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Abstract

The biogeochemical cycles of iron (Fe) and manganese (Mn) in lakes and reservoirs have predictable seasonal trends, largely
governed by stratification dynamics and redox conditions in the hypolimnion. However, short-term (i.e., sub-weekly) trends
in Fe and Mn cycling are less well-understood, as most monitoring efforts focus on longer-term (i.e., monthly to yearly) time
scales. The potential for elevated Fe and Mn to degrade water quality and impact ecosystem functioning, coupled with increasing
evidence for high spatiotemporal variability in other biogeochemical cycles, necessitates a closer evaluation of the short-term
Fe and Mn cycling dynamics in lakes and reservoirs. We adapted a UV-visible spectrophotometer coupled with a multiplexor
pumping system and PLSR modeling to generate high spatiotemporal resolution predictions of Fe and Mn concentrations
in a drinking water reservoir (Falling Creek Reservoir, Vinton, VA, USA) equipped with a hypolimnetic oxygenation (HOx)
system. We quantified hourly Fe and Mn concentrations during two distinct transitional periods: reservoir turnover (Fall
2020) and initiation of the HOx system (Summer 2021). Our sensor system was able to successfully predict mean Fe and Mn
concentrations as well as capture sub-weekly variability, ground-truthed by traditional grab sampling and laboratory analysis.
During fall turnover, hypolimnetic Fe and Mn concentrations began to decrease more than two weeks before complete mixing of
the reservoir occurred, with rapid equalization of epilimnetic and hypolimnetic Fe and Mn concentrations in less than 48 hours
after full water column mixing. During the initiation of hypolimnetic oxygenation in Summer 2021, we observed that Fe and
Mn were similarly affected by physical mixing in the hypolimnion, but displayed distinctly different responses to oxygenation,
as indicated by the rapid oxidation of soluble Fe but not soluble Mn. This study demonstrates that Fe and Mn concentrations
are highly sensitive to shifting DO and stratification and that their dynamics can substantially change on hourly to daily time
scales in response to these transitions.

High-frequency sensor data capture short-term variability in Fe and Mn cycling due to hy-
polimnetic oxygenation and seasonal dynamics in a drinking water reservoir
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Abstract

The biogeochemical cycles of iron (Fe) and manganese (Mn) in lakes and reservoirs have predictable seasonal
trends, largely governed by stratification dynamics and redox conditions in the hypolimnion. However, short-
term (i.e., sub-weekly) trends in Fe and Mn cycling are less well-understood, as most monitoring efforts
focus on longer-term (i.e., monthly to yearly) time scales. The potential for elevated Fe and Mn to degrade
water quality and impact ecosystem functioning, coupled with increasing evidence for high spatiotemporal
variability in other biogeochemical cycles, necessitates a closer evaluation of the short-term Fe and Mn cycling
dynamics in lakes and reservoirs. We adapted a UV-visible spectrophotometer coupled with a multiplexor
pumping system and PLSR modeling to generate high spatiotemporal resolution predictions of Fe and Mn
concentrations in a drinking water reservoir (Falling Creek Reservoir, Vinton, VA, USA) equipped with
a hypolimnetic oxygenation (HOx) system. We quantified hourly Fe and Mn concentrations during two
distinct transitional periods: reservoir turnover (Fall 2020) and initiation of the HOx system (Summer 2021).
Our sensor system was able to successfully predict mean Fe and Mn concentrations as well as capture sub-
weekly variability, ground-truthed by traditional grab sampling and laboratory analysis. During fall turnover,
hypolimnetic Fe and Mn concentrations began to decrease more than two weeks before complete mixing of
the reservoir occurred, with rapid equalization of epilimnetic and hypolimnetic Fe and Mn concentrations
in less than 48 hours after full water column mixing. During the initiation of hypolimnetic oxygenation in
Summer 2021, we observed that Fe and Mn were similarly affected by physical mixing in the hypolimnion,
but displayed distinctly different responses to oxygenation, as indicated by the rapid oxidation of soluble Fe
but not soluble Mn. This study demonstrates that Fe and Mn concentrations are highly sensitive to shifting
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DO and stratification and that their dynamics can substantially change on hourly to daily time scales in
response to these transitions.

Keywords: Hypolimnetic Oxygenation, Iron, Manganese, Spatiotemporal resolution, Spectrophotometer, Tur-
nover

Highlights:

• We used UV-vis spectral data and PLSR to quantify Fe and Mn in a reservoir
• High-resolution predictions in time and depth were made during fall turnover and summer oxygenation
• Fe and Mn concentrations are highly sensitive to DO and stratification
• Fe and Mn dynamics can shift on hourly to daily time scales
• Our sensor approach holds much promise for drinking water monitoring of metals

1. Introduction

Elevated levels of iron (Fe) and manganese (Mn) in lakes and reservoirs have negative consequences for
ecosystem health and water quality. Increasing Fe concentrations have been linked to the long-term browning
of lakes, which has numerous, significant ecological consequences (Kritzberg et al. 2020). Mn contamination
of drinking water can pose serious risks to human health, especially in children (Wasserman et al. 2006).
Furthermore, high concentrations of both metals negatively affect the taste, odor, and appearance of water
and can damage water supply infrastructure through corrosion and deposition (World Health Organization
2017). As a result, the U.S. Environmental Protection Agency (EPA) has established secondary standards
for Fe and Mn concentrations in drinking water of 0.3 and 0.05 mg/L, respectively (EPA 2021).

As Fe and Mn are redox-sensitive elements, their abundance in aquatic systems is largely influenced by
dissolved oxygen (DO) concentrations (Hem 1972, Davison 1993). The oxidation state of Fe and Mn in
natural waters is dominated by two forms: insoluble, oxidized Fe(III) and Mn(IV), and soluble, reduced
Fe(II) and Mn(II) (Davison 1993). In most aquatic systems under circumneutral pH, this oxidation state
is determined by the redox conditions at a given point in space and time. Under oxic conditions, Fe and
Mn are generally present as insoluble Fe(III) and Mn(IV) solids in rocks and sediments. However, thermal
stratification in lakes and reservoirs can create anoxic conditions in the hypolimnion and bottom sediments,
promoting the microbial reduction of Fe and Mn in sediments and the subsequent release of soluble, reduced
Fe and Mn into the water column (Lovely 1991). In such settings, soluble Fe and Mn can accumulate in
hypolimnetic waters throughout the stratified period (McMahon 1969, Davison 1993, Beutel et al. 2008,
Munger et al. 2016, Krueger et al. 2020).

An increasingly used in situ approach for mitigating high Fe and Mn in drinking water reservoirs is hypo-
limnetic oxygenation (HOx), which creates oxic conditions in previously anoxic waters and creates a thicker
aerobic zone in bottom sediments (e.g., Beutel and Horne 1999, Bryant et al. 2011, Dent et al. 2014, Gantzer
et al. 2009, Gerling et al. 2014). By increasing oxygen availability in the hypolimnion, HOx operation hinders
the release of soluble Fe and Mn into sediment pore waters, slows upward diffusion into the water column,
and promotes Fe and Mn oxidation and precipitation in the hypolimnion (Preece et al. 2019). HOx systems
have been shown to effectively reduce soluble Fe and Mn in the hypolimnion of drinking water reservoirs
(Gantzer et al. 2009, Bryant et al. 2011). However, removing soluble Mn from the water column requires
more sustained oxygen inputs, due to its slower oxidation reaction kinetics (Bryant et al. 2011, Munger et
al. 2016). To optimize water treatment using HOx systems, it is essential for drinking water managers to
understand both the short-term (sub-weekly) and long-term (monthly to yearly) dynamics of Fe and Mn
cycling in supply reservoirs.

Although Fe and Mn cycling in temperate lakes and reservoirs has predictable seasonal trends dictated by
thermal stratification, there is a lack of research on short-term Fe and Mn dynamics. Quantifying short-term
trends requires high-frequency data, which we define as having a temporal resolution of daily or shorter. To
our knowledge, there is no standard definition for classifying data as ‘high-frequency’ or trends as ‘short-term.’
Thus, we developed operational definitions based on the contrast with traditional monitoring frequencies,
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which are typically weekly or longer (e.g., Marcé et al. 2016). The paucity of previous research on Fe and
Mn cycling at sub-weekly scales represents a key knowledge gap, given that biogeochemical process rates
can fluctuate rapidly over hourly to daily time scales (McClain et al. 2003). Studies have identified diel
signals in the cycles of numerous biogeochemical variables, including Fe and Mn, and many biological and
chemical processes in aquatic environments operate on hourly to daily scales, often with significant impacts
on nutrient cycling and ecosystem productivity (Istvánovics, Osztoics, & Honti 2004, Nimick, Gammons, &
Parker 2011, Kurz et al. 2013). Additionally, episodic hydrologic events, which may be missed by traditional
sampling methods, can have pronounced effects on biogeochemical cycling dynamics (e.g., Marcé et al. 2016,
Coraggio et al. 2022).

Studies analyzing the efficacy of HOx systems have observed substantial changes in Fe and Mn concentrations
in response to changes in DO concentrations (Dent et al. 2014, Munger et al. 2019). For example, Dent et
al. (2014) found that total Fe and Mn concentrations decreased by 71% and 73%, respectively, after 8 hours
of oxygenation of a previously-anoxic reservoir hypolimnion. Conversely, Munger et al. (2019) found that
Fe and Mn sediment fluxes into the water column were 1.4 and 4.5 times higher, respectively, two weeks
after the onset of hypolimnetic anoxia in a reservoir. The dynamic behavior of Fe and Mn concentrations
in response to both management and natural processes (e.g., seasonal thermal stratification) underscores
the importance of quantifying these complex cycling dynamics, which could have substantial implications
for drinking water management and water quality monitoring. To date, monitoring programs have been
hindered by the coarse temporal frequency of months to seasons necessitated by traditional manual sampling
and laboratory analysis techniques.

Recent developments in sensor technology have enabled high-frequency collection of some water quality
variables in situ , without the need for manual sampling and laboratory analysis (Porter et al. 2009, Rode et
al. 2016, Kruse 2018). However, most high-frequency sensors are only capable of measuring a single variable
at a time and typically have a low spatial resolution. Moreover, numerous water quality variables, including
Fe and Mn, lack instrumentation capable of unattended, reagent-less, high-frequency measurement.

To circumvent the limitations of current sensor technology, spectrophotometers have been designed to mea-
sure water quality variablesin situ at a high frequency using multi-wavelength absorbance patterns in the
ultraviolet-visible (UV-vis) spectrum. These sensors do not require chemical reagents and are capable of
measuring multiple variables simultaneously. To date, UV-vis spectrophotometers have been successfully
used to measure chemical variables that have a strong correlation with known peaks in their absorbance
spectra, such as nitrate and dissolved organic carbon (DOC) (Etheridge et al. 2014, Sakamoto, Johnson, &
Coletti 2009). Additionally, several studies have had success using them to measure concentrations of other
biogeochemical variables without well-defined spectral peaks, such as Fe, total phosphorus (TP), soluble re-
active phosphorus (SRP), and dissolved silica (Si) (Birgand et al. 2016, Etheridge et al. 2014, Vaughan et al.
2018). Although Fe and Mn are not known to have well-defined spectral peaks, they absorb and scatter light
at wavelengths across the UV-vis spectrum and they can affect the absorbance of a water sample through
complexation with organic molecules (Poulin et al. 2014, Weishaar et al. 2003, Xiao et al. 2013). Therefore,
the covariance between the variable of interest (e.g., Fe or Mn) and the overall “color matrix” of the water
(the combination of multiple light-sensitive proxies) can be detected in the UV-vis absorbance spectra and
used to predict concentrations of the variable of interest with statistical algorithms (Birgand et al. 2016).
Laboratory-measured concentrations from manually collected samples are then subsequently used to develop
predictive models that correlate known concentrations with absorbance spectra.

Numerous algorithms exist for calibrating UV-vis absorbance spectra to observed concentrations, but the
most commonly-employed method is partial least squares regression (PLSR) (DiFoggio 2000, Birgand et al.
2016, Vaughan et al. 2018). PLSR is well-suited for modeling relationships within data that have a large
number of highly correlated explanatory variables and relatively few observations, such as multi-wavelength
spectral measurements (Wold et al. 2001). Previous studies have used in situ spectrophotometers and PLSR
models to predict water quality variables in a variety of environments, including streams, lakes, estuaries,
and oceans, with varying levels of predictive accuracy (Sakamoto, Johnson, & Coletti 2009, Avagyan, Runkle,
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& Kutzbach 2014, Etheridge et al. 2014, Birgand et al. 2016, Vaughan et al. 2018). However, to the best of
our knowledge, only one study (Birgand et al. 2016) has evaluated the potential of this method to observe
the high-frequency dynamics of metals in lakes and reservoirs.

Because the application of this method is relatively new, only a few studies have attempted to quantify
the uncertainty of water chemistry predictions made using PLSR and spectrophotometric data (Bieroza &
Heathwaite 2016, Vaughan et al. 2018). Uncertainty quantification is crucial for determining the accuracy
and feasibility of these methods, especially in natural waters that have a complex chemical composition with
an unknown relationship to the measured spectrophotometric color matrix (Bieroza & Heathwaite 2016;
Rieger, Langergraber, & Siegrist 2006; Vaughan et al. 2018). Furthermore, the ability of a PLSR model to
make accurate predictions is contingent upon how well the training data capture the variability in predicted
concentrations, which in turn influences the generalizability of the model (Wold et al. 2001, DiFoggio 2000). In
addition to these factors, photometric noise (i.e., random differences in spectral measurements) and spectral
artifacts (e.g., instrument drift and fouling) can introduce error into model predictions (DiFoggio 2000).

Thus, in situ spectrophotometer data coupled to PLSR modeling potentially offer useful insight on rapidly
changing metals concentrations in reservoirs and lakes. However, because of strong thermal gradients with
depth in lakes, a single spectrophotometer cannot capture metals concentrations that may also rapidly change
with depth. Additionally, the cost of in situ spectrophotometers ($8000-25000 USD as of 2022) prohibits the
acquisition of many needed to characterize spatial dynamics as well. For this reason, Birgand et al. (2016)
designed a multiplexed sequential sampling system to pump water from different depths at one site to one
spectrophotometer used as a portable lab above the water’s surface. This system has proven to be able
to characterize variable reservoir biogeochemical concentrations over both depth and time (Birgand et al.,
2016).

Motivation and objectives

We used an in situ spectrophotometer coupled with a multiplexor pumping system and PLSR modeling to
predict high-frequency Fe and Mn concentrations at multiple depths in a seasonally-stratified drinking water
reservoir. We then used this approach to observe the short-term (sub-weekly) variability of Fe and Mn cycling
during two distinct transitional periods: reservoir turnover in Fall 2020 and initiation of HOx operation in
Summer 2021. The objectives of this study were to: 1) assess the accuracy and uncertainty associated with
predictions of Fe and Mn concentrations using spectral absorbance data coupled with PLSR modeling, 2)
identify whether Fe and Mn cycling dynamics exhibit temporal variability across depth gradients, and 3)
quantify the effects of reservoir turnover and hypolimnetic oxygenation on Fe and Mn concentrations.

2. Methods

Study site

Field data were collected at Falling Creek Reservoir (FCR), a small (0.12 km2, maximum depth = 9.3 m),
dimictic reservoir located in Vinton, Virginia, USA (Figure 1, Gerling et al. 2014). FCR was constructed in
1898 and is managed as a drinking water reservoir by the Western Virginia Water Authority (WVWA) in
Roanoke, VA. The summer stratified period at FCR typically lasts from May to October. FCR is located in
a forested catchment with one primary inflow and several smaller tributaries. Due to the underlying geology,
which consists of Fe- and Mn-rich rocks of the Blue Ridge and Piedmont Provinces (Woodward, 1932), this
region has elevated Fe and Mn concentrations in surface and groundwater (Chapman et al. 2013).

FCR contains a HOx system, which can be activated and deactivated to control DO concentrations in the
hypolimnion without altering thermal stratification or water temperature (Figure 1, Gerling et al. 2014).
The HOx system at FCR was activated from 29 June 2020 until 2 December 2020, when it was turned off
for the winter period. It remained deactivated from 2 December 2020 until 11 June 2021, at which point it
was turned back on and remained activated until the end of the study period on 21 June 2021.

FCR is equipped with sensors that continuously monitor the physical, chemical, and meteorological conditions
at the reservoir’s deepest spot, which was the primary sampling location in this study (Figure 1). DO sensor
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data was collected using a YSI EXO2 (Yellow Springs, OH) deployed at 1.6m and two In-Situ RDO-PRO-X
sensors (Fort Collins, CO) at 5m and 9m (Carey et al. 2022b). Ten-minute resolution temperature measu-
rements were collected by in situ sensors deployed every meter from the surface to the reservoir sediments
(Carey et al. 2022b). To quantify the intensity of reservoir thermal stratification during each deployment, we
calculated Schmidt stability (J m-2, Idso 1973) using temperature measurements and bathymetric data from
FCR (Carey et al. 2022c) as inputs to the R package rLakeAnalyzer (Winslow et al. 2019). Meteorological
variables were measured by a research-grade Campbell Scientific meteorological station deployed on the dam
of FCR (Carey et al. 2022a).

High-Frequency Monitoring System

We monitored high-frequency light absorbance at multiple depths in FCR using a s::can Spectrolyser UV-
Visible spectrophotometer (s::can Messtechnik GmbH, Vienna, Austria). This spectrophotometer was cou-
pled with a multiplexor pumping system (’MUX’ from MultiplexÔ, LLC; for technical details on the mul-
tiplexor pumping system and the sensor setup, refer to Birgand et al. 2016 and Figures S1-S3). The MUX
pumps water samples from multiple depths into a flow-through cuvette where the UV-vis absorbance spectra
of the sample are measured by the spectrophotometer. The system used in our study collected measurements
of light absorbance every 2.5 nm wavelengths from 200 nm to 732.5 nm (optical path length of 10 mm)
approximately at an hourly time step for six monitoring depths in the reservoir.

The MUX system was used to collect high-frequency data during two time periods: reservoir turnover (“Tur-
nover Deployment”) and the initiation of HOx operation ( “Oxygen On Deployment”). The Turnover Deploy-
ment captured the natural oxygenation and mixing processes that occurred during reservoir turnover and
lasted from 16 October to 9 November 2020. In this study, fall turnover was defined as the first time when
the temperature differential between 0.1 m and 9 m depths in the reservoir was <1 oC after summer strati-
fication (following McClure et al. 2018), which occurred on 2 November 2020. During this time period the
HOx system was on, so the hypolimnion was oxic before turnover, but the reservoir was thermally stratified.
The Oxygen On Deployment was conducted between 26 May and 21 June 2021; during that time the HOx
system was initiated on 11 June 2021 at 11:00 EDT. This deployment captured the engineered oxygenation
and mixing processes resulting from the initiation of HOx operation. The reservoir was thermally-stratified
and the hypolimnion was anoxic (DO < 1 mg/L) prior to HOx operation and thus, while HOx operation
added oxygen to the hypolimnion, we observed a limited increase in DO concentrations due to high chemical
oxygen demand. The HOx system induced internal mixing within the hypolimnion, but the overall thermal
stratification of the reservoir was not affected.

We took multiple steps to limit the influence of fouling of the internal components of the MUX system, due
to precipitation of Fe in contact with oxygen in the measuring cuvette. Between each pump cycle, deionized
water was flushed through the system. At the end of each pump sequence (one sample from each depth),
dilute hydrochloric acid (5%) was automatically pumped through the system and allowed to sit in the flow-
through cuvette for approximately 2 minutes. We also collected a reference measurement in air at the end
of each cycle, which was useful in determining the extent of fouling. Despite these efforts, some fouling
was still evident during certain time periods (see Figures S4-5). Fouling was most pronounced in the lower
wavelengths (200-250 nm; see Figures S6-7) and therefore we removed values for wavelengths less than 250
nm before fitting PLSR models.

Sampling Methods

As part of an ongoing monitoring program, we sample total and soluble Fe and Mn weekly throughout the
stratified period. For this study, water samples were collected at the reservoir outtake depths of 0.1, 1.6,
3.8 m (epilimnion), 5.0 m (metalimnion), 6.2, 8.0, and 9.0 m (hypolimnion) using a 4-L Van Dorn sampler,
thereby matching the MUX sampling depths. Samples for soluble Fe and Mn were syringe-filtered using 0.45
μm nylon filters. Both total and soluble metals samples were preserved with trace metal grade nitric acid to
pH < 2. Samples were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICPMS). Minimum
reporting levels were 0.005 mg/L (Fe) and 0.0001 mg/L (Mn). The dataset, including methods for sample
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collection and analysis, can be found in Schreiber et al. (2022).

To assess short-term variability in metals concentrations and to calibrate and validate PLSR models, addi-
tional samples were collected every 2-4 hours during two 24-hour campaigns. The first campaign occurred
on 16-17 October 2020 (n=7; Figure S8); the second campaign occurred on 10-11 June 2021 (n=8; Figure
S9). All sampling data (weekly and high-frequency) were used to calibrate PLSR models.

Predicting Fe and Mn concentrations from optical measurements using PLSR

We used PLSR to compute predictions of total and soluble Fe and Mn concentrations based on the corre-
lation between absorbance spectra and sampling data. Data analysis and QA/QC was performed in the R
programming environment (R.v.4.2.1). Model building was conducted using the pls package (Mevik et al.
2020; R Core Team 2022), as described in Supplementary Information 1.1.

Separate PLSR models were developed for each variable (total Fe, soluble Fe, total Mn, and soluble Mn) and
deployment. Based on the distinctly different chemical and biological characteristics between layers of the
reservoir (i.e., epilimnion and hypolimnion), we found that the best fit was obtained when we used different
models for the two layers. In stratified reservoirs such as FCR, Fe and Mn concentrations are much higher in
the hypolimnion than the epilimnion. Therefore, we had an epilimnion model which included data from 0.1,
1.6, and 3.8 m and a hypolimnion model which included data from 6.2, 8.0, and 9.0 m (Table 1). Although
we also collected data from 5.0 m, we did not include them in our analyses since this is at the transition
between the two layers (metalimnion; see McClure et al. 2018) and thus not applicable to either layer. We
developed separate models for the Turnover Deployment and the Oxygen On Deployment. In the end, we
had four separate models for each of the four variables (total and soluble Fe and Mn), resulting in 16 different
models.

To assess the uncertainty of the predictions made using PLSR, we calculated nonparametric bootstrap pre-
dictive intervals following methods described by Denham (1997) and reported in Supplementary Information
1.2. Model skill was assessed using the coefficient of determination (R2) from the linear regression between
predicted and observed values, as well as the root mean squared error of prediction (RMSEP) for each model
(following Wold et al. 2001 and Mevik et al. 2020).

All observational data, including the spectrophotometer data, are published in the Environmental Data
Initiative repository (Carey et al. 2022a, Carey et al. 2022b, Carey et al. 2022c, Schreiber et al. 2022, and
Hammond et al. 2022). All code used to analyze the spectrophotometer data with PLSR and generate the
figures is available in the Zenodo repository (Hammond 2022).

3. Results

3.1 Routine Fe and Mn sampling trends

Weekly sampling at FCR showed levels of Fe and Mn in exceedance of the EPA standards during the 2020
and 2021 stratified periods, with maximum total Fe and Mn concentrations of 18.5 mg/L and 2.2 mg/L,
respectively (Figure 2). Hypolimnetic concentrations of both metals generally increased throughout the
summer stratified period of each year, until reservoir fall turnover (Figure 2). Following reservoir turnover,
concentrations of both metals remained low (< 1 mg/L) until the following spring. HOx activation from
11 June until 02 December in 2020 resulted in substantially lower hypolimnetic total Fe but not total Mn
concentrations (Figure 2).

3.2 PLSR Model Performance

A comparison of skill metrics among the 16 models revealed that PLSR performed best for models calibrated
with higher Fe and Mn concentrations that exhibited a larger standard deviation (Tables 1, S1; Figure S10).
Model skill was also sensitive to the number of components included in each model. For the Turnover
Deployment, the number of components included in the PLSR models ranged from 3-5 (9-14% of n). For
the Oxygen On Deployment, 4 components were used for all PLSR models (8-9% of n) (Table 1). Sample
size was negatively correlated with R2, but positively correlated with RMSEP (Figure S10).
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Turnover Deployment models explained a high proportion of the variability in total and soluble Fe and Mn
concentrations, excluding hypolimnetic soluble Fe which had a poor model fit (R2= 0.06), due to extremely
low concentrations (median = 0.02 mg/L) during this time period (Table 1; Figure 3). In comparison,
Oxygen On Deployment models explained a lower proportion of the variability in total and soluble Fe and
Mn concentrations, despite having larger sample sizes for calibration (Table 1). In particular, PLSR model
performance for total and soluble Mn was notably lower for the Oxygen On Deployment than for the Turnover
Deployment (Tables 1, S1). PLSR model performance also varied between the hypolimnion and epilimnion.
For most models, the epilimnetic PLSR model had a higher R2 value than the corresponding hypolimnetic
PLSR model (Table 1).

In most cases, PLSR predictions were within the range of concentration values in the calibration dataset
(Figures 3, S11-12), but they did not capture some of the high-magnitude fluctuations in the sampling data.
Analysis of the Fe and Mn time series (Figures 4D-E and 5D-E) and calibration (Figures S11-12) suggests
that inaccuracy in the models was largely attributed to high calibration error for observations far from
the mean concentration of the calibration data (i.e., outliers). Additionally, when predicting variables with
relatively low concentrations (< 1 mg/L), especially with the epilimnion models, some predictions were in
the negative range (Figures 4D-E; 5D-E).

3.3 Reservoir Turnover Deployment

3.3.1 Water Temperature, Stratification, and DO Concentrations

DO concentrations, water temperature, and Schmidt stability varied considerably over the course of the
Turnover Deployment (Figures 4A-C). Prior to turnover, DO concentrations were strongly stratified by depth
and exhibited large sub-daily fluctuations in the epilimnion and metalimnion (Figure 4C). Hypolimnetic
DO concentrations were stable around 2 mg/L during the pre-turnover period, due to the HOx system
operation (Figure 4C). A sharp temperature gradient (4-7°C) between the epilimnion and hypolimnion
existed until approximately 3 days prior to turnover (Figure 4B). However, the water temperature profile
equalized periodically between the metalimnion and hypolimnion prior to turnover, indicating ephemeral
periods of mixing between those layers (Figure 4B). Starting on 29 October 2020, the temperature gradient
decreased progressively until the full water column temperature profile equalized on 02 November 2020,
meeting our criteria for turnover.

3.3.2 Predicted Fe and Mn Concentrations

Reservoir turnover had substantial impacts on Fe and Mn concentrations. At the beginning of the deployment
(16 October 2020), 17 days prior to turnover, both Fe and Mn displayed large differences in concentration
between the epilimnion and hypolimnion (Figures 4D-E). The average total Fe and total Mn concentrations
across all hypolimnetic depths (6.2, 8.0, and 9.0 m) were 3.73 mg/L and 1.48 mg/L; across all epilimnetic
depths (0.1, 1.6, and 3.8 m) they were 0.41 mg/L and 0.14 mg/L, respectively (Figures 4D-E). Substantial
changes in epilimnetic concentrations were not observed until 24 hours prior to turnover. Within that 24
hour period, average epilimnetic total Fe and total Mn increased by 70% (0.61 to 1.04 mg/L) and 66% (0.29
to 0.48 mg/L), respectively.

In contrast to the epilimnion, we observed declining total Fe and Mn concentrations in the hypolimnion prior
to turnover (Figures 4D-E). Between 16 October and 02 November 2020, hypolimnetic total Fe and total Mn
concentrations declined at a rate of 0.13 and 0.11 mg/L/d, respectively. However, there were also periods
of fluctuations in total Fe and total Mn concentrations by as much as 1 mg/L/d (Figure 4D-E). In the 24
hours prior to turnover, average hypolimnetic total Fe and total Mn decreased by 45% (2.09 to 1.14 mg/L)
and 32% (0.82 to 0.55 mg/L), respectively.

A strong concentration gradient between the epilimnion and hypolimnion remained for total Fe and total
Mn until full reservoir turnover on 02 November 2020. After turnover, water temperature and DO rapidly
equalized across the full water column, coinciding with the rapid equalization of total Fe and Mn concentra-
tions across the water column (Figures 4D-E). Total Fe and Mn concentrations were lower and less variable
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than during the pre-turnover period (Figures 4D-E). The reservoir remained well-mixed for 2 days, but then
shifting thermal gradients led to a temporary re-stratification that began on 02 November 2020 and lasted
until the end of the deployment on 09 November 2020 (Figures 4A-B). The re-stratification of the reservoir
was also evident in total Fe and total Mn concentrations (Figures 4D-E).

3.4 Oxygen On Deployment

3.4.1 Water Temperature, Stratification, and DO

DO concentrations, water temperature, and Schmidt stability differed considerably between the two de-
ployments (Figures 5A-C). At the start of the Oxygen On deployment (26 May 2021), 16 days prior to
HOx activation, epilimnetic DO concentrations were high (5-15 mg/L) and exhibited a consistent decline
throughout the deployment due to warm air temperatures (Figure S14). Metalimnetic and hypolimnetic DO
concentrations were both approximately 0 mg/L throughout the deployment. The water temperature profile
shows distinctly stratified layers in the reservoir prior to HOx operation, with a sharp temperature gradient
throughout the epilimnion for the entire deployment and a slight temperature gradient in the hypolimnion
(Figure 5B). Immediately following HOx activation on 11 June 2021, the water temperature profile equali-
zed across layers below 6m depth, indicating mixing within the hypolimnion due to HOx activation (Figure
5B). The water temperature profile in the epilimnion was unaffected by HOx operation. Metalimnetic and
hypolimnetic DO concentrations did not increase above 0 mg/L in the few days after activation of the HOx
system. This is attributed to chemical oxygen demand in the hypolimnion resulting from high concentrations
of reduced solutes (e.g., Fe(II) and Mn(II)).

3.4.2 Predicted Fe and Mn Concentrations

At the beginning of the deployment, the highest concentrations of total Fe and Mn were at the lowest
depth (9m) and concentrations decreased upwards in the water column, with a sharp decrease between
the hypolimnion and epilimnion (Figures 5D-E). In the first 24 hours of the deployment, total Fe and Mn
concentrations averaged across all epilimnetic depths were 0.43 and 0.03 mg/L, respectively, while across
the hypolimnetic depths they were 2.71 and 0.54 mg/L, respectively. Prior to HOx operation, both total Fe
and Mn in the hypolimnion exhibited large, sub-daily fluctuations which resulted in concentration changes
of up to 1.62 mg/L/hr and 0.19 mg/L/hr, respectively (Figures 5D-E). These sub-daily fluctuations were
most pronounced at the lowest depth.

The spatial and temporal cycling dynamics of Fe and Mn were significantly affected by hypolimnetic oxyge-
nation. Prior to activation of the HOx system on 11 June 2021, epilimnetic total Fe and Mn concentrations
remained constant (sd = 0.07 mg/L and 0.004 mg/L, respectively) and low (maximum concentrations = 0.63
mg/L and 0.05 mg/L, respectively). Hypolimnetic total Fe and Mn concentrations during this period were
much more variable (sd = 1.85 mg/L and 0.19 mg/L, respectively) and higher (maximum concentrations
= 7.90 mg/L and 1.08 mg/L, respectively). Shortly after HOx activation, total Fe and Mn concentrations
equalized contemporaneously with the equalization of water temperature across the hypolimnetic depths,
indicating that this layer of the reservoir was well-mixed with respect to Fe and Mn (Figures 5B, 5D-E). In
contrast, differences in total Fe and Mn concentrations across the epilimnetic depths increased slightly after
activation of the HOx system.

Approximately 6 hours after turning on the HOx system, total Fe and Mn at 9m depth declined by appro-
ximately 2.5 mg/L and 0.25 mg/L, respectively (Figures 5D-E). Concentrations of total Fe and Mn at all
hypolimnetic depths subsequently increased over the next 24 hours, before eventually stabilizing over the
following 24 hours at concentrations of 1.5-3.5 mg/L and 0.5-0.75 mg/L, respectively. For the remainder of
the deployment, total Fe and Mn concentrations remained equal across all hypolimnetic depths and exhibited
less variability (Figures 5D-E).

3.5 Predicted Fe and Mn Soluble-to-Total Ratios

The ratio of predicted soluble to total Fe (SFe:TFe) and Mn (SMn:TMn) was calculated to assess redox
transformations. We observed distinct changes in these ratios over the course of both deployments, most
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notably in the hypolimnion (Figure 6). During the Turnover Deployment, the hypolimnion was maintained
at oxic conditions pre-turnover (due to HOx) and post-turnover (due to mixing). As expected, hypolimnetic
SFe:TFe was approximately 0 during this entire deployment, indicating that all Fe in the hypolimnion was
in the particulate fraction (soluble Fe + particulate Fe = total Fe). In contrast, hypolimnetic SMn:TMn
was approximately 1 at the beginning of the deployment, indicating that all Mn was in the soluble fraction.
However, in the week prior to turnover, hypolimnetic SMn:TMn oscillated between 0.5 and 1. Following
turnover, SMn:TMn was greater than 0.75 and remained high until the end of the deployment.

At the beginning of the Oxygen On deployment, SFe:TFe differed greatly with depth in the hypolimnion,
with ratios greater than 0.8 at 9m depth and ratios close to 0 at 6.2m and 8m depths (Figures 6C-D).
Between the beginning of the deployment and HOx activation on 11 June 2021, the SFe:TFe at 6.2m and
8m increased continuously to approximately the same level as 9m (Figures 6C-D). Just before the initiation
of HOx operation, the SFe:TFe at all hypolimnion depths was > 0.75, indicating that most of the Fe in
the hypolimnion was in the soluble fraction. However, immediately after turning the HOx system on, the
SFe:TFe in the hypolimnion decreased steadily. In the 48-hour period after HOx activation, the SFe:TFe in
the hypolimnion declined to less than 0.25 and remained low until the end of the experimental period (Figure
6C-D), indicating oxidation processes. In contrast to Fe, SMn:TMn in the hypolimnion was > 0.90 for the
entire deployment. We did not observe a significant effect of HOx operation on SMn:TMn (0.99 pre-HOx,
0.97 post-HOx).

4. Discussion

4.1 PLSR modeling of high frequency absorbance spectra can predict Fe and Mn concentrations

Using UV-visible absorbance spectra and PLSR modeling, we made hourly predictions of Fe and Mn con-
centrations at 6 depths in our study reservoir. Our results indicate that this method can successfully predict
Fe and Mn concentrations based on their covariability with UV-vis absorbance spectra, despite the paucity
of clearly-defined absorbance peaks for these elements. PLSR models were able to explain a high proportion
of the variability in the sampling data (Table 1) and predictions agreed with expected Fe and Mn cycling
dynamics. For example, the rapid decline in SFe:TFe following the onset of HOx operation (Figure 6C)
matches expectations based on the rapid oxidation kinetics of Fe(II) in the presence of oxygen (Davison
& Seed 1983); previous studies have also demonstrated substantial decreases in soluble Fe following short
periods of HOx (Dent et al. 2014, Munger et al. 2016, Krueger et al. 2020). Based on model skill metrics
(i.e., R2 and RMSEP) and visual inspection of the predicted time series, accurate predictions of Fe and Mn
concentrations using this method are influenced by numerous factors, including: the range and variance of
concentrations in the calibration dataset, the sample size used for calibration, the number of outliers in the
calibration dataset, the number of components in the PLSR model, and the inherent predictability of each
variable at a particular site (i.e., the strength of correlation with the UV-vis absorbance spectra).

Our results suggest that our methodology may be most appropriate for measuring elevated concentrations of
Fe and Mn (> 0.1 mg/L). This result agrees with Vaughan et al. (2018), who suggested that the application
of this method to predict riverine total phosphorus (TP) concentrations was best for sites with elevated TP
(>0.1 mg/L) concentrations. In our study, PLSR models fit to data with lower concentrations of Fe and
Mn (< 0.1 mg/L) generally did not perform well. For example, soluble Fe during the Turnover Deployment
had median concentrations of 0.06 mg/L and 0.02 mg/L in the epilimnion and hypolimnion, respectively
(Figure 3 and Table S1). Accordingly, the PLSR models for soluble Fe had the lowest R2 (epilimnion: 0.74;
hypolimnion: 0.06) and highest RMSEP relative to median calibration concentration out of any model for
the Turnover Deployment (Tables 1, S1).

Our PLSR models were also sensitive to the range and variance of sampling data used for calibration.
Preliminary model testing revealed that PLSR models were hindered by the distinct water chemistry between
epilimnetic and hypolimnetic depths (Fe and Mn mean differences >1.3 mg/L and 0.8 mg/L, respectively;
see Figure 3) and therefore models were generated separately for each reservoir layer. This conforms with
findings of previous studies using in situUV-vis spectrophotometers and PLSR in waterbodies, which all
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achieved higher accuracy with site-specific models (Avagyan, Runkle, & Kutzbach 2014, Vaughan et al.
2018, Etheridge et al. 2014). However, when comparing pairs of PLSR models (i.e., the same variable +
depth combination) between the two deployments, the models fit to data with a higher standard deviation
had higher R2 values, with the sole exception of hypolimnetic total Fe (Tables 1 and S1). These results
suggest that there is a tradeoff between capturing the maximum variability in observed concentrations and
the limitations imposed by the degree of covariability between the UV-vis absorbance spectra and the variable
of interest (also observed by Avagyan, Runkle, & Kutzbach 2014 and Allen 2021). To achieve an accurate
predictive model, grouping data based on the spatial and temporal context of measurement achieved a better
fitting model while still maximizing the variability captured in the calibration data.

Birgand et al. (2016) used a similar approach for making predictions of soluble Fe concentrations in FCR
after the activation of a HOx system. They obtained a slightly better model fit, indicated by an R2 value of
0.94, compared to our R2values of 0.79 and 0.75 (epilimnion and hypolimnion, respectively) for the Oxygen
On Deployment. We used calibration sample sizes of 48 and 45 (epilimnion and hypolimnion, respectively)
while Birgand et al. (2016) used 27. However, they used 5 components in their PLSR model, whereas we used
4 components. Thus, the higher R2 value for their model may be attributed to a higher ratio of components
to sample size (18%) compared to our study (8-9%).

4.2 Fe and Mn Concentrations Change Gradually in Response to Weakening Stratification and Rapidly in
Response to Full Turnover

Trends in predicted Fe and Mn concentrations shed light on the changes that occurred in the reservoir
before and after turnover. Hypolimnetic concentrations of Fe and Mn began declining 17 and 9 days prior to
turnover, respectively, and shorter periods of more rapid concentration fluctuations were superimposed upon
these patterns of decline (Figures 4D-E). Combined, these results suggest that turnover, at least in our study
reservoir, is not a discrete event, but rather a process occurring over an extended time period. McMahon
(1969) measured a similar decrease in soluble Fe using daily samples for nine days across spring mixing in
a dimictic lake; soluble Fe concentrations decreased by more than one order of magnitude 5 days prior to
full circulation. McMahon (1969) did not offer any interpretation of this phenomenon, simply stating that
the changes in soluble Fe were concurrent with vernal circulation. Similar trends have also been observed in
other parameters of biogeochemical relevance. For example, Kankaala et al. (2007) found that the majority
of CH4 in the hypolimnion of a lake was microbially oxidized at the oxycline boundary during a month-long
period of weakening stratification before complete mixing occurred, resulting in lower effluxes of CH4 to the
atmosphere during turnover.

Predicted Fe and Mn concentration data can be compared to other time series data to infer mechanisms
behind the declining Fe and Mn concentrations prior to turnover. Based on trends in Schmidt stability and
water temperature (Figures 4A-B), reservoir stratification was weakening for a 9-day period prior to full
turnover, in response to daily and hourly shifts in meteorological conditions, including air temperature and
wind speed (Figure S13). Mixing between the hypolimnion and metalimnion, as indicated by the homogeni-
zation of water temperature between these layers, occurred periodically throughout the deployment, with an
increasing frequency as turnover approached (Figures 4A-B, S15). These ephemeral periods of mixing bet-
ween the hypolimnion and metalimnion likely led to exchange of Fe and Mn between layers, which suggests
that hydrodynamic processes occurring on hourly to daily time scales may have a substantial influence of Fe
and Mn cycling. However, without Fe and Mn concentration data at a high spatiotemporal resolution, these
patterns would not be observed.

The flexibility of using a multiplexor-spectrophotometer system with a customized prediction algorithm (e.g.,
site-specific PLSR models) allows for the quantification of high-resolution elemental stoichiometry by making
predictions of both the soluble and total fractions of Fe and Mn. During the Turnover Deployment, Fe was
predominantly composed of the total fraction, whereas Mn was largely composed of the soluble fraction until
approximately one week before turnover, at which time the SMn:TMn ratio began to decline (Figure 6B).
This coincided with the onset of declining total Mn concentrations that continued until turnover, excluding
a 2-day period from 28 October to 30 October 2020 when total Mn concentrations temporarily increased
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(Figure 4E). The shift to declining SMn:TMn and total Mn concentrations also coincided with increased
frequency of mixing between the metalimnion and hypolimnion and declining stratification intensity (Figures
4A-B and 6B). These trends suggest that declining total Mn concentrations in the pre-turnover period were
the result of increased oxidation of Mn(II), perhaps due to the exposure of Mn(II) in the hypolimnion to
Mn-oxidizing microbes that inhabit the metalimnion, as demonstrated by a previous study at FCR showing
that the presence of Mn-oxidizing microorganisms can substantially increase Mn oxidation rates (Munger et
al. 2016).

4.3 Hypolimnetic Oxygenation Causes Oxidation of Fe, but not Mn

The MUX-spectrophotometer system enabled us to observe Fe and Mn concentration changes in response to
hypolimnetic oxygenation at an unprecedented spatiotemporal resolution. Fe and Mn concentrations in the
hypolimnion both spiked in the 48 hours following oxygenation, then declined (Figures 5D-E). However, Fe
concentrations decreased to levels lower than they were prior to oxygenation, especially at the lowest depth,
whereas Mn concentrations declined to approximately the same levels prior to oxygenation (Figures 5D-E).
These results indicate that the HOx system effectively physically mixed the hypolimnion with respect to both
metals, as total Fe and total Mn concentrations quickly converged across hypolimnetic depths after turning
on the HOx system (Figures 5D-E) The physical mixing induced by the HOx system appeared to affect Fe
and Mn similarly, suggesting that the spike in total Fe and Mn immediately following HOx activation was
a result of increased mixing and/or entrainment of particulates in the hypolimnion due to stirring of the
bottom sediments. The convergence of Fe and Mn concentrations across hypolimnetic depths has previously
been observed in response to HOx activation (Gerling et al. 2014), but results from this study reveal that
this can occur in less than 24 hours, and may subsequently be followed by an ephemeral spike in total Fe
and Mn concentrations.

Concentrations of total Fe and Mn displayed much greater short-term variability prior to HOx activation
than they did post-activation. This was especially pronounced at the lowest depth (9 m) where concentrations
fluctuated significantly over a period of less than 24 hours (Figures 5D-E). Given that the SFe:TFe ratio
in the upper and middle hypolimnion (6.2m and 8m) steadily increased during the pre-HOx period (Figure
6C), likely due to diffusion of soluble Fe out of the lower hypolimnion, the rapid fluctuations in total Fe in
the lower hypolimnion may have been attributed to shifting diffusion gradients. However, similar patterns
in short-term variability were observed in Fe and Mn, despite the fact that Mn was predominantly in the
soluble phase for the entire deployment, suggesting that diffusion of soluble Mn out of the lower hypolimnion
was not responsible for the pre-HOx rapid fluctuations observed at 9 m.

The change in redox conditions caused by adding DO to the hypolimnion had a much more pronounced effect
on Fe than Mn, as has been observed in other studies (e.g., Gantzer et al. 2009). The contrasting responses
of Fe and Mn to oxygenation can be seen most clearly in the resulting changes in soluble:total ratios (Figure
6). The SFe:TFe ratio in the hypolimnion exhibited a nearly constant linear decline in the 48 hours post-
oxygenation and remained below 0.25 for the remainder of the deployment. This indicates that soluble Fe in
the water column was rapidly oxidized by the HOx system, even though there was no measurable increase in
hypolimnetic DO. This is further supported by the fact that the mean hypolimnetic total Fe concentration
was consistently lower after HOx operation began than it was previously. The observed trends in SFe:TFe
ratios agree with previous research on the effects of HOx systems on Fe in lakes and reservoirs. For example,
Dent et al. (2014) found that SFe:TFe declined to 0.58 after 8 hours of hypolimnetic oxygenation. In our study,
it took approximately twice as long (16 hours) for SFe:TFe to reach 0.58. However, the Fe concentrations in
Dent et al. (2014) were lower (0.17 - 2.88 mg/L) than those in our study (0.31 - 7.42 mg/L).

In contrast to Fe, the SMn:TMn ratio in the hypolimnion displayed only a very slight response (approximately
2% decrease) to HOx activation, demonstrating that hypolimnetic oxygenation did not result in significant
oxidation of Mn. Our results agree with those from Dent et al. (2014), who found that Mn was still 100% in
the soluble phase 8 hours after oxygenation. Furthermore, previous studies at FCR have also showed that
soluble Mn does not respond significantly to oxygenation alone and that other factors, such as microbially-
mediated oxidation, reservoir pH (range 6.4 - 7.1 observed in the hypolimnion during our study) and dilution
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from physical mixing, are more important variables impacting hypolimnetic soluble Mn than oxygenation
(Munger et al. 2016, Krueger et al. 2020).

4.4 Study Limitations

The MUX pumping system enabled us to monitor multiple depths simultaneously, which is invaluable for
investigating biogeochemical processes in spatially heterogeneous systems such as thermally-stratified reser-
voirs. However, there are several limitations to be improved upon in future research. In our reservoir, the
cuvette fitted on the spectrophotometer experienced fouling, likely due to Fe and Mn in the hypolimnion that
oxidized and precipitated on the cuvette walls upon exposure to oxygen. Despite our efforts to limit fouling
(see Methods), there was still a fouling signal detected in several periods of our time series (Figures S4-5).
PLSR models provided a remarkably good numerical correction for this fouling signal, indicating that the
collection of additional calibration samples obtained at regular intervals between servicing dates may yield
lower uncertainties in future deployments. We also found that truncating the UV-vis absorbance spectra
used for calibration to only include wavelengths greater than 250 nm substantially improved the model skill
and diminished spikes in the time series of predictions that corresponded to periods of heavy fouling (Figures
S6-7).

Our results captured sub-weekly patterns in Fe and Mn dynamics in FCR, but the PLSR-predicted time
series of Fe and Mn concentrations was not able to adequately capture some of the high-magnitude, sub-
daily fluctuations that were observed in the sampling data (Figures 4 and 6). This is likely due to varying
PLSR model skill, which is related to the sample size and distribution of data used for calibration, the
number of PLSR model components, and the inherent predictability of each variable. Therefore, it follows
that the strength of correlation between the UV-vis absorbance spectra and Fe/Mn concentrations plays a
strong role in determining the limits to the temporal resolution. This relationship can be refined through
the methodological suggestions outlined above, but ultimately depends upon the spectral properties of the
study system.

5. Conclusions

Results from this study demonstrate that coupling a spectrophotometer with a pumping system enabled
unprecedented high-frequency monitoring of Fe and Mn at multiple depths in our study reservoir, providing
a unique ability to observe hour-resolution biogeochemical dynamics in a freshwater ecosystem. Our findings
underscore the importance of implementing robust and consistent methodologies for obtaining calibration
concentrations, choosing the number of components in PLSR models, and quantifying the uncertainty around
predictions.

The high-spatio-temporal resolution predictions provide novel insights into Fe and Mn cycling dynamics that
could improve aquatic monitoring programs and reservoir management practices. First, we demonstrated
that Fe and Mn concentrations can fluctuate significantly on time scales much shorter than those employed
by most traditional monitoring programs. For example, sub-daily fluctuations of total Fe and Mn during
the Oxygen On Deployment resulted in concentration changes of up to 1.62 mg/L/hr and 0.19 mg/L/hr,
respectively. Considering that the secondary drinking water standards for Fe and Mn are 0.3 and 0.05 mg/L,
respectively, sub-daily concentration changes of this magnitude are critical for water quality management.
Second, we observed an increase in total hypolimnetic Fe and Mn in response to the re-stratification of our
study reservoir two days after turnover, which contradicts the common assumption that metals concentrations
equalize and remain consistently low during the mixed period following turnover. Last, our results offer new
insights on the rapid response of Fe to hypolimnetic oxygenation; within hours of activating the system, the
soluble to total Fe ratio indicated oxidation of Fe, even though there was no measurable increase in DO.
This study emphasizes the power of high spatiotemporal resolution data for improving our understanding of
biogeochemical cycles by unveiling previously-unobserved processes altering Fe and Mn cycling.

Data Availability

All observational data, including the spectrophotometer data, are published in the Environmental Data

13



P
os

te
d

on
7

D
ec

20
22

—
C

C
-B

Y
-N

C
-N

D
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
51

29
2
7.

1
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Initiative repository (Carey et al. 2022a, Carey et al. 2022b, Carey et al. 2022c, Schreiber et al. 2022,
Hammond et al. 2022). All code used to analyze the spectrophotometer data with PLSR and generate the
figures is available in the Zenodo repository (Hammond 2022).
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Figure 1. Bathymetric map of Falling Creek Reservoir, Vinton, VA, USA (37.302913°N, -79.837070°W)
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depicting the primary sampling location (star icon) and hypolimnetic oxygenation (HOx) system. The HOx
system consists of outlet piping with a distribution header (black line) and an oxygen contact chamber (shed
icon).

Figure 2. A) total Fe and B) total Mn concentrations in FCR from 2020 until 2021. Total Fe and Mn
concentrations are derived from manual samples that are collected approximately weekly during the summer
stratified period each year. The HOx system was activated on 29 June 2020 and 11 June 2021 (solid black
vertical lines) and deactivated on 02 December 2020 and 06 December 2021 (dashed black vertical lines).
Values are linearly interpolated for plotting purposes. Inverted triangles at the top of the panel indicate
sampling times.
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Figure 3: Sampling data used to calibrate PLSR models for the Reservoir Turnover Deployment ( n = 69
for total and soluble Fe, 71 for total Mn, and 70 for soluble Mn) and the Oxygen On Deployment ( n = 93
for all variables). Outliers (determined by the Monte Carlo predictive error distribution) are not included.
Note that the y-axes vary among panels.
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Figure 4. Time series plots of A) Schmidt stability, B) water temperature, C) dissolved oxygen, D) predicted
total Fe concentrations (lines) with observed values (dots) and 90% predictive intervals (shaded areas), and
E) predicted total Mn concentrations (lines) with observed values (dots) and 90% predictive intervals (shaded
areas) during the Reservoir Turnover Deployment. The dashed vertical line on 02 November 2020 represents
reservoir turnover, defined by the first time point at which the temperature differential between 0.1m and
9m was less than 1 degree Celsius. Colors of lines (PLSR predictions) and dots (samples) are shown on
the color scale to the right. Note that the reservoir temporarily re-stratified after 02 November 2020. Time
series plots for soluble Fe and Mn are shown in Figure S16.
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Figure 5. Time series plot of A) Schmidt stability, B) water temperature, C) dissolved oxygen, D) predicted
total Fe concentrations (lines) with observed values (dots) and 90% predictive intervals (shaded area), and E)
predicted total Mn concentrations (lines) with observed values (dots) and 90% predictive intervals (shaded
areas) during the Oxygen On Deployment. The dashed vertical line represents the time that the HOx was
turned on. Time series plots for soluble Fe and Mn are shown in Figure S17. Note that the MUX was not
collecting data from 11:00 EDT 31 May 2021 until 14:30 EDT 4 June 2021 due to technical issues. Gaps in
DO and water temperature data are due to sensor malfunction and/or maintenance.
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Figure 6: A) the ratio of predicted soluble Fe to total Fe and B) the ratio of predicted soluble Mn to total
Mn in the hypolimnion during the Turnover deployment; C) the ratio of predicted soluble Fe to total Fe and
D) the ratio of predicted soluble Mn to total Mn in the hypolimnion during the Oxygen On Deployment.
Values were smoothed with a 10-hr moving average to remove noise. The dashed vertical lines represent the
times when reservoir turnover occurred in panels A-B and when the HOx system was turned on in panels
C-D. PLSR predictions that had negative values were set to zero when calculating ratios and any ratio value
that was greater than 1 was set to 1. Note that the MUX was not collecting data from 11:00 EDT 31 May
2021 until 14:30 EDT 4 June 2021 due to technical issues.

Table 1. Summary of PLSR model statistics. n = number of observations. Tot. = total, Sol. = soluble.
Epi = epilimnion, Hypo = hypolimnion. The hypolimnetic soluble Fe PLSR models from the Turnover
Deployment had a poor model fit due to the extremely low concentration range.

Variable Turnover Deployment Turnover Deployment Turnover Deployment Turnover Deployment Turnover Deployment Oxygen On Deployment Oxygen On Deployment Oxygen On Deployment Oxygen On Deployment Oxygen On Deployment
n RMSEP (mg/L) Adj. R2 Components Number of Outliers Removed n RMSEP (mg/L) Adj. R2 Components Number of Outliers Removed

Tot. Fe (Epi) 35 0.11 0.97 5 1 47 0.07 0.73 4 1
Tot. Fe (Hypo) 34 0.53 0.84 3 2 46 1.22 0.65 4 2
Sol. Fe (Epi) 35 0.02 0.74 5 1 48 0.08 0.79 4 0
Sol. Fe (Hypo) 34 0.06 0.06 3 2 45 1.44 0.75 4 3
Tot. Mn (Epi) 36 0.06 0.97 5 0 47 0.005 0.61 4 1
Tot. Mn (Hypo) 35 0.19 0.91 4 1 46 0.14 0.58 4 2
Sol. Mn (Epi) 35 0.06 0.96 5 1 47 0.004 0.36 4 1
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Sol. Mn (Hypo) 35 0.22 0.90 3 1 46 0.15 0.57 4 2
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Abstract

The biogeochemical cycles of iron (Fe) and manganese (Mn) in lakes and reser-
voirs have predictable seasonal trends, largely governed by stratification dy-
namics and redox conditions in the hypolimnion. However, short-term (i.e.,
sub-weekly) trends in Fe and Mn cycling are less well-understood, as most mon-
itoring efforts focus on longer-term (i.e., monthly to yearly) time scales. The
potential for elevated Fe and Mn to degrade water quality and impact ecosys-
tem functioning, coupled with increasing evidence for high spatiotemporal vari-
ability in other biogeochemical cycles, necessitates a closer evaluation of the
short-term Fe and Mn cycling dynamics in lakes and reservoirs. We adapted a
UV-visible spectrophotometer coupled with a multiplexor pumping system and
PLSR modeling to generate high spatiotemporal resolution predictions of Fe
and Mn concentrations in a drinking water reservoir (Falling Creek Reservoir,
Vinton, VA, USA) equipped with a hypolimnetic oxygenation (HOx) system.
We quantified hourly Fe and Mn concentrations during two distinct transitional
periods: reservoir turnover (Fall 2020) and initiation of the HOx system (Sum-
mer 2021). Our sensor system was able to successfully predict mean Fe and
Mn concentrations as well as capture sub-weekly variability, ground-truthed by
traditional grab sampling and laboratory analysis. During fall turnover, hy-
polimnetic Fe and Mn concentrations began to decrease more than two weeks
before complete mixing of the reservoir occurred, with rapid equalization of epil-
imnetic and hypolimnetic Fe and Mn concentrations in less than 48 hours after
full water column mixing. During the initiation of hypolimnetic oxygenation in
Summer 2021, we observed that Fe and Mn were similarly affected by physical
mixing in the hypolimnion, but displayed distinctly different responses to oxy-
genation, as indicated by the rapid oxidation of soluble Fe but not soluble Mn.
This study demonstrates that Fe and Mn concentrations are highly sensitive to
shifting DO and stratification and that their dynamics can substantially change
on hourly to daily time scales in response to these transitions.

Keywords: Hypolimnetic Oxygenation, Iron, Manganese, Spatiotemporal reso-
lution, Spectrophotometer, Turnover

Highlights:

• We used UV-vis spectral data and PLSR to quantify Fe and Mn in a
reservoir

• High-resolution predictions in time and depth were made during fall
turnover and summer oxygenation

• Fe and Mn concentrations are highly sensitive to DO and stratification

• Fe and Mn dynamics can shift on hourly to daily time scales

• Our sensor approach holds much promise for drinking water monitoring
of metals

1. Introduction
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Elevated levels of iron (Fe) and manganese (Mn) in lakes and reservoirs have
negative consequences for ecosystem health and water quality. Increasing Fe
concentrations have been linked to the long-term browning of lakes, which has
numerous, significant ecological consequences (Kritzberg et al. 2020). Mn con-
tamination of drinking water can pose serious risks to human health, especially
in children (Wasserman et al. 2006). Furthermore, high concentrations of both
metals negatively affect the taste, odor, and appearance of water and can dam-
age water supply infrastructure through corrosion and deposition (World Health
Organization 2017). As a result, the U.S. Environmental Protection Agency
(EPA) has established secondary standards for Fe and Mn concentrations in
drinking water of 0.3 and 0.05 mg/L, respectively (EPA 2021).

As Fe and Mn are redox-sensitive elements, their abundance in aquatic systems is
largely influenced by dissolved oxygen (DO) concentrations (Hem 1972, Davison
1993). The oxidation state of Fe and Mn in natural waters is dominated by two
forms: insoluble, oxidized Fe(III) and Mn(IV), and soluble, reduced Fe(II) and
Mn(II) (Davison 1993). In most aquatic systems under circumneutral pH, this
oxidation state is determined by the redox conditions at a given point in space
and time. Under oxic conditions, Fe and Mn are generally present as insoluble
Fe(III) and Mn(IV) solids in rocks and sediments. However, thermal stratifi-
cation in lakes and reservoirs can create anoxic conditions in the hypolimnion
and bottom sediments, promoting the microbial reduction of Fe and Mn in sed-
iments and the subsequent release of soluble, reduced Fe and Mn into the water
column (Lovely 1991). In such settings, soluble Fe and Mn can accumulate in
hypolimnetic waters throughout the stratified period (McMahon 1969, Davison
1993, Beutel et al. 2008, Munger et al. 2016, Krueger et al. 2020).

An increasingly used in situ approach for mitigating high Fe and Mn in drinking
water reservoirs is hypolimnetic oxygenation (HOx), which creates oxic condi-
tions in previously anoxic waters and creates a thicker aerobic zone in bottom
sediments (e.g., Beutel and Horne 1999, Bryant et al. 2011, Dent et al. 2014,
Gantzer et al. 2009, Gerling et al. 2014). By increasing oxygen availability in
the hypolimnion, HOx operation hinders the release of soluble Fe and Mn into
sediment pore waters, slows upward diffusion into the water column, and pro-
motes Fe and Mn oxidation and precipitation in the hypolimnion (Preece et al.
2019). HOx systems have been shown to effectively reduce soluble Fe and Mn
in the hypolimnion of drinking water reservoirs (Gantzer et al. 2009, Bryant et
al. 2011). However, removing soluble Mn from the water column requires more
sustained oxygen inputs, due to its slower oxidation reaction kinetics (Bryant et
al. 2011, Munger et al. 2016). To optimize water treatment using HOx systems,
it is essential for drinking water managers to understand both the short-term
(sub-weekly) and long-term (monthly to yearly) dynamics of Fe and Mn cycling
in supply reservoirs.

Although Fe and Mn cycling in temperate lakes and reservoirs has predictable
seasonal trends dictated by thermal stratification, there is a lack of research
on short-term Fe and Mn dynamics. Quantifying short-term trends requires
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high-frequency data, which we define as having a temporal resolution of daily
or shorter. To our knowledge, there is no standard definition for classifying data
as ‘high-frequency’ or trends as ‘short-term.’ Thus, we developed operational
definitions based on the contrast with traditional monitoring frequencies, which
are typically weekly or longer (e.g., Marcé et al. 2016). The paucity of previous
research on Fe and Mn cycling at sub-weekly scales represents a key knowledge
gap, given that biogeochemical process rates can fluctuate rapidly over hourly to
daily time scales (McClain et al. 2003). Studies have identified diel signals in the
cycles of numerous biogeochemical variables, including Fe and Mn, and many
biological and chemical processes in aquatic environments operate on hourly to
daily scales, often with significant impacts on nutrient cycling and ecosystem
productivity (Istvánovics, Osztoics, & Honti 2004, Nimick, Gammons, & Parker
2011, Kurz et al. 2013). Additionally, episodic hydrologic events, which may
be missed by traditional sampling methods, can have pronounced effects on
biogeochemical cycling dynamics (e.g., Marcé et al. 2016, Coraggio et al. 2022).

Studies analyzing the efficacy of HOx systems have observed substantial changes
in Fe and Mn concentrations in response to changes in DO concentrations (Dent
et al. 2014, Munger et al. 2019). For example, Dent et al. (2014) found that
total Fe and Mn concentrations decreased by 71% and 73%, respectively, after 8
hours of oxygenation of a previously-anoxic reservoir hypolimnion. Conversely,
Munger et al. (2019) found that Fe and Mn sediment fluxes into the water
column were 1.4 and 4.5 times higher, respectively, two weeks after the onset of
hypolimnetic anoxia in a reservoir. The dynamic behavior of Fe and Mn concen-
trations in response to both management and natural processes (e.g., seasonal
thermal stratification) underscores the importance of quantifying these complex
cycling dynamics, which could have substantial implications for drinking water
management and water quality monitoring. To date, monitoring programs have
been hindered by the coarse temporal frequency of months to seasons necessi-
tated by traditional manual sampling and laboratory analysis techniques.

Recent developments in sensor technology have enabled high-frequency collec-
tion of some water quality variables in situ, without the need for manual sam-
pling and laboratory analysis (Porter et al. 2009, Rode et al. 2016, Kruse 2018).
However, most high-frequency sensors are only capable of measuring a single
variable at a time and typically have a low spatial resolution. Moreover, numer-
ous water quality variables, including Fe and Mn, lack instrumentation capable
of unattended, reagent-less, high-frequency measurement.

To circumvent the limitations of current sensor technology, spectrophotometers
have been designed to measure water quality variables in situ at a high frequency
using multi-wavelength absorbance patterns in the ultraviolet-visible (UV-vis)
spectrum. These sensors do not require chemical reagents and are capable of
measuring multiple variables simultaneously. To date, UV-vis spectrophotome-
ters have been successfully used to measure chemical variables that have a strong
correlation with known peaks in their absorbance spectra, such as nitrate and
dissolved organic carbon (DOC) (Etheridge et al. 2014, Sakamoto, Johnson,
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& Coletti 2009). Additionally, several studies have had success using them to
measure concentrations of other biogeochemical variables without well-defined
spectral peaks, such as Fe, total phosphorus (TP), soluble reactive phosphorus
(SRP), and dissolved silica (Si) (Birgand et al. 2016, Etheridge et al. 2014,
Vaughan et al. 2018). Although Fe and Mn are not known to have well-defined
spectral peaks, they absorb and scatter light at wavelengths across the UV-vis
spectrum and they can affect the absorbance of a water sample through com-
plexation with organic molecules (Poulin et al. 2014, Weishaar et al. 2003, Xiao
et al. 2013). Therefore, the covariance between the variable of interest (e.g.,
Fe or Mn) and the overall “color matrix” of the water (the combination of mul-
tiple light-sensitive proxies) can be detected in the UV-vis absorbance spectra
and used to predict concentrations of the variable of interest with statistical
algorithms (Birgand et al. 2016). Laboratory-measured concentrations from
manually collected samples are then subsequently used to develop predictive
models that correlate known concentrations with absorbance spectra.

Numerous algorithms exist for calibrating UV-vis absorbance spectra to ob-
served concentrations, but the most commonly-employed method is partial least
squares regression (PLSR) (DiFoggio 2000, Birgand et al. 2016, Vaughan et
al. 2018). PLSR is well-suited for modeling relationships within data that
have a large number of highly correlated explanatory variables and relatively
few observations, such as multi-wavelength spectral measurements (Wold et al.
2001). Previous studies have used in situ spectrophotometers and PLSR mod-
els to predict water quality variables in a variety of environments, including
streams, lakes, estuaries, and oceans, with varying levels of predictive accu-
racy (Sakamoto, Johnson, & Coletti 2009, Avagyan, Runkle, & Kutzbach 2014,
Etheridge et al. 2014, Birgand et al. 2016, Vaughan et al. 2018). However, to
the best of our knowledge, only one study (Birgand et al. 2016) has evaluated
the potential of this method to observe the high-frequency dynamics of metals
in lakes and reservoirs.

Because the application of this method is relatively new, only a few studies have
attempted to quantify the uncertainty of water chemistry predictions made us-
ing PLSR and spectrophotometric data (Bieroza & Heathwaite 2016, Vaughan
et al. 2018). Uncertainty quantification is crucial for determining the accu-
racy and feasibility of these methods, especially in natural waters that have a
complex chemical composition with an unknown relationship to the measured
spectrophotometric color matrix (Bieroza & Heathwaite 2016; Rieger, Langer-
graber, & Siegrist 2006; Vaughan et al. 2018). Furthermore, the ability of
a PLSR model to make accurate predictions is contingent upon how well the
training data capture the variability in predicted concentrations, which in turn
influences the generalizability of the model (Wold et al. 2001, DiFoggio 2000).
In addition to these factors, photometric noise (i.e., random differences in spec-
tral measurements) and spectral artifacts (e.g., instrument drift and fouling)
can introduce error into model predictions (DiFoggio 2000).

Thus, in situ spectrophotometer data coupled to PLSR modeling potentially
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offer useful insight on rapidly changing metals concentrations in reservoirs and
lakes. However, because of strong thermal gradients with depth in lakes, a single
spectrophotometer cannot capture metals concentrations that may also rapidly
change with depth. Additionally, the cost of in situ spectrophotometers ($8000-
25000 USD as of 2022) prohibits the acquisition of many needed to characterize
spatial dynamics as well. For this reason, Birgand et al. (2016) designed a
multiplexed sequential sampling system to pump water from different depths
at one site to one spectrophotometer used as a portable lab above the water’s
surface. This system has proven to be able to characterize variable reservoir
biogeochemical concentrations over both depth and time (Birgand et al., 2016).

Motivation and objectives

We used an in situ spectrophotometer coupled with a multiplexor pumping sys-
tem and PLSR modeling to predict high-frequency Fe and Mn concentrations
at multiple depths in a seasonally-stratified drinking water reservoir. We then
used this approach to observe the short-term (sub-weekly) variability of Fe and
Mn cycling during two distinct transitional periods: reservoir turnover in Fall
2020 and initiation of HOx operation in Summer 2021. The objectives of this
study were to: 1) assess the accuracy and uncertainty associated with predic-
tions of Fe and Mn concentrations using spectral absorbance data coupled with
PLSR modeling, 2) identify whether Fe and Mn cycling dynamics exhibit tem-
poral variability across depth gradients, and 3) quantify the effects of reservoir
turnover and hypolimnetic oxygenation on Fe and Mn concentrations.

2. Methods

Study site

Field data were collected at Falling Creek Reservoir (FCR), a small (0.12 km2,
maximum depth = 9.3 m), dimictic reservoir located in Vinton, Virginia, USA
(Figure 1, Gerling et al. 2014). FCR was constructed in 1898 and is managed as
a drinking water reservoir by the Western Virginia Water Authority (WVWA)
in Roanoke, VA. The summer stratified period at FCR typically lasts from May
to October. FCR is located in a forested catchment with one primary inflow and
several smaller tributaries. Due to the underlying geology, which consists of Fe-
and Mn-rich rocks of the Blue Ridge and Piedmont Provinces (Woodward, 1932),
this region has elevated Fe and Mn concentrations in surface and groundwater
(Chapman et al. 2013).

FCR contains a HOx system, which can be activated and deactivated to control
DO concentrations in the hypolimnion without altering thermal stratification
or water temperature (Figure 1, Gerling et al. 2014). The HOx system at FCR
was activated from 29 June 2020 until 2 December 2020, when it was turned off
for the winter period. It remained deactivated from 2 December 2020 until 11
June 2021, at which point it was turned back on and remained activated until
the end of the study period on 21 June 2021.

FCR is equipped with sensors that continuously monitor the physical, chem-
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ical, and meteorological conditions at the reservoir’s deepest spot, which was
the primary sampling location in this study (Figure 1). DO sensor data was
collected using a YSI EXO2 (Yellow Springs, OH) deployed at 1.6m and two
In-Situ RDO-PRO-X sensors (Fort Collins, CO) at 5m and 9m (Carey et al.
2022b). Ten-minute resolution temperature measurements were collected by in
situ sensors deployed every meter from the surface to the reservoir sediments
(Carey et al. 2022b). To quantify the intensity of reservoir thermal stratifica-
tion during each deployment, we calculated Schmidt stability (J m-2, Idso 1973)
using temperature measurements and bathymetric data from FCR (Carey et
al. 2022c) as inputs to the R package rLakeAnalyzer (Winslow et al. 2019).
Meteorological variables were measured by a research-grade Campbell Scientific
meteorological station deployed on the dam of FCR (Carey et al. 2022a).

High-Frequency Monitoring System

We monitored high-frequency light absorbance at multiple depths in FCR using
a s::can Spectrolyser UV-Visible spectrophotometer (s::can Messtechnik GmbH,
Vienna, Austria). This spectrophotometer was coupled with a multiplexor
pumping system (’MUX’ from MultiplexÔ, LLC; for technical details on the
multiplexor pumping system and the sensor setup, refer to Birgand et al. 2016
and Figures S1-S3). The MUX pumps water samples from multiple depths into
a flow-through cuvette where the UV-vis absorbance spectra of the sample are
measured by the spectrophotometer. The system used in our study collected
measurements of light absorbance every 2.5 nm wavelengths from 200 nm to
732.5 nm (optical path length of 10 mm) approximately at an hourly time step
for six monitoring depths in the reservoir.

The MUX system was used to collect high-frequency data during two time pe-
riods: reservoir turnover (“Turnover Deployment”) and the initiation of HOx
operation ( “Oxygen On Deployment”). The Turnover Deployment captured
the natural oxygenation and mixing processes that occurred during reservoir
turnover and lasted from 16 October to 9 November 2020. In this study, fall
turnover was defined as the first time when the temperature differential between
0.1 m and 9 m depths in the reservoir was <1 oC after summer stratification
(following McClure et al. 2018), which occurred on 2 November 2020. During
this time period the HOx system was on, so the hypolimnion was oxic before
turnover, but the reservoir was thermally stratified. The Oxygen On Deploy-
ment was conducted between 26 May and 21 June 2021; during that time the
HOx system was initiated on 11 June 2021 at 11:00 EDT. This deployment
captured the engineered oxygenation and mixing processes resulting from the
initiation of HOx operation. The reservoir was thermally-stratified and the hy-
polimnion was anoxic (DO < 1 mg/L) prior to HOx operation and thus, while
HOx operation added oxygen to the hypolimnion, we observed a limited in-
crease in DO concentrations due to high chemical oxygen demand. The HOx
system induced internal mixing within the hypolimnion, but the overall thermal
stratification of the reservoir was not affected.

We took multiple steps to limit the influence of fouling of the internal compo-
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nents of the MUX system, due to precipitation of Fe in contact with oxygen in
the measuring cuvette. Between each pump cycle, deionized water was flushed
through the system. At the end of each pump sequence (one sample from each
depth), dilute hydrochloric acid (5%) was automatically pumped through the
system and allowed to sit in the flow-through cuvette for approximately 2 min-
utes. We also collected a reference measurement in air at the end of each cycle,
which was useful in determining the extent of fouling. Despite these efforts,
some fouling was still evident during certain time periods (see Figures S4-5).
Fouling was most pronounced in the lower wavelengths (200-250 nm; see Fig-
ures S6-7) and therefore we removed values for wavelengths less than 250 nm
before fitting PLSR models.

Sampling Methods

As part of an ongoing monitoring program, we sample total and soluble Fe and
Mn weekly throughout the stratified period. For this study, water samples were
collected at the reservoir outtake depths of 0.1, 1.6, 3.8 m (epilimnion), 5.0 m
(metalimnion), 6.2, 8.0, and 9.0 m (hypolimnion) using a 4-L Van Dorn sampler,
thereby matching the MUX sampling depths. Samples for soluble Fe and Mn
were syringe-filtered using 0.45 µm nylon filters. Both total and soluble metals
samples were preserved with trace metal grade nitric acid to pH < 2. Samples
were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICPMS).
Minimum reporting levels were 0.005 mg/L (Fe) and 0.0001 mg/L (Mn). The
dataset, including methods for sample collection and analysis, can be found in
Schreiber et al. (2022).

To assess short-term variability in metals concentrations and to calibrate and
validate PLSR models, additional samples were collected every 2-4 hours dur-
ing two 24-hour campaigns. The first campaign occurred on 16-17 October 2020
(n=7; Figure S8); the second campaign occurred on 10-11 June 2021 (n=8; Fig-
ure S9). All sampling data (weekly and high-frequency) were used to calibrate
PLSR models.

Predicting Fe and Mn concentrations from optical measurements using PLSR

We used PLSR to compute predictions of total and soluble Fe and Mn concentra-
tions based on the correlation between absorbance spectra and sampling data.
Data analysis and QA/QC was performed in the R programming environment
(R.v.4.2.1). Model building was conducted using the pls package (Mevik et al.
2020; R Core Team 2022), as described in Supplementary Information 1.1.

Separate PLSR models were developed for each variable (total Fe, soluble Fe,
total Mn, and soluble Mn) and deployment. Based on the distinctly different
chemical and biological characteristics between layers of the reservoir (i.e., epil-
imnion and hypolimnion), we found that the best fit was obtained when we
used different models for the two layers. In stratified reservoirs such as FCR,
Fe and Mn concentrations are much higher in the hypolimnion than the epil-
imnion. Therefore, we had an epilimnion model which included data from 0.1,
1.6, and 3.8 m and a hypolimnion model which included data from 6.2, 8.0, and
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9.0 m (Table 1). Although we also collected data from 5.0 m, we did not in-
clude them in our analyses since this is at the transition between the two layers
(metalimnion; see McClure et al. 2018) and thus not applicable to either layer.
We developed separate models for the Turnover Deployment and the Oxygen
On Deployment. In the end, we had four separate models for each of the four
variables (total and soluble Fe and Mn), resulting in 16 different models.

To assess the uncertainty of the predictions made using PLSR, we calculated
nonparametric bootstrap predictive intervals following methods described by
Denham (1997) and reported in Supplementary Information 1.2. Model skill was
assessed using the coefficient of determination (R2) from the linear regression
between predicted and observed values, as well as the root mean squared error
of prediction (RMSEP) for each model (following Wold et al. 2001 and Mevik
et al. 2020).

All observational data, including the spectrophotometer data, are published in
the Environmental Data Initiative repository (Carey et al. 2022a, Carey et al.
2022b, Carey et al. 2022c, Schreiber et al. 2022, and Hammond et al. 2022).
All code used to analyze the spectrophotometer data with PLSR and generate
the figures is available in the Zenodo repository (Hammond 2022).

3. Results

3.1 Routine Fe and Mn sampling trends

Weekly sampling at FCR showed levels of Fe and Mn in exceedance of the EPA
standards during the 2020 and 2021 stratified periods, with maximum total
Fe and Mn concentrations of 18.5 mg/L and 2.2 mg/L, respectively (Figure
2). Hypolimnetic concentrations of both metals generally increased throughout
the summer stratified period of each year, until reservoir fall turnover (Figure
2). Following reservoir turnover, concentrations of both metals remained low
(< 1 mg/L) until the following spring. HOx activation from 11 June until 02
December in 2020 resulted in substantially lower hypolimnetic total Fe but not
total Mn concentrations (Figure 2).

3.2 PLSR Model Performance

A comparison of skill metrics among the 16 models revealed that PLSR per-
formed best for models calibrated with higher Fe and Mn concentrations that
exhibited a larger standard deviation (Tables 1, S1; Figure S10). Model skill
was also sensitive to the number of components included in each model. For the
Turnover Deployment, the number of components included in the PLSR models
ranged from 3-5 (9-14% of n). For the Oxygen On Deployment, 4 components
were used for all PLSR models (8-9% of n) (Table 1). Sample size was negatively
correlated with R2, but positively correlated with RMSEP (Figure S10).

Turnover Deployment models explained a high proportion of the variability in
total and soluble Fe and Mn concentrations, excluding hypolimnetic soluble Fe
which had a poor model fit (R2 = 0.06), due to extremely low concentrations
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(median = 0.02 mg/L) during this time period (Table 1; Figure 3). In com-
parison, Oxygen On Deployment models explained a lower proportion of the
variability in total and soluble Fe and Mn concentrations, despite having larger
sample sizes for calibration (Table 1). In particular, PLSR model performance
for total and soluble Mn was notably lower for the Oxygen On Deployment than
for the Turnover Deployment (Tables 1, S1). PLSR model performance also var-
ied between the hypolimnion and epilimnion. For most models, the epilimnetic
PLSR model had a higher R2 value than the corresponding hypolimnetic PLSR
model (Table 1).

In most cases, PLSR predictions were within the range of concentration values
in the calibration dataset (Figures 3, S11-12), but they did not capture some of
the high-magnitude fluctuations in the sampling data. Analysis of the Fe and
Mn time series (Figures 4D-E and 5D-E) and calibration (Figures S11-12) sug-
gests that inaccuracy in the models was largely attributed to high calibration
error for observations far from the mean concentration of the calibration data
(i.e., outliers). Additionally, when predicting variables with relatively low con-
centrations (< 1 mg/L), especially with the epilimnion models, some predictions
were in the negative range (Figures 4D-E; 5D-E).

3.3 Reservoir Turnover Deployment

3.3.1 Water Temperature, Stratification, and DO Concentrations

DO concentrations, water temperature, and Schmidt stability varied consid-
erably over the course of the Turnover Deployment (Figures 4A-C). Prior to
turnover, DO concentrations were strongly stratified by depth and exhibited
large sub-daily fluctuations in the epilimnion and metalimnion (Figure 4C).
Hypolimnetic DO concentrations were stable around 2 mg/L during the pre-
turnover period, due to the HOx system operation (Figure 4C). A sharp tem-
perature gradient (4-7°C) between the epilimnion and hypolimnion existed until
approximately 3 days prior to turnover (Figure 4B). However, the water temper-
ature profile equalized periodically between the metalimnion and hypolimnion
prior to turnover, indicating ephemeral periods of mixing between those layers
(Figure 4B). Starting on 29 October 2020, the temperature gradient decreased
progressively until the full water column temperature profile equalized on 02
November 2020, meeting our criteria for turnover.

3.3.2 Predicted Fe and Mn Concentrations

Reservoir turnover had substantial impacts on Fe and Mn concentrations. At the
beginning of the deployment (16 October 2020), 17 days prior to turnover, both
Fe and Mn displayed large differences in concentration between the epilimnion
and hypolimnion (Figures 4D-E). The average total Fe and total Mn concen-
trations across all hypolimnetic depths (6.2, 8.0, and 9.0 m) were 3.73 mg/L
and 1.48 mg/L; across all epilimnetic depths (0.1, 1.6, and 3.8 m) they were
0.41 mg/L and 0.14 mg/L, respectively (Figures 4D-E). Substantial changes in
epilimnetic concentrations were not observed until 24 hours prior to turnover.
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Within that 24 hour period, average epilimnetic total Fe and total Mn increased
by 70% (0.61 to 1.04 mg/L) and 66% (0.29 to 0.48 mg/L), respectively.

In contrast to the epilimnion, we observed declining total Fe and Mn concentra-
tions in the hypolimnion prior to turnover (Figures 4D-E). Between 16 October
and 02 November 2020, hypolimnetic total Fe and total Mn concentrations de-
clined at a rate of 0.13 and 0.11 mg/L/d, respectively. However, there were also
periods of fluctuations in total Fe and total Mn concentrations by as much as 1
mg/L/d (Figure 4D-E). In the 24 hours prior to turnover, average hypolimnetic
total Fe and total Mn decreased by 45% (2.09 to 1.14 mg/L) and 32% (0.82 to
0.55 mg/L), respectively.

A strong concentration gradient between the epilimnion and hypolimnion re-
mained for total Fe and total Mn until full reservoir turnover on 02 November
2020. After turnover, water temperature and DO rapidly equalized across the
full water column, coinciding with the rapid equalization of total Fe and Mn
concentrations across the water column (Figures 4D-E). Total Fe and Mn con-
centrations were lower and less variable than during the pre-turnover period
(Figures 4D-E). The reservoir remained well-mixed for 2 days, but then shifting
thermal gradients led to a temporary re-stratification that began on 02 Novem-
ber 2020 and lasted until the end of the deployment on 09 November 2020
(Figures 4A-B). The re-stratification of the reservoir was also evident in total
Fe and total Mn concentrations (Figures 4D-E).

3.4 Oxygen On Deployment

3.4.1 Water Temperature, Stratification, and DO

DO concentrations, water temperature, and Schmidt stability differed consider-
ably between the two deployments (Figures 5A-C). At the start of the Oxygen
On deployment (26 May 2021), 16 days prior to HOx activation, epilimnetic
DO concentrations were high (5-15 mg/L) and exhibited a consistent decline
throughout the deployment due to warm air temperatures (Figure S14). Metal-
imnetic and hypolimnetic DO concentrations were both approximately 0 mg/L
throughout the deployment. The water temperature profile shows distinctly
stratified layers in the reservoir prior to HOx operation, with a sharp tempera-
ture gradient throughout the epilimnion for the entire deployment and a slight
temperature gradient in the hypolimnion (Figure 5B). Immediately following
HOx activation on 11 June 2021, the water temperature profile equalized across
layers below 6m depth, indicating mixing within the hypolimnion due to HOx
activation (Figure 5B). The water temperature profile in the epilimnion was un-
affected by HOx operation. Metalimnetic and hypolimnetic DO concentrations
did not increase above 0 mg/L in the few days after activation of the HOx sys-
tem. This is attributed to chemical oxygen demand in the hypolimnion resulting
from high concentrations of reduced solutes (e.g., Fe(II) and Mn(II)).

3.4.2 Predicted Fe and Mn Concentrations

At the beginning of the deployment, the highest concentrations of total Fe and
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Mn were at the lowest depth (9m) and concentrations decreased upwards in
the water column, with a sharp decrease between the hypolimnion and epil-
imnion (Figures 5D-E). In the first 24 hours of the deployment, total Fe and
Mn concentrations averaged across all epilimnetic depths were 0.43 and 0.03
mg/L, respectively, while across the hypolimnetic depths they were 2.71 and
0.54 mg/L, respectively. Prior to HOx operation, both total Fe and Mn in the
hypolimnion exhibited large, sub-daily fluctuations which resulted in concentra-
tion changes of up to 1.62 mg/L/hr and 0.19 mg/L/hr, respectively (Figures
5D-E). These sub-daily fluctuations were most pronounced at the lowest depth.

The spatial and temporal cycling dynamics of Fe and Mn were significantly af-
fected by hypolimnetic oxygenation. Prior to activation of the HOx system on 11
June 2021, epilimnetic total Fe and Mn concentrations remained constant (sd =
0.07 mg/L and 0.004 mg/L, respectively) and low (maximum concentrations =
0.63 mg/L and 0.05 mg/L, respectively). Hypolimnetic total Fe and Mn concen-
trations during this period were much more variable (sd = 1.85 mg/L and 0.19
mg/L, respectively) and higher (maximum concentrations = 7.90 mg/L and 1.08
mg/L, respectively). Shortly after HOx activation, total Fe and Mn concentra-
tions equalized contemporaneously with the equalization of water temperature
across the hypolimnetic depths, indicating that this layer of the reservoir was
well-mixed with respect to Fe and Mn (Figures 5B, 5D-E). In contrast, differ-
ences in total Fe and Mn concentrations across the epilimnetic depths increased
slightly after activation of the HOx system.

Approximately 6 hours after turning on the HOx system, total Fe and Mn at
9m depth declined by approximately 2.5 mg/L and 0.25 mg/L, respectively (Fig-
ures 5D-E). Concentrations of total Fe and Mn at all hypolimnetic depths sub-
sequently increased over the next 24 hours, before eventually stabilizing over
the following 24 hours at concentrations of 1.5-3.5 mg/L and 0.5-0.75 mg/L,
respectively. For the remainder of the deployment, total Fe and Mn concentra-
tions remained equal across all hypolimnetic depths and exhibited less variability
(Figures 5D-E).

3.5 Predicted Fe and Mn Soluble-to-Total Ratios

The ratio of predicted soluble to total Fe (SFe:TFe) and Mn (SMn:TMn) was cal-
culated to assess redox transformations. We observed distinct changes in these
ratios over the course of both deployments, most notably in the hypolimnion
(Figure 6). During the Turnover Deployment, the hypolimnion was maintained
at oxic conditions pre-turnover (due to HOx) and post-turnover (due to mix-
ing). As expected, hypolimnetic SFe:TFe was approximately 0 during this en-
tire deployment, indicating that all Fe in the hypolimnion was in the particu-
late fraction (soluble Fe + particulate Fe = total Fe). In contrast, hypolim-
netic SMn:TMn was approximately 1 at the beginning of the deployment, in-
dicating that all Mn was in the soluble fraction. However, in the week prior
to turnover, hypolimnetic SMn:TMn oscillated between 0.5 and 1. Following
turnover, SMn:TMn was greater than 0.75 and remained high until the end of
the deployment.
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At the beginning of the Oxygen On deployment, SFe:TFe differed greatly with
depth in the hypolimnion, with ratios greater than 0.8 at 9m depth and ratios
close to 0 at 6.2m and 8m depths (Figures 6C-D). Between the beginning of the
deployment and HOx activation on 11 June 2021, the SFe:TFe at 6.2m and 8m
increased continuously to approximately the same level as 9m (Figures 6C-D).
Just before the initiation of HOx operation, the SFe:TFe at all hypolimnion
depths was > 0.75, indicating that most of the Fe in the hypolimnion was in
the soluble fraction. However, immediately after turning the HOx system on,
the SFe:TFe in the hypolimnion decreased steadily. In the 48-hour period after
HOx activation, the SFe:TFe in the hypolimnion declined to less than 0.25 and
remained low until the end of the experimental period (Figure 6C-D), indicating
oxidation processes. In contrast to Fe, SMn:TMn in the hypolimnion was >
0.90 for the entire deployment. We did not observe a significant effect of HOx
operation on SMn:TMn (0.99 pre-HOx, 0.97 post-HOx).

4. Discussion

4.1 PLSR modeling of high frequency absorbance spectra can predict Fe and Mn
concentrations

Using UV-visible absorbance spectra and PLSR modeling, we made hourly pre-
dictions of Fe and Mn concentrations at 6 depths in our study reservoir. Our
results indicate that this method can successfully predict Fe and Mn concentra-
tions based on their covariability with UV-vis absorbance spectra, despite the
paucity of clearly-defined absorbance peaks for these elements. PLSR models
were able to explain a high proportion of the variability in the sampling data
(Table 1) and predictions agreed with expected Fe and Mn cycling dynamics.
For example, the rapid decline in SFe:TFe following the onset of HOx opera-
tion (Figure 6C) matches expectations based on the rapid oxidation kinetics of
Fe(II) in the presence of oxygen (Davison & Seed 1983); previous studies have
also demonstrated substantial decreases in soluble Fe following short periods of
HOx (Dent et al. 2014, Munger et al. 2016, Krueger et al. 2020). Based on
model skill metrics (i.e., R2 and RMSEP) and visual inspection of the predicted
time series, accurate predictions of Fe and Mn concentrations using this method
are influenced by numerous factors, including: the range and variance of con-
centrations in the calibration dataset, the sample size used for calibration, the
number of outliers in the calibration dataset, the number of components in the
PLSR model, and the inherent predictability of each variable at a particular site
(i.e., the strength of correlation with the UV-vis absorbance spectra).

Our results suggest that our methodology may be most appropriate for measur-
ing elevated concentrations of Fe and Mn (> 0.1 mg/L). This result agrees with
Vaughan et al. (2018), who suggested that the application of this method to
predict riverine total phosphorus (TP) concentrations was best for sites with el-
evated TP (>0.1 mg/L) concentrations. In our study, PLSR models fit to data
with lower concentrations of Fe and Mn (< 0.1 mg/L) generally did not perform
well. For example, soluble Fe during the Turnover Deployment had median con-
centrations of 0.06 mg/L and 0.02 mg/L in the epilimnion and hypolimnion,
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respectively (Figure 3 and Table S1). Accordingly, the PLSR models for soluble
Fe had the lowest R2 (epilimnion: 0.74; hypolimnion: 0.06) and highest RMSEP
relative to median calibration concentration out of any model for the Turnover
Deployment (Tables 1, S1).

Our PLSR models were also sensitive to the range and variance of sampling data
used for calibration. Preliminary model testing revealed that PLSR models were
hindered by the distinct water chemistry between epilimnetic and hypolimnetic
depths (Fe and Mn mean differences >1.3 mg/L and 0.8 mg/L, respectively;
see Figure 3) and therefore models were generated separately for each reservoir
layer. This conforms with findings of previous studies using in situ UV-vis spec-
trophotometers and PLSR in waterbodies, which all achieved higher accuracy
with site-specific models (Avagyan, Runkle, & Kutzbach 2014, Vaughan et al.
2018, Etheridge et al. 2014). However, when comparing pairs of PLSR models
(i.e., the same variable + depth combination) between the two deployments, the
models fit to data with a higher standard deviation had higher R2 values, with
the sole exception of hypolimnetic total Fe (Tables 1 and S1). These results
suggest that there is a tradeoff between capturing the maximum variability in
observed concentrations and the limitations imposed by the degree of covari-
ability between the UV-vis absorbance spectra and the variable of interest (also
observed by Avagyan, Runkle, & Kutzbach 2014 and Allen 2021). To achieve
an accurate predictive model, grouping data based on the spatial and temporal
context of measurement achieved a better fitting model while still maximizing
the variability captured in the calibration data.

Birgand et al. (2016) used a similar approach for making predictions of soluble
Fe concentrations in FCR after the activation of a HOx system. They obtained
a slightly better model fit, indicated by an R2 value of 0.94, compared to our R2

values of 0.79 and 0.75 (epilimnion and hypolimnion, respectively) for the Oxy-
gen On Deployment. We used calibration sample sizes of 48 and 45 (epilimnion
and hypolimnion, respectively) while Birgand et al. (2016) used 27. However,
they used 5 components in their PLSR model, whereas we used 4 components.
Thus, the higher R2 value for their model may be attributed to a higher ratio
of components to sample size (18%) compared to our study (8-9%).

4.2 Fe and Mn Concentrations Change Gradually in Response to Weakening
Stratification and Rapidly in Response to Full Turnover

Trends in predicted Fe and Mn concentrations shed light on the changes that
occurred in the reservoir before and after turnover. Hypolimnetic concentrations
of Fe and Mn began declining 17 and 9 days prior to turnover, respectively,
and shorter periods of more rapid concentration fluctuations were superimposed
upon these patterns of decline (Figures 4D-E). Combined, these results suggest
that turnover, at least in our study reservoir, is not a discrete event, but rather
a process occurring over an extended time period. McMahon (1969) measured
a similar decrease in soluble Fe using daily samples for nine days across spring
mixing in a dimictic lake; soluble Fe concentrations decreased by more than one
order of magnitude 5 days prior to full circulation. McMahon (1969) did not
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offer any interpretation of this phenomenon, simply stating that the changes
in soluble Fe were concurrent with vernal circulation. Similar trends have also
been observed in other parameters of biogeochemical relevance. For example,
Kankaala et al. (2007) found that the majority of CH4 in the hypolimnion of
a lake was microbially oxidized at the oxycline boundary during a month-long
period of weakening stratification before complete mixing occurred, resulting in
lower effluxes of CH4 to the atmosphere during turnover.

Predicted Fe and Mn concentration data can be compared to other time se-
ries data to infer mechanisms behind the declining Fe and Mn concentrations
prior to turnover. Based on trends in Schmidt stability and water tempera-
ture (Figures 4A-B), reservoir stratification was weakening for a 9-day period
prior to full turnover, in response to daily and hourly shifts in meteorological
conditions, including air temperature and wind speed (Figure S13). Mixing be-
tween the hypolimnion and metalimnion, as indicated by the homogenization
of water temperature between these layers, occurred periodically throughout
the deployment, with an increasing frequency as turnover approached (Figures
4A-B, S15). These ephemeral periods of mixing between the hypolimnion and
metalimnion likely led to exchange of Fe and Mn between layers, which suggests
that hydrodynamic processes occurring on hourly to daily time scales may have
a substantial influence of Fe and Mn cycling. However, without Fe and Mn
concentration data at a high spatiotemporal resolution, these patterns would
not be observed.

The flexibility of using a multiplexor-spectrophotometer system with a cus-
tomized prediction algorithm (e.g., site-specific PLSR models) allows for the
quantification of high-resolution elemental stoichiometry by making predictions
of both the soluble and total fractions of Fe and Mn. During the Turnover
Deployment, Fe was predominantly composed of the total fraction, whereas Mn
was largely composed of the soluble fraction until approximately one week before
turnover, at which time the SMn:TMn ratio began to decline (Figure 6B). This
coincided with the onset of declining total Mn concentrations that continued
until turnover, excluding a 2-day period from 28 October to 30 October 2020
when total Mn concentrations temporarily increased (Figure 4E). The shift to
declining SMn:TMn and total Mn concentrations also coincided with increased
frequency of mixing between the metalimnion and hypolimnion and declining
stratification intensity (Figures 4A-B and 6B). These trends suggest that de-
clining total Mn concentrations in the pre-turnover period were the result of
increased oxidation of Mn(II), perhaps due to the exposure of Mn(II) in the
hypolimnion to Mn-oxidizing microbes that inhabit the metalimnion, as demon-
strated by a previous study at FCR showing that the presence of Mn-oxidizing
microorganisms can substantially increase Mn oxidation rates (Munger et al.
2016).

4.3 Hypolimnetic Oxygenation Causes Oxidation of Fe, but not Mn

The MUX-spectrophotometer system enabled us to observe Fe and Mn concen-
tration changes in response to hypolimnetic oxygenation at an unprecedented
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spatiotemporal resolution. Fe and Mn concentrations in the hypolimnion both
spiked in the 48 hours following oxygenation, then declined (Figures 5D-E).
However, Fe concentrations decreased to levels lower than they were prior to
oxygenation, especially at the lowest depth, whereas Mn concentrations declined
to approximately the same levels prior to oxygenation (Figures 5D-E). These re-
sults indicate that the HOx system effectively physically mixed the hypolimnion
with respect to both metals, as total Fe and total Mn concentrations quickly
converged across hypolimnetic depths after turning on the HOx system (Figures
5D-E) The physical mixing induced by the HOx system appeared to affect Fe
and Mn similarly, suggesting that the spike in total Fe and Mn immediately
following HOx activation was a result of increased mixing and/or entrainment
of particulates in the hypolimnion due to stirring of the bottom sediments. The
convergence of Fe and Mn concentrations across hypolimnetic depths has pre-
viously been observed in response to HOx activation (Gerling et al. 2014), but
results from this study reveal that this can occur in less than 24 hours, and may
subsequently be followed by an ephemeral spike in total Fe and Mn concentra-
tions.

Concentrations of total Fe and Mn displayed much greater short-term variability
prior to HOx activation than they did post-activation. This was especially pro-
nounced at the lowest depth (9 m) where concentrations fluctuated significantly
over a period of less than 24 hours (Figures 5D-E). Given that the SFe:TFe
ratio in the upper and middle hypolimnion (6.2m and 8m) steadily increased
during the pre-HOx period (Figure 6C), likely due to diffusion of soluble Fe
out of the lower hypolimnion, the rapid fluctuations in total Fe in the lower
hypolimnion may have been attributed to shifting diffusion gradients. However,
similar patterns in short-term variability were observed in Fe and Mn, despite
the fact that Mn was predominantly in the soluble phase for the entire deploy-
ment, suggesting that diffusion of soluble Mn out of the lower hypolimnion was
not responsible for the pre-HOx rapid fluctuations observed at 9 m.

The change in redox conditions caused by adding DO to the hypolimnion had
a much more pronounced effect on Fe than Mn, as has been observed in other
studies (e.g., Gantzer et al. 2009). The contrasting responses of Fe and Mn to
oxygenation can be seen most clearly in the resulting changes in soluble:total
ratios (Figure 6). The SFe:TFe ratio in the hypolimnion exhibited a nearly
constant linear decline in the 48 hours post-oxygenation and remained below
0.25 for the remainder of the deployment. This indicates that soluble Fe in
the water column was rapidly oxidized by the HOx system, even though there
was no measurable increase in hypolimnetic DO. This is further supported by
the fact that the mean hypolimnetic total Fe concentration was consistently
lower after HOx operation began than it was previously. The observed trends
in SFe:TFe ratios agree with previous research on the effects of HOx systems on
Fe in lakes and reservoirs. For example, Dent et al. (2014) found that SFe:TFe
declined to 0.58 after 8 hours of hypolimnetic oxygenation. In our study, it took
approximately twice as long (16 hours) for SFe:TFe to reach 0.58. However, the
Fe concentrations in Dent et al. (2014) were lower (0.17 - 2.88 mg/L) than those
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in our study (0.31 - 7.42 mg/L).

In contrast to Fe, the SMn:TMn ratio in the hypolimnion displayed only a very
slight response (approximately 2% decrease) to HOx activation, demonstrating
that hypolimnetic oxygenation did not result in significant oxidation of Mn. Our
results agree with those from Dent et al. (2014), who found that Mn was still
100% in the soluble phase 8 hours after oxygenation. Furthermore, previous
studies at FCR have also showed that soluble Mn does not respond significantly
to oxygenation alone and that other factors, such as microbially-mediated ox-
idation, reservoir pH (range 6.4 - 7.1 observed in the hypolimnion during our
study) and dilution from physical mixing, are more important variables impact-
ing hypolimnetic soluble Mn than oxygenation (Munger et al. 2016, Krueger et
al. 2020).

4.4 Study Limitations

The MUX pumping system enabled us to monitor multiple depths simultane-
ously, which is invaluable for investigating biogeochemical processes in spatially
heterogeneous systems such as thermally-stratified reservoirs. However, there
are several limitations to be improved upon in future research. In our reservoir,
the cuvette fitted on the spectrophotometer experienced fouling, likely due to
Fe and Mn in the hypolimnion that oxidized and precipitated on the cuvette
walls upon exposure to oxygen. Despite our efforts to limit fouling (see Meth-
ods), there was still a fouling signal detected in several periods of our time series
(Figures S4-5). PLSR models provided a remarkably good numerical correction
for this fouling signal, indicating that the collection of additional calibration
samples obtained at regular intervals between servicing dates may yield lower
uncertainties in future deployments. We also found that truncating the UV-
vis absorbance spectra used for calibration to only include wavelengths greater
than 250 nm substantially improved the model skill and diminished spikes in the
time series of predictions that corresponded to periods of heavy fouling (Figures
S6-7).

Our results captured sub-weekly patterns in Fe and Mn dynamics in FCR, but
the PLSR-predicted time series of Fe and Mn concentrations was not able to ad-
equately capture some of the high-magnitude, sub-daily fluctuations that were
observed in the sampling data (Figures 4 and 6). This is likely due to varying
PLSR model skill, which is related to the sample size and distribution of data
used for calibration, the number of PLSR model components, and the inherent
predictability of each variable. Therefore, it follows that the strength of correla-
tion between the UV-vis absorbance spectra and Fe/Mn concentrations plays a
strong role in determining the limits to the temporal resolution. This relation-
ship can be refined through the methodological suggestions outlined above, but
ultimately depends upon the spectral properties of the study system.

5. Conclusions

Results from this study demonstrate that coupling a spectrophotometer with
a pumping system enabled unprecedented high-frequency monitoring of Fe and
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Mn at multiple depths in our study reservoir, providing a unique ability to
observe hour-resolution biogeochemical dynamics in a freshwater ecosystem.
Our findings underscore the importance of implementing robust and consistent
methodologies for obtaining calibration concentrations, choosing the number of
components in PLSR models, and quantifying the uncertainty around predic-
tions.

The high-spatio-temporal resolution predictions provide novel insights into Fe
and Mn cycling dynamics that could improve aquatic monitoring programs and
reservoir management practices. First, we demonstrated that Fe and Mn con-
centrations can fluctuate significantly on time scales much shorter than those
employed by most traditional monitoring programs. For example, sub-daily
fluctuations of total Fe and Mn during the Oxygen On Deployment resulted in
concentration changes of up to 1.62 mg/L/hr and 0.19 mg/L/hr, respectively.
Considering that the secondary drinking water standards for Fe and Mn are 0.3
and 0.05 mg/L, respectively, sub-daily concentration changes of this magnitude
are critical for water quality management. Second, we observed an increase in
total hypolimnetic Fe and Mn in response to the re-stratification of our study
reservoir two days after turnover, which contradicts the common assumption
that metals concentrations equalize and remain consistently low during the
mixed period following turnover. Last, our results offer new insights on the
rapid response of Fe to hypolimnetic oxygenation; within hours of activating
the system, the soluble to total Fe ratio indicated oxidation of Fe, even though
there was no measurable increase in DO. This study emphasizes the power of
high spatiotemporal resolution data for improving our understanding of biogeo-
chemical cycles by unveiling previously-unobserved processes altering Fe and
Mn cycling.
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Figure 1. Bathymetric map of Falling Creek Reservoir, Vinton, VA, USA
(37.302913°N, -79.837070°W) depicting the primary sampling location (star icon)
and hypolimnetic oxygenation (HOx) system. The HOx system consists of out-
let piping with a distribution header (black line) and an oxygen contact chamber
(shed icon).
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Figure 2. A) total Fe and B) total Mn concentrations in FCR from 2020 until
2021. Total Fe and Mn concentrations are derived from manual samples that
are collected approximately weekly during the summer stratified period each
year. The HOx system was activated on 29 June 2020 and 11 June 2021 (solid
black vertical lines) and deactivated on 02 December 2020 and 06 December
2021 (dashed black vertical lines). Values are linearly interpolated for plotting
purposes. Inverted triangles at the top of the panel indicate sampling times.
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Figure 3: Sampling data used to calibrate PLSR models for the Reservoir
Turnover Deployment ( n = 69 for total and soluble Fe, 71 for total Mn, and
70 for soluble Mn) and the Oxygen On Deployment ( n = 93 for all variables).
Outliers (determined by the Monte Carlo predictive error distribution) are not
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included. Note that the y-axes vary among panels.
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Figure 4. Time series plots of A) Schmidt stability, B) water temperature, C)
dissolved oxygen, D) predicted total Fe concentrations (lines) with observed
values (dots) and 90% predictive intervals (shaded areas), and E) predicted
total Mn concentrations (lines) with observed values (dots) and 90% predictive
intervals (shaded areas) during the Reservoir Turnover Deployment. The dashed
vertical line on 02 November 2020 represents reservoir turnover, defined by the
first time point at which the temperature differential between 0.1m and 9m was
less than 1 degree Celsius. Colors of lines (PLSR predictions) and dots (samples)
are shown on the color scale to the right. Note that the reservoir temporarily
re-stratified after 02 November 2020. Time series plots for soluble Fe and Mn
are shown in Figure S16.
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Figure 5. Time series plot of A) Schmidt stability, B) water temperature, C) dis-
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solved oxygen, D) predicted total Fe concentrations (lines) with observed values
(dots) and 90% predictive intervals (shaded area), and E) predicted total Mn
concentrations (lines) with observed values (dots) and 90% predictive intervals
(shaded areas) during the Oxygen On Deployment. The dashed vertical line
represents the time that the HOx was turned on. Time series plots for soluble
Fe and Mn are shown in Figure S17. Note that the MUX was not collecting data
from 11:00 EDT 31 May 2021 until 14:30 EDT 4 June 2021 due to technical
issues. Gaps in DO and water temperature data are due to sensor malfunction
and/or maintenance.
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Figure 6: A) the ratio of predicted soluble Fe to total Fe and B) the ratio
of predicted soluble Mn to total Mn in the hypolimnion during the Turnover
deployment; C) the ratio of predicted soluble Fe to total Fe and D) the ratio
of predicted soluble Mn to total Mn in the hypolimnion during the Oxygen On
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Deployment. Values were smoothed with a 10-hr moving average to remove
noise. The dashed vertical lines represent the times when reservoir turnover
occurred in panels A-B and when the HOx system was turned on in panels C-D.
PLSR predictions that had negative values were set to zero when calculating
ratios and any ratio value that was greater than 1 was set to 1. Note that the
MUX was not collecting data from 11:00 EDT 31 May 2021 until 14:30 EDT 4
June 2021 due to technical issues.

Table 1. Summary of PLSR model statistics. n = number of observations.
Tot. = total, Sol. = soluble. Epi = epilimnion, Hypo = hypolimnion. The
hypolimnetic soluble Fe PLSR models from the Turnover Deployment had a
poor model fit due to the extremely low concentration range.

Variable Turnover Deployment Oxygen On Deployment
n RMSEP (mg/L) Adj. R2 Components Number of Outliers Removed n RMSEP (mg/L) Adj. R2 Components Number of Outliers Removed

Tot. Fe (Epi) 35 0.11 0.97 5 1 47 0.07 0.73 4 1
Tot. Fe (Hypo) 34 0.53 0.84 3 2 46 1.22 0.65 4 2
Sol. Fe (Epi) 35 0.02 0.74 5 1 48 0.08 0.79 4 0
Sol. Fe (Hypo) 34 0.06 0.06 3 2 45 1.44 0.75 4 3
Tot. Mn (Epi) 36 0.06 0.97 5 0 47 0.005 0.61 4 1
Tot. Mn (Hypo) 35 0.19 0.91 4 1 46 0.14 0.58 4 2
Sol. Mn (Epi) 35 0.06 0.96 5 1 47 0.004 0.36 4 1
Sol. Mn (Hypo) 35 0.22 0.90 3 1 46 0.15 0.57 4 2
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