrently, the observed linear increase in modularity indicates an
emergence of a sub-networked structure, a sign of potential network breakdown (Reiset al. 2014). Although
compartmentalization of predator-prey food-webs is considered beneficial as it buffers against alterations
spreading throughout the entire web (Stouffer & Bascompte 2011), in mutualistic networks a very high
modularity actually prevents the access to alternative resources and it can be linked to decreased stabil-
ity (Thébault & Fontaine 2010). Specialisation also increased during the successive plant species removal,
possibly as a result of decreased pollinator abundances as previously shown by Biella et al.(2019a), i.e. re-
ductions in the number of interactions triggers changes in network structure (Burkle & Knight 2012; Moreira
et al.2015).

Changes in nestedness and modularity did not translate into a lower stochastic robustness index. A possible
reason for this relies on the dynamic yet asymmetric re-organization of species interactions along the sequence
of plant removal. While the remaining plant species became increasingly centralized in the network, there was
no trend in the average centralization of pollinator species. In addition, the network rewiring was high and
played a larger role than species turnover in determining interaction turnover during the experiment, as in
CaraDonnaet al. (2017), although without a clear trend during the experiment. As rewiring has traditionally
been associated with network stability (Kondoh 2003; Kaiser-Bunbury & Blüthgen 2015), both the observed
increased plant centrality and high rewiring could explain why network robustness index increased as more
plants were removed.

Many network indices were predicted by complex combinations of predictors, such as the interaction of
abundances, morphological match, and sugar rewards. This was especially the case as several plants were
removed, which could suggest a prominence of network complexity following the removal of generalist plants.
Conversely, some of the simpler models gave good predictions of some indices, but poor predictions of others.
Some remarkable positive examples are: flower abundance predicting nestedness, which reflects the role of
abundant generalist plants which interact with numerous insects and drives the nested pattern (Bascompte
et al. 2003); modularity being predicted, before plant removal, by the morphological match of corolla depth
and mouthpart length, suggesting that trait matching is relevant in defining modules (Dicks et al. 2002;
Dupont & Olesen 2009; Watts et al. 2016); nestedness being predicted by the interaction of morphological
matching and sugar amount in the nectar, which confirms that trait matching allows an efficient resource
gathering (Rodŕıguez-Gironés & Santamaŕıa 2006; Balfour et al. 2013); network rewiring being predicted
by abundances, and by the interaction of abundances and sugar amount, as the abundant and rewarding
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plants are more central in the network and more likely to establish new interactions (Jordano et al. 2003;
Mart́ın González et al.2010); morphology matching predicting the rewiring in some stages of plant removal,
indicating that utilization of new resources is constrained within trait-spaces (Biella et al. 2019a).

On the other hand, individual pairwise interactions were explained best by the model using pollinator ab-
undances during the entire experiment, and, when several plants were removed, by the null model assuming
equal probability of interactions. The role of pollinator abundance reflects the relationship between abun-
dance and generalization of interactions (Ollerton et al. 2003; Vázquez et al. 2009); the superior fit of the null
model in the later stages of the experiment suggests an emergence of randomness in species interactions in
impoverished communities. The role of randomness in ruling pairwise interactions is particularly alarming,
because it would indicate the disruption of established interaction assembly mechanisms, and may also be
linked to opportunism in interactions and high rewiring (Ponisio et al.2017).

Both species and interaction extinctions increased linearly as generalist plants were removed. As far as we
know, previous studies have only used in-silico estimation of extinctions (Kaiser-Bunburyet al. 2010; Evans
et al. 2013; Bane et al. 2018), but our experiment clarifies that TCM and SCM underestimated species
extinction rates, and the rate of false positives and false negatives was high in relation to the identity of the
species that are lost. Furthermore, these models underestimated the rate of interaction loss, which is a major
flaw of currently available simulations, an issue that has been already pointed out (Santamaŕıa et al. 2016).
Altogether, field experiments such as the one we performed have a big potential for validating, rejecting or
refining the theoretical insights gained by simulation models, and could trigger further development of more
accurate models on network functioning, stability and co-extinction rates.

In conclusion, species interactions are sensitive to the extinction of generalist plants, and the rate of pollinator
extinctions was similar to what is expected from network co-extinction models. When the key plants are
removed, the network structure changes, extinctions of species and interactions increase, and opportunism
can take place. This gives strong support to proposals indicating that conservation of interactions should be
centered on the generalist species (Montoya et al. 2012; Biella et al. 2017). However, this generalist-based
conservation view should consider the dynamics and re-organization of interactions and the asymmetrical
responses between plants and pollinator levels, which compensate for an even more detrimental collapse of
species networks.

Figure 1 – Cumulative proportion of extinctions of species and of interactions over the sequential plant
removal as observed in the real networks (“OBS”) and as predicted by TCM and SCM co-extinction models
for each site. In SCM, the symbols and lines indicate the mean and 5%-95% quantiles of 103 simulations.
Significances are expressed in the Results.

Figure 2 – Network indices responses to removal of generalist plants. The significances of predictors are
expressed in Table 1. The black line is the average trend predicted by the models, coloured lines are predictions
for each site; plots with black line only were not significant models.

Figure 3 – Interaction turnover of pairs of networks after each stage of plant removal. Both the binary indices
and their quantitative counterparts are plotted. Significances of predictors are expressed in Table 1.

Figure 4 – Heatmap indicating the overlap between the observed network or beta-diversity indices and the
confidence intervals of 103 simulations generated from probability matrices (in columns; model acronyms
are described in the Methods.). Colours symbolize the number of sites being predicted correctly: red is for
correct prediction in 3 sites, orange is for 2 sites and pink is for 1 site.

Supporting information

Figure S1. Network Connectance and Nestedness indices detection by probability models for each site.

Figure S2. Network Specialization and Modularity indices detection by probability models for each site.

Figure S3. Qualitative interaction turnover indices detection by probability models for each site.
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Figure S4. Quantitative interaction turnover indices detection by probability models for each site.

Table 1. - Statistics of the network indices and interaction turnover components. Each row is a separate
generalized mixed effect model, further details are in Methods. WN is total beta diversity, OS is the rewi-
ring of interactions, ST is the species turnover between networks pairs. “W.” stands for “weighted”. ΔΑΙ῝
is calculated asAICi - AICmin . In bold the statistically significant predictors are highlighted (P<0.05).
Significance of the models including the offsets with the control site’s indices are given.

Df ΔAIC χ
2 P

P with control
offset

Connectance 1 1.274 0.726 0.394 0.719
NODF 1 6.032 8.032 0.005 0.001
Modularity 1 7.246 9.246 0.002 0.007
H2’ 1 11.076 13.076 <0.001 0.073
Stochastic
robustness

1 1.819 3.819 0.051 0.350

Connectivity
plants

1 10.439 12.439 <0.001 NA

Participation
plants

1 1.857 0.143 0.705 NA

Connectivity
pollinators

1 5.285 7.285 0.007 NA

Participation
pollinators

1 1.509 0.491 0.484 NA

WN (β) 3 0.604 5.396 0.145 0.110
OS (rewiring) 3 3.793 2.207 0.531 0.525
ST (turnover) 3 2.262 3.738 0.291 0.323
W. WN (β) 3 4.170 1.830 0.608 0.688
W. OS
(rewiring)

3 2.581 3.419 0.331 0.698

W.
ST(turnover)

3 1.400 4.600 0.204 0.890

Table 2 – Models’ likelihood of pairwise species interactions drivers (ΔΑΙ῝ ). In bold, the probability models
that best predicted the interactions are highlighted; the second important probability models are underlined.
Model acronyms are described in the Methods.

Site Species removed NU P I A M S AxS AxM SxM MxAxS

Site1 0 spp. 4812.74 5218.36 0.00 5580.98 6752.64 707.81 7539.28 184.16 3004.32 2281.85
Site2 0 spp. 1539.41 1664.42 0.00 3079.29 2698.48 322.79 4176.45 1214.89 3052.62 3906.86
Site3 0 spp. 62.43 35.79 0.00 83.98 307.85 91.98 300.99 263.12 292.37 450.94
Site1 1 spp. 2304.65 2376.03 0.00 2564.01 3131.56 253.93 3597.58 188.34 1196.39 1072.54
Site2 1 spp. 817.87 1108.17 0.00 1525.95 1833.28 416.13 2614.27 1427.68 1349.81 2280.14
Site3 1 spp. 57.07 127.65 0.00 250.72 357.14 156.32 537.18 373.98 455.47 664.68
Site1 2 spp. 346.69 305.53 0.00 1017.21 2078.38 95.36 2709.90 1094.55 1165.87 1823.93
Site2 2 spp. 326.20 361.91 0.00 1341.76 422.59 167.22 1578.92 223.22 1616.49 1704.16
Site3 2 spp. 61.12 92.82 0.00 562.00 505.00 147.55 1036.19 491.58 774.95 1027.15
Site1 3 spp. 0.00 230.70 219.08 143.55 935.75 532.68 1187.56 1068.96 825.74 1062.64
Site2 3 spp. 0.00 163.23 123.26 387.34 526.63 388.07 900.07 751.48 693.46 972.02
Site3 3 spp. 97.72 0.00 74.24 520.31 701.97 88.27 1095.48 520.76 664.28 935.12
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Site Species removed NU P I A M S AxS AxM SxM MxAxS

Site1 4 spp. 0.00 124.06 162.01 28.97 760.64 408.50 991.81 1023.36 650.01 973.84
Site2 4 spp. 0.00 155.87 127.40 330.28 902.66 447.01 1298.55 944.37 795.11 1023.23
Site3 4 spp. 2.81 0.00 11.59 114.62 230.76 64.75 317.72 249.87 241.70 311.29
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