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Abstract

Bentonite is a fine-grained geologic material consisting mainly of montmorillonite clay. It presents a low permeability, a high

swelling pressure, and a strong capacity to retain radionuclides that make it an important component in current efforts to

design engineered barrier systems for the isolation of radioactive waste. In these barriers, the thermal gradient generated by

radioactive decay is expected to lead to coupled thermal-hydrologic-mechanical-chemical (THMC) processes that may impact

barrier performance. However, constitutive relations characterizing the THMC coupled properties of bentonite in variable

temperature, aqueous chemistry, and dry density conditions remain incompletely understood. Here, we use high-performance

molecular dynamics (MD) simulations to gain insight into the THMC constitutive relations of compacted montmorillonite clay.

Specifically, we report large-scale MD simulations of water-saturated clay assemblages containing 27 montmorillonite particles

performed using the codes GROMACS and LAMMPS (Fig. 1). Simulations were carried out using the replica-exchange MD

(REMD) technique, with 96 replicas of the system with a wide range of temperatures up to 100 °C. In addition, simulated systems

were progressively dehydrated to examine a range of dry densities. Results were analyzed to determine a series of properties

including hydraulic conductivity, water and ion self-diffusivity, heat capacity, thermal expansion, and swelling pressure as a

function of temperature, dry density, and the type of exchangeable cations (Na, K, Ca). Finally, simulation predictions were

validated and refined by benchmarking against experimental results and previous MD simulation predictions. This research

provides new insight into the coupled THMC properties of clay barrier systems and advances efforts to predict the performance

of engineered clay barriers over a long timescale.
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• The water content dictates the heat capacity of

bentonite.

• The air volume fraction plays a critical role in

determining the thermal conductivity of

bentonite.

• Low dry bulk density and high temperature

enhance the thermal expansion of bentonite.

• Hydraulic conductivity and water self-diffusivity

are highly sensitive to orientation, temperature,

and dry density.

Bentonite is a fine-grained geologic material

consisting mainly of montmorillonite clay. It is an

important component in current efforts to design

engineered barrier systems for the isolation of

radioactive waste. However, constitutive relations

characterizing the thermal-hydrologic-mechanical-

chemical (THMC) coupled properties of bentonite in

variable temperature and dry density conditions

remain incompletely understood.
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