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Abstract

NASA’s Planetary Data System (PDS)* contains data collected by missions to explore our solar system. This includes Lunar

Reconnaissance Orbiter (LRO), which has collected as much data as all other planetary missions combined. Currently, PDS

offers no way to search lunar images based on content. Working with the PDS Cartography and Imaging Sciences Node (IMG),

we develop LROCNet, a deep learning (DL) classifier for imagery from LRO’s Narrow Angle Cameras (NACs). Data we get

from NACs are 5km swaths, at nominal orbit, so we perform a saliency detection step to find surface features of interest. A

detector developed for Mars HiRISE (Wagstaff et al, 2021) worked well for our purposes, after updating based on LROC image

resolution. We use this detector to create a set of image chipouts (small cutouts) from the larger image, sampling the lunar

globe. The chipouts are used to train LROCNet. We select classes of interest based on what is visible at the NAC resolution,

consulting with scientists and performing a literature review. Initially, we had 7 classes: fresh crater, old crater, overlapping

craters, irregular mare patches, rockfalls and landfalls, of scientific interest, and none. Using the Zooniverse platform, we set

up a labeling tool and labeled 5,000 images. We found that fresh crater made up 11% of the data, old crater 18%, with the

vast majority none. Due to limited examples of the other classes, we reduced our initial class set to: fresh crater (with impact

ejecta), old crater, and none. We divided the images into train/validation/test set making sure no image swaths span multiple

sets and fine tuned pre-trained DL models. VGG-11, a standard DL model, gives the best performance on the validation set,

with an overall accuracy of 82% on the test set. We had 83% label agreement in our human label study; labeling was difficult

as there is no clear class boundary. Our DL model accuracy is similar to human labelers. 64% of fresh craters, 80% old craters,

and 86% of the none class are classified correctly. Predictions from this model will be integrated with IMG’s Atlas, allowing

users to interactively search classes of interest. *https://pds-imaging.jpl.nasa.gov Copyright © 2022, California Institute of

Technology. U.S. Government sponsorship acknowledged.
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LROCNet: Detecting Impact Ejecta and Older Craters on the
Lunar Surface

Emily Dunkel1, Steven Lu1, Kevin Grimes1, James McAuley1, and Kiri Wagsta�1

1Jet Propulsion Laboratory, California Institute of Technology ∗

Abstract

We train a deep learning model to classify images of the moon’s surface obtained by the Lunar Reconnais-
sance Orbiter. Our model is able to detect craters, and distinguish fresh from old craters based on the presence
of material spread outward by the impact that caused the crater. �e model is more likely to miss a fresh crater
than an old crater, but the overall accuracy is almost as good as a human. We plan to deploy our model on
the NASA Planetary Data System, which is publicly available, to allow users to search lunar imagery based on
content.

Figure 1: AGU Fall Meeting 2022 iPoster

1 Objective
NASA’s Planetary Data System [1] contains data collected by missions to explore our solar system. �is in-
cludes the Lunar Reconnaissance Orbiter (LRO), which has collected as much data as all other planetary missions
combined.

Data is made publicly available by NASA/GSFC/Arizona State University [2][3][4][5][6].

∗©2022 California Institute of Technology. Government sponsorship acknowledged.
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Figure 2: Rendering of LRO in Orbit (Credit: NASA/GSFC/ASU [7])

In the PDS Image Altas, you can search for lunar imagery based on things such as latitude, longitude, and time,
but you cannot directly search for say, images with craters. �us, we develop LROCNet, a deep learning clas-
si�er for imagery from LRO’s Narrow Angle Cameras. Classi�cations from LROCNet will help us �nd images
automatically that have new and old craters; we no longer need to manually search though the data.

Figure 3: PDS Image Atlas Website [1]

Our approach to LROCNet builds on similar capabilities already created for Mars images at the PDS Imaging
Node. Please see Steven Lu’s poster [8] to learn about models built using Mars rover data.

2 LRO Data
Data we get from LRO’s Narrow Angle Cameras are 5-km swaths, at nominal orbit, so we perform a saliency
detection step to �nd surface features of interest. A detector developed for Mars HiRISE [9] worked well for our
purposes, a�er updating based on LROC image resolution. We use this detector to create a set of image chipouts
(small cutouts) from the larger image, sampling the lunar globe. �ese chipouts are used to train LROCNet.
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Figure 4: Example LROC Image (Credit: NASA/GSF/ASU) and Saliency Map

Figure 5: Example Chipouts from Larger Image. �ese are used to train LROCNet.

3 Classes and Training
We train a convolutional neural network (CNN) to predict the class given an image.

Figure 6: Class of Image is Predicted by LROCNet
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We select classes based on what is visible at our image resolution and consultation with scientists. Initially, we
have 7 classes (please see LROC Labelling Guide.pdf supplementary �le for more detail)[10][11].

We labeled 5,000 images using the Zooniverse.org platform [12]. “Fresh crater” make up 11% of the data, “old
crater” 18%, with the vast majority “none”. Due to limited examples of the other classes, we reduce our initial
class set to these three.

We randomly divide images into train (73%), validation (12%), and test (16%) sets making sure there is no overlap
of large image swaths between sets. We have made our data set publicly available on Zenodo [10].

We use PyTorch [13] to �ne tune pre-trained Deep Learning models: Inception [14], VGG11 and VGG16 [15].
Data Augmentation is applied to the training set only and includes �ips, rotation, brightness adjustment, and
weighted sampling of classes (so we have an equal number of all three classes). We found VGG11 to perform best
on the validation set data.

We show our training curve below:

Figure 7: Training Curve

�ere is a gap between the validation and training set, which is because we weight balance our classes for the
training but not for the validation set, otherwise the network will be weighted toward the “none” class. If we do
not weight the classes in the training set, this gap disappears, as expected:

Figure 8: Training Curve Without Class Weighting
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4 Classi�er Calibration
A�er training, we calibrate LROCNet so that the predicted probabilities are closer to the true probabilities. We
calibrate using the following methods [16]:

• Temperature Scaling

• Bias-Corrected Temperature Scaling

• Vector Scaling

• Matrix Scaling

We use the validation set logits to obtain the optimal calibration parameters. Since we are most concerned with
�nding fresh and old craters, we up-weight these classes in our validation set so our classes are balanced, when
obtaining the optimal calibration parameters.

Matrix scaling works the best, and gives an accuracy of 80% on the validation set:

Figure 9: Confusion Matrix for Validation Set

�e empirical probability versus predicted probability is shown below:

Figure 10: Empirical vs Predicted Probability for Validation Set
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5 Classi�er Results
In our o�cial abstract (please see LROCNet Abstract EDunkel.pdf supplementary �le), we showed test set results
for our uncalibrated model. Here we show results a�er calibration with matrix scaling.

We show accuracy for each class in the test set as a function of absention rate (how many examples we throw
out):

Figure 11: Class Accuracy versus Abstention Rate for Test Set

At a con�dence of 0.8 (black circle in the graph), we see that we have 80% or higher accuracy for each class.
When our model is deployed, we will only show examples at or above this con�dence level.

Looking at accuracy versus abstention for training, validation, and test sets, we see these sets have similar per-
formance:

Figure 12: Dataset Accuracy versus Abstention Rate

At a con�dence level of 0.8, we have over 90% accuracy for our datasets, and at 0 abstention rate, we still have
over 80% accuracy.

We had 83% label agreement in our human label study; labeling was di�cult as there is no clear class boundary.
Our LROCNet model accuracy is similar to human labelers.

6 Plans and Acknowledgements
We are currently working to integrate LROCNet into the PDS Image Atlas, adding the capability of searching
lunar imagery for fresh and old craters. �e LROCNet prediction results will be delivered in PDS4 bundles
[17, 18, 19]. Please Sara Bond’s poster [20] for more details.
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(2/10) Used Zooniverse for Labelling

https://www.zooniverse.org/

LROC Imagery made publicly 
available by: NASA/GSFC/ASU
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• We started with 7 classes:
1. Fresh crater -- with impact ejecta, no size constraint
2. Old crater
3. Multiple overlapping old craters
4. Irregular Mare Patches
5. Rockfalls and landslides
6. Of Scientific Interest – select very rarely
7. None

(3/10) LROC Classes
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(4/10) Fresh Crater (with impact ejecta) Examples

4

• Technically, the term impact ejecta 
means the material that is blasted out 
from the impact of a meteorite or the 
eruption of a volcano

• In this labeling setting, however, we also 
include the situation when the impact 
clears away overlying dust, exposing 
underlying surface

• Craters with impact ejecta are new, 
since there hasn’t been enough time for 
the dust to clear
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(5/10) Old Crater Examples • After craters have been around a while, their impact 
ejecta clears

• Old craters are sometimes referred to as 
degraded craters

• For our labeling purposes, we have more stringent 
requirements than just being a crater: 

• Crater diameter must be >= 1/10 * width of image
• Size of green bar

• Also, the rim must be visible for ¾ the circumference

• So, if the crater is too degraded, we’ll label it “None” 
instead of “Old Crater”

• We just want to capture the larger craters w/ 
visible rings
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(6/10) Multiple Overlapping Old Craters Example

6

• More than one old crater overlapping in 
image with diameter >= 1/10*width of 
image

• At least two of the overlapping 
craters must fit the diameter 
requirement

• These images would also be classified 
as “old crater”
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(7/10) Irregular Mare Patches Examples

7

• Pronounced like: mare – ay

• Thought to be volcanic deposits!

• The moon has no active volcanoes, so 
these are evidence from long ago

Credit: NASA/GSFC/ASU 
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(8/10) Rockfalls and Landslides Class

8

• These aren’t very likely, but if they are there, we 
want to label them!

• The arrow points to a boulder track

• For work on automated detection of these, 
please see: Valentin Bickel et al, "Automated 
Detection of Lunar Rockfalls using a 
Convolutional Neural Network", Trans on 
GeoScience and Remote Sensing, Vol 57, June 
2019Credit: NASA/GSFC/ASU 
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(9/10) “Of Scientific Interest” Class

9

• Can add comments in 
Zooniverse labeler by 
selecting “Done & Talk” 
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(10/10) “None” Class Examples
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LROCNet: Detecting Impact Ejecta and Older Craters on the Lunar Surface 
 

Emily Dunkel1, Steven Lu1, Kevin Grimes1, Michael McAuley1, Kiri Wagstaff1 

1Jet Propulsion Laboratory, California Institute of Technology 
 
 
NASA’s Planetary Data System (PDS)* contains data collected by missions to explore our solar 
system. This includes Lunar Reconnaissance Orbiter (LRO), which has collected as much data as 
all other planetary missions combined. Currently, PDS offers no way to search lunar images 
based on content. Working with the PDS Cartography and Imaging Sciences Node (IMG), we 
develop LROCNet, a deep learning (DL) classifier for imagery from LRO’s Narrow Angle Cameras 
(NACs). 
 
Data we get from NACs are 5-km swaths, at nominal orbit, so we perform a saliency detection 
step to find surface features of interest. A detector developed for Mars HiRISE (Wagstaff et al.) 
worked well for our purposes, after updating based on LROC image resolution.  We use this 
detector to create a set of image chipouts (small cutouts) from the larger image, sampling the 
lunar globe. The chipouts are used to train LROCNet. 
 
We select classes of interest based on what is visible at the NAC resolution, consulting with 
scientists and performing a literature review. Initially, we had 7 classes: fresh crater, old crater, 
overlapping craters, irregular mare patches, rockfalls and landfalls, of scientific interest, and 
none. Using the Zooniverse platform, we set up a labeling tool and labeled 5,000 images. We 
found that fresh crater made up 11% of the data, old crater 18%, with the vast majority none. 
Due to limited examples of the other classes, we reduced our initial class set to: fresh crater 
(with impact ejecta), old crater, and none. 
 
We divided the images into train/validation/test sets making sure no image swaths span 
multiple sets. We fine tune pre-trained DL models. VGG-11, a standard DL model, gives the best 
performance on the validation set, with an overall accuracy of 82% on the test set. We had 83% 
label agreement in our human label study; labeling was difficult as there is no clear class 
boundary. Our DL model accuracy is similar to human labelers. In the figure, we show 
abstention rate, example chipouts, and test set confusion matrix; 64% of fresh craters, 80% old 
craters, and 86% of the none class are classified correctly. Predictions from this model will be 
integrated with IMG’s Atlas, allowing users to interactively search classes of interest. 
 
*https://pds-imaging.jpl.nasa.gov 
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