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Abstract

The southern Lake Michigan region of the United States, home to Chicago, Milwaukee, and other densely populated Midwestern

cities, frequently experiences high pollutant episodes with unevenly distributed exposure and health burdens. Using the two-

way coupled Weather Research Forecast and Community Multiscale Air Quality Model (WRF-CMAQ), we investigate criteria

pollutants over a southern Lake Michigan domain using 1.3 and 4 km resolution hindcast simulations. We assess WRF-

CMAQ’s performance using data from the National Climate Data Center and EPA Air Quality System. Our 1.3 km simulation

slightly improves on the 4 km simulation’s meteorological and chemical performance while also resolving key details in areas

of high exposure and impact, i.e., urban environments. At 1.3 km, we find that most air quality-relevant meteorological

components of WRF-CMAQ perform at or above community benchmarks. WRF-CMAQ’s chemical performance also largely

meets community standards, with substantial nuance depending on the performance metric and component assessed. For

example, hourly simulated NO2 and O3 are highly correlated with observations (r > 0.6) while PM2.5 is less so (r = 0.4).

Similarly, hourly simulated NO2 and PM2.5 have low biases (<10%), whereas O3 biases are larger (<30%). Simulated spatial

pollutant patterns show distinct urban-rural footprints, with urban NO2 and PM2.5 20-60% higher than rural, and urban

O3 6% lower. We use our 1.3 km simulations to resolve high-pollution areas within individual urban neighborhoods and

characterize changes in O3 regimes across tight spatial gradients. Our findings demonstrate both the benefits and limitations

of high-resolution simulations, particularly over urban settings.
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Key Points: 13 

• We perform nested air quality simulations over the Midwestern US, with the inner 14 
domain resolution at the neighborhood-scale (1.3 km) 15 

• NO2 and PM2.5 hotspots are simulated to be adjacent to major roadways, with substantial 16 
pollutant heterogeneity found within urban settings  17 

• Simulated ozone regime (VOC:NOx ratio) found to vary seasonally and over tight spatial 18 
gradients     19 
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Abstract 21 

The southern Lake Michigan region of the United States, home to Chicago, Milwaukee, and 22 
other densely populated Midwestern cities, frequently experiences high pollutant episodes with 23 
unevenly distributed exposure and health burdens. Using the two-way coupled Weather Research 24 
Forecast and Community Multiscale Air Quality Model (WRF-CMAQ), we investigate criteria 25 
pollutants over a southern Lake Michigan domain using 1.3 and 4 km resolution hindcast 26 
simulations. We assess WRF-CMAQ’s performance using data from the National Climate Data 27 
Center and EPA Air Quality System. Our 1.3 km simulation slightly improves on the 4 km 28 
simulation’s meteorological and chemical performance while also resolving key details in areas 29 
of high exposure and impact, i.e., urban environments. At 1.3 km, we find that most air quality-30 
relevant meteorological components of WRF-CMAQ perform at or above community 31 
benchmarks. WRF-CMAQ’s chemical performance also largely meets community standards, 32 
with substantial nuance depending on the performance metric and component assessed. For 33 
example, hourly simulated NO2 and O3 are highly correlated with observations (r > 0.6) while 34 
PM2.5 is less so (r = 0.4). Similarly, hourly simulated NO2 and PM2.5 have low biases (<10%), 35 
whereas O3 biases are larger (>30%). Simulated spatial pollutant patterns show distinct urban-36 
rural footprints, with urban NO2 and PM2.5 20-60% higher than rural, and urban O3 6% lower. 37 
We use our 1.3 km simulations to resolve high-pollution areas within individual urban 38 
neighborhoods and characterize changes in O3 regimes across tight spatial gradients. Our 39 
findings demonstrate both the benefits and limitations of high-resolution simulations, particularly 40 
over urban settings. 41 

1 Introduction 42 

Exposure to poor air quality in the U.S. has been found to exacerbate respiratory diseases (Kurt 43 
et al., 2016), drive disparate health burdens in racial minority populations (Jbaily et al., 2022; 44 
Tessum et al., 2021), and contribute to ~100,000 premature deaths annually (Goodkind et al., 45 
2019). Given the substantial public health burden associated with exposure to poor air quality, it 46 
is essential to resolve pollutant exposure at high spatiotemporal resolutions – particularly for use 47 
in the design of amelioration and abatement strategies. Indeed, pollutant exposure in high 48 
population settings, i.e., urban environments, can vary widely, which can contribute to disparities 49 
in health outcomes on a neighborhood-by-neighborhood basis across individual cities (Alexeeff 50 
et al., 2018; Goodkind et al., 2019; O’Leary & Lemke, 2014; Southerland et al., 2021). 51 
Determining the relationship between heterogeneous pollutant exposure and disparate health 52 
effects is challenging given observational constraints. For example, regulatory-grade air quality 53 
monitoring stations are relatively sparse and therefore spatial coverage is limited, particularly in 54 
urban settings. Observing platforms that do have better spatial coverage, e.g., remote sensed 55 
satellite observations, often have temporal limitations such as making only one observation a day 56 
in the case of polar orbiters (Goldberg et al., 2021). Given the need to resolve pollutants across 57 
impact-relevant scales (Clark et al., 2022), researchers often turn to physics- and chemistry-58 
based Chemical Transport Models (CTMs) which allow for the spatial heterogeneity of 59 
pollutants to be estimated at high temporal resolutions in areas that are otherwise unmonitored 60 
(Hu et al., 2019; Southerland et al., 2021).  61 

State-of-the-science CTMs resolve pollutants at geospatially and temporally continuous scales. 62 
For example, the Community Multiscale Air Quality modeling system (CMAQ; Byun & Schere, 63 
2006) was developed by the U.S. Environmental Protection Agency (EPA) to study the complex 64 
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interactions of pollutants and meteorology and increase our understanding of atmospheric 65 
processes. Over time, the spatial resolution of CTMs like CMAQ have increased in resolution as 66 
computational costs decrease and spatially-defined inputs are resolved at finer scales (Gan et al., 67 
2016). Higher resolution CTM studies have the potential to simulate more accurate meteorology, 68 
emissions, and pollutant concentrations than coarser resolution models (Fountoukis et al., 2013; 69 
Gan et al., 2016; Torres‐Vazquez et al., 2022). However, some simulated meteorological and 70 
chemical variables may show lower model performance at finer resolutions because of 71 
incomplete characterizations of complex terrain and limitations in the planetary boundary layer 72 
formation (Tran et al., 2018; Zhang et al., 2014a). Notably, higher resolution studies benefit 73 
epidemiological studies which identify the health impacts at more health-relevant scales (Jiang 74 
and Yoo, 2018; Thompson et al., 2014; Southerland et al., 2022). 75 

Here, given the potential benefits of high resolution CTM studies, i.e., resolved pollutant 76 
heterogeneities and hotspots over urban settings and higher-fidelity hindcast simulations, we 77 
utilize WRF-CMAQ to characterize pollutant concentrations over a southern Lake Michigan 78 
domain, a region in the central midwestern U.S., which includes the major populations centers of 79 
Chicago, IL and Milwaukee, WI. Previous modeling studies have focused on this region due to 80 
the atmospheric complexities associated with Lake Michigan and high O3 pollution in the region 81 
(Abdi‐Oskouei et al., 2020; Doak et al., 2021; Dye et al., 1995; Foley et al., 2011). By and large, 82 
air quality in this region has been improving due to emission controls and the outsourcing of 83 
industry and manufacturing (Jing et al., 2014, 2017, IEPA, 2019). However, pockets of poor air 84 
quality persist, particularly in and downwind of urban centers like Chicago, which has been in 85 
EPA 8-hour O3 National Ambient Air Quality Standards (NAAQS) non-attainment status since 86 
2004 (EPA, 2021).  87 

From a regional perspective, poor air quality in Midwestern summers is often associated with 88 
warm stagnant air masses (Jing et al., 2017; Schnell & Prather, 2017; Tai et al., 2010), while 89 
near-surface winter pollution is largely restricted to particulate matter accumulations associated 90 
with temperature inversions (Hand et al., 2012). However, at local scales, local geography, 91 
meteorology, and emissions often play a synergistic role. For example, in Chicago, Illinois, the 92 
U.S. Midwest’s most populated city, the coastal geography, micro-meteorology, and high-93 
emitting urban footprint combine to create an active atmospheric regime that often facilitates 94 
accumulation of primary pollutants and/or the precursors of secondary pollutants. Indeed, 95 
Chicago’s O3 NAAQS non-attainment status is a direct result of interacting emissions, 96 
geography, and meteorology – particularly the interaction of precursor emissions with Lake 97 
Michigan’s lake breeze (Abdi‐Oskouei et al., 2020; Doak et al., 2021; Dye et al., 1995; Foley et 98 
al., 2011). Because the formation of O3 is generally dependent on the ratio of precursor 99 
emissions, i.e., nitrogen oxides (NOx) and volatile organic compounds (VOCs), the EPA has 100 
restricted NOx emissions (EPA, 2019). However, previous studies have found that Chicago is in 101 
a transitional or VOC-limited regime (Jin et al., 2017; Jing et al., 2014; Lamsal et al., 2015; Lin 102 
et al., 2010) – suggesting a limitation to the efficacy of emissions controls that only consider 103 
NOx and do not also reduce VOCs. Further, studies also indicate that O3, a secondary pollutant, 104 
often forms over Lake Michigan, and is transported ashore via the lake breeze circulation (Abdi‐105 
Oskouei et al., 2020; Doak et al., 2021; Dye et al., 1995; Foley et al., 2011). 106 

Similar to O3, the concentration of NO2 also depends on meteorological factors such as winds 107 
and temperature (Harkey et al., 2015). In satellite analyses, Chicago appears as a large source of 108 
NO2 pollution to the greater Midwest (Goldberg et al., 2021), a factor that contributes to the 109 
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formation and elevated concentration of downwind/rural O3. In addition, NO2 can be a precursor 110 
to PM2.5 formation through the oxidation of NO2 to nitrate. While Chicago is currently in 111 
compliance with PM2.5 standards, PM2.5 is elevated in comparison with rural areas due to the 112 
confluence of transportation, energy generation, and industrial emissions, as well as atmospheric 113 
transport, and secondary formation processes (Zhang et al., 2014b). Given all of the above 114 
complexities, the fine-scale characterization of Chicagoland air quality is complicated. Criteria 115 
pollutants such as NO2, O3 and PM2.5 are all intricately linked through their emission sources, 116 
transport, accumulation, and secondary reactions. All of these factors speak to the need to 117 
resolve highly interactive geography, chemistry, and meteorology to accurately characterize the 118 
region’s air quality.  119 

Given the importance of meteorological conditions to air quality, particularly local-scale 120 
conditions in Chicago, we use a high-spatial resolution numerical model that includes 121 
atmospheric meteorology, chemistry, and components of their interactions and feedbacks, i.e., 122 
the two way-coupled Weather Research and Forecasting-Community Multiscale Air Quality 123 
modeling system (WRF-CMAQ). Neighborhood-scale simulations are made possible by the 124 
Lake Michigan Air Director’s Consortium (LADCO) spatial surrogate dataset (LADCO, 2022), 125 
which defines the mapping of regional and county-level emission information. LADCO spatial 126 
surrogates are used in the Sparse Matrix Operating Kernel of Emissions (SMOKE) processing 127 
system (B.H. Baek & Seppanen, 2018) with the U.S. EPA Beta modeling platform (Eyth et al., 128 
2019) to produce emission data for our 1.3 km grid. We use this emissions dataset in WRF-129 
CMAQ to simulate 4 months representative of the 4 meteorological seasons and characterize 130 
pollutant concentrations over a central-Midwestern and Chicago-centric domain. 131 

2 Methods 132 

2.1 CTM Simulations and Domains 133 

We performed CTM simulations using the two-way coupled Community Multi-scale Air Quality 134 
(CMAQ, v5.2; (Byun & Schere, 2006)) and Weather Research and Forecasting (WRF, v3.8; 135 
(Skamarock et al., 2008)) modeling system (WRF-CMAQ; (Wong et al., 2012)). The two-way 136 
configuration of WRF-CMAQ allows feedbacks between simulated aerosols and WRF’s 137 
shortwave radiation scheme. To perform WRF-CMAQ simulations, we follow the methodology 138 
of Wong et al. (2012): (1) we produce dynamically downscaled meteorology with stand-alone 139 
WRF simulations, (2) we then use the stand-alone WRF output to create meteorologically-140 
informed emissions data using the Sparse Matrix Operating Kernel of Emissions (SMOKE), and 141 
lastly (3) we run the coupled WRF-CMAQ model, incorporating the meteorologically-informed 142 
SMOKE emissions data. 143 

To generate boundary and initial conditions and facilitate the production of meteorologically-144 
informed emissions data, we first perform a stand-alone WRF simulation to generate three-145 
dimensional meteorology in nested domains with 12 km (CONUS; d01), 4 km (Midwest; d02), 146 
and 1.3 km (southern Lake Michigan; d03) resolutions (Figure 1a). We use a 10-day spin-up 147 
period and simulate four months – August 2018, October 2018, January 2019, and April 2019 – 148 
using a 60, 20, and 6-second timestep for the 12, 4, and 1.3 km domains respectively. To allow 149 
soil moisture and soil temperature variables to reach a state of statistical equilibrium with 150 
observational constraints, we turn on the soil moisture initialization option during the 10 day  151 
spin-up (Pleim & Xiu, 2003).  We run WRF with 35 vertical layers from the surface to 30 hPa 152 
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Asymmetric Convective Model version 2 (ACM2) for the planetary boundary layer (Pleim, 173 
2007), and the Pleim-Xiu land surface model (Xiu & Pleim, 2001) with soil moisture and 174 
temperature nudging (Pleim & Gilliam, 2009; Pleim & Xiu, 2003). We use the Rapid Radiative 175 
Transfer Model for GCMs (RRTMG; Clough et al., 2005) for both our shortwave and longwave 176 
radiation schemes.  177 

To create 4 km and 1.3 km emissions inputs for use in WRF-CMAQ, we processed the EPA’s 178 
2016 Beta emissions modeling platform with the SMOKE software. We process the 2016v7.2 179 
National Emissions Inventory (Eyth et al., 2019) using the 2016 SMOKE Beta Platform, relying 180 
on 4 km spatial surrogates provided by CMAS (CMAS, 2022) and 1.3 km spatial surrogates 181 
provided by LADCO (LADCO, 2022). The spatial surrogates map county-level emissions 182 
inventories to model grid cells by using the geographic attributes of the modeling area (such as 183 
population, industry, and economic activity). As meteorology is a key factor for vehicle 184 
emissions (e.g., cold starts and hoteling), we integrate the stand-alone WRF-simulated 185 
meteorology into the MOVES version developed for the 2016 beta platform (EPA, 2015). We 186 
use SMOKE to create emissions for the on-road, point, and nonpoint sectors. We calculate 187 
biogenic emissions (BEIS), lightning NOx emissions, and windblown dust “inline” during the 188 
coupled WRF-CMAQ simulation.   189 

To ultimately simulate atmospheric pollutants, we run the two-way coupled version of WRF-190 
CMAQ. We first run coupled WRF-CMAQ over the 4 km domain using the meteorological 191 
boundary conditions from the 12 km stand-alone WRF simulation, nudging from NARR (3-192 
hourly resolution) and chemical boundary and initial conditions from CAM-Chem (Emmons et 193 
al., 2020; The CESM2 Development Team, 2019). We run the coupled 4 km simulation with an 194 
18-second time step and 10-minute radiation time step, with CMAQ coupled every 8 WRF steps. 195 
To approach the neighborhood-scale, we dynamically downscale the 4 km coupled WRF-CMAQ 196 
simulation to provide meteorological and chemical boundary conditions for the nested 1.33 km 197 
simulation. For the 1.33 km WRF-CMAQ simulation, we run WRF with a 6 second time step 198 
and 5-minute radiation time step, with CMAQ coupled every 8 WRF steps. Both the 4 km and 199 
1.3 km simulations integrate the Carbon Bond Mechanism version 6 and aerosol module version 200 
6 with aqueous chemistry (cb6r3_ae6_aq) to create atmospheric constituents. 201 

3 Results 202 

To present our two-way coupled WRF-CMAQ simulations and highlight their ability to resolve 203 
neighborhood-scale air quality, we begin with evaluations of the model’s domain-wide 204 
meteorological and chemical performance across temporal scales. We then highlight the utility of 205 
simulations that resolve air quality within individual neighborhoods, by conducting an in-depth 206 
analysis of intra-urban air quality by characterizing pollutant heterogeneities across Chicago, IL 207 
and their interactions with fine-scale meteorological features, local infrastructure, emissions 208 
sources, and the temporal distribution of emissions. Lastly, we assess the benefits, and in some 209 
cases disbenefits, of higher spatial resolution for model-observation fidelity performance. 210 

We begin by comparing model-simulated air quality and metrological data from our highest 211 
resolution 1.3 km domain (d03; Figure 1) to ground-based observations. We evaluate model 212 
performance for each simulated month. Our air quality performance evaluation primarily focuses 213 
on O3, NO2, and PM2.5, although other EPA criteria pollutants (i.e., CO and SO2) are also 214 
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discussed. We evaluate model fidelity to meteorological and air pollutant observations using the 215 
following performance metrics: mean observation (μd), mean prediction (μp), normalized mean 216 
bias (NMB), normalized mean error (NME), correlation coefficients (r), mean error (ME), mean 217 
bias (MB), and root mean squared error (RMSE) as defined in Table S1. By normalizing model-218 
simulated variables, the statistical performance of our simulations can be compared to similar 219 
model simulations performed over locations with different meteorology, emission profiles, and 220 
chemical regimes. 221 

3.1 WRF-CMAQ Meteorological Performance 222 

To assess the performance of the two-way coupled WRF-CMAQ meteorological output over the 223 
1.3 km domain, we compare model simulated variables to ground-based measurements of 224 
meteorological conditions. We use hourly observational data from METAR stations aggregated 225 
by the National Climate Data Center (NCDC) (Figure 1b). We focus on 2-m temperature (T2) 226 
and relative humidity (RH) at 2 m, and wind speed (WS) and wind direction (WD) at 10 m, each 227 
of which is important to the fate and transport of atmospheric pollutants. We evaluated model 228 
fidelity using the performance recommendations outlined in Table S2 (Emery et al. 2001). 229 
Model-observation comparisons occur where WRF grid cells contain NCDC stations (Figure 1b). 230 
The 1.3 km domain contains 10 NCDC stations, which allows for model-observation comparison 231 
and assessment at 0.01% of the simulation grid cells (90,720 total). We also assess the model’s 232 
meteorological performance within Chicago city limits, which has a single NCDC station. 233 

In Table 1, we summarize the model’s 1.3 km domain (d03) hourly meteorological performance 234 
against observations. For each month, WRF-CMAQ simulated T2, WD, and WS meet the 235 
correlation performance criteria suggested by Emery et al., 2001 (Table S2). Emery et al. (2001) 236 
do not make RH performance recommendations. WRF performance is best when simulating T2; 237 
model-station agreements have low biases and errors, though January 2019 and August 2018 238 
have slightly higher biases than Emery et al.’s suggested benchmark (Table 1). Model 239 
simulations have a consistent warm bias across seasons, with the highest biases in August 2018 240 
and January 2019 (MB = 0.8 °C), and highest mean errors in January 2019 and April 2019 (ME = 241 
1.9 °C). Simulated RH is also highly correlated with observations (r > 0.70), with the highest 242 
bias and error in April 2019 (MB = 5.1 %, ME = 11.3 %). Simulated wind speeds meet MB 243 
benchmark criteria in January 2019 and April 2019, while missing the correlation benchmark 244 
when the 4-months are averaged (i.e., annualized). Simulated wind speeds are biased low in each 245 
season. Our lowest WRF performance is shown by WD, which only meets suggested MB criteria 246 
for April 2019. Model simulated WD and station measurements are highly correlated (r > 0.5), 247 
except for August 2018 (r = 0.3). The simulation is wetter (MB < 6%) and warmer (MB < 0.8 °C) 248 
than observations for all months, except for August 2018, where RH is biased low (MB = -5.7%). 249 

Within Chicago city limits, there is one NCDC meteorological station, located ~16 km inland 250 
from Lake Michigan at O’Hare International Airport on the northwestern edge of the city 251 
(denoted by a triangle in Figure 1b). Model performance in comparison to the O’Hare 252 
meteorological station is shown in Table S3. Similar to the full 1.3 km domain comparison, 253 
meteorology in the model grid cell that contains O’Hare shows high correlations with NCDC 254 
observations for T2, WS, and RH. Also, like the full domain comparison, WRF-simulated T2 has 255 
the highest correlation with observations, while WD correlations are lowest. The ME and RMSE  256 

  257 
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are higher for the O’Hare grid cell for WS and RH than for the full 1.3 km domain comparison, 258 
but lower for T2 and WD. Unlike the full 1.3 km domain, simulated T2 is cooler than 259 
observations at O’Hare (-0.2 °C), though the RH biases are similar to the domain average (Table 260 
S3). 261 

Table 1 Comparison of two-way coupled WRF-CMAQ simulated hourly meteorological 262 
variables with NCDC observations for 1.3 km (d03) simulations. The average observed value is 263 
noted as μd, while the predicted value is noted as μp. 264 
 265 
Var Month μd μp MB ME RMSE r 

T2  (°C) 08/2018 23.2 24.0 0.8* 1.8 2.4 0.9 
10/2018 10.8 11.1 0.3 1.8 2.3 0.9 
01/2019 -5.8 -5.0 0.8* 1.9 2.5 1.0 
04/2019 9.2 9.2 0.0 1.9 2.5 0.9 
Average 9.4 9.8 0.5 1.9 2.4 0.9 

RH (%) 08/2018 76.6 71.0 -5.7 11.1 14.4 0.7 
10/2018 74.8 76.6 1.9 12.2 15.4 0.7 
01/2019 74.6 78.6 4.0 9.6 11.7 0.7 
04/2019 66.1 71.9 5.8 12.4 16.1 0.8 
Average 73.0 74.5 1.5 11.3 14.4 0.7 

WS 
(m/s) 

08/2018 6.9 6.1 -0.7* 2.9 3.7* 0.6 
10/2018 8.8 7.3 -1.5* 3.2 4.1* 0.7 
01/2019 10.2 10.1 -0.1 3.4 4.7* 0.7 
04/2019 10.6 8.3 -2.3* 3.8 4.8* 0.7 
Average 9.1 8.0 6.7 22.3 35.4 0.6 

WD  (°) 08/2018 166.0 196.7 30.7* 78.8* 127.8 0.3 
10/2018 190.6 207.7 17.1* 53.6* 102.2 0.5 
01/2019 192.8 208.5 15.7* 41.4* 89.5 0.6 
04/2019 166.8 171.0 4.3 52.2* 99.4 0.6 
Average 179.1 196.0 17.0 56.5 104.7 0.5 

*Indicates performance outside of Emery et al. (2001) suggested benchmarks (Table S2). 266 
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maximum (Figure 2). We calculate the annualized mean by averaging across our simulated 286 
months of August 2018, October 2018, January 2019, and April 2019. In the following, we 287 
provide quantitative assessments of each criteria pollutant across different temporal periods to 288 
provide context for model performance on both fine (hourly, daily, and daily maximum) and 289 
coarse scales (monthly and annual). In general, the model and observations have better 290 
agreement with longer time-averaging slices, e.g., lower biases and errors. To provide greater 291 
context for our model performance, we follow EPA recommendations (Dennis et al., 2010) and 292 
compare the performance of WRF-CMAQ over our 1.3 km domain to previously published CTM 293 
studies (Table S4). Our comparisons use fine-scale, domain-agnostic studies (<4 km horizontal 294 
resolution), or coarser-scale (>4 km horizontal resolution) studies focused on Chicago, the 295 
Midwest, or the Great Lakes region, i.e., studies with similar model domains. We select studies 296 
that use the same statistical metrics as in Table S1, simulate time periods after the year 2000, and 297 
integrate a similar CTM (WRF-CMAQ or WRF-Chem).  We do not focus on other benchmark 298 
studies that use coarser and/or older versions of CTMs or emissions models (Simon et al., 2012; 299 
Emery et al., 2016). 300 

Table 2 WRF-CMAQ performance metrics for hourly simulated 1.3 km (d03) pollutants as 301 
compared to EPA AQS station observations. The average observed value is noted as μd, while 302 
the predicted value is noted as μp. 303 
 304 

      1.3 km Domain Performance 
Var Month μd μp NMB% NME% r 
NO2 08/18 10.38 10.69 2.98 55.76 0.59 

10/18 10.76 11.05 2.64 66.08 0.47 
01/19 13.13 9.59 -26.95 45.45 0.62 
04/19 11.19 10.57 -5.56 51.21 0.63 
Average 11.37 10.48 -6.72 54.62 0.57 

O3 08/18 30.28 40.25 32.92 40.04 0.69 
10/18 20.38 32.12 57.66 62.55 0.58 
01/19 24.61 31.47 27.88 34.10 0.65 
04/19 36.33 47.35 30.35 34.46 0.61 
Average 27.90 37.80 37.20 42.79 0.63 

PM2.5 08/18 12.12 7.49 -38.21 54.61 0.25 
10/18 6.78 7.89 16.43 67.18 0.35 
01/19 9.42 9.83 4.39 50.87 0.52 
04/19 7.60 6.26 -17.62 53.94 0.51 
Average 8.98 7.87 -8.76 56.65 0.41 

SO2 08/18 0.76 1.41 87.23 169.66 0.21 
10/18 0.83 1.13 37.14 139.52 0.11 
01/19 0.99 1.18 19.68 110.15 0.21 
04/19 0.79 1.25 57.57 152.94 0.12 
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Average 0.76 0.96 25.33 116.39 0.18 
CO 08/18 250.72 204.53 -18.42 43.25 0.24 

10/18 229.61 188.81 -17.77 46.99 0.31 
01/19 284.08 186.90 -34.21 40.55 0.46 
04/19 281.43 183.51 -34.79 44.70 0.40 
Average 261.46 190.94 -26.30 43.87 0.35 

 305 
Of all pollutants, we find that WRF-CMAQ-simulated NO2 is closest to the observations with 306 
low NMB and high correlations across months (Figure 2). The annualized average hourly 307 
correlation of NO2 is high (r = 0.57; Figure 2, Table 2), while its bias is low (NMB < -7%; Figure 308 
2, Table 2). NO2 model-observation correlations are generally greater than 0.6 regardless of 309 
temporal assessment scale, except for October 2018 (Figure 2). We find slight high biases in 310 
model simulated hourly NO2 in August (NMB = 3%) and October 2018 (NMB = 3%) and low 311 
biases in January (NMB = -27%) and April 2019 (NMB = -6%) (Table 2). When compared to 312 
previously published WRF-CMAQ studies with different domains/resolutions, our NO2 313 
simulation performance exceeds NMBs and correlations reported by (Bickford et al., 2014; 314 
Harkey et al., 2015; Vijayaraghavan et al., 2009).  315 

Model-simulated O3 is high relative to observations, with limited variation across seasons 316 
(Figure 2 and Table 2). We find that the annualized average correlation of simulated hourly O3 is 317 
high (r = 0.6), but that the annualized NMB (38%) and NME (42%) are high. The highest NME 318 
for O3 occurs in our October 2018 simulation (58%), which corresponds with the highest NME 319 
for NO2 (64%). The lowest NMB and NME are found in January 2019 (27%, 34%), which has 320 
the lowest concentrations of O3. Compared to other studies in the Great Lakes region, our biases 321 
and errors are higher than those of Bickford et al. (2013), who ran WRF-CMAQ without two-322 
way coupling, and Abdi-Ouskouei et al. (2020), who used WRF-Chem. Other similar CTMs 323 
studies report O3 biases similar to those reported here (Abdi‐Oskouei et al., 2020; Odman et al., 324 
2019; Pan et al., 2017; Qin et al., 2019; Travis et al., 2016; Zhang et al., 2014a). Our high O3 325 
bias is mainly driven by an over prediction of simulated O3 concentrations during periods of low 326 
observed O3, particularly at night (Figure S1). During warm “ozone season” months when 327 
observed O3 is high (O3 > 60 ppb), our NMB is negative (-5.4% and -7.2% for August and April) 328 
and NME are less than 17% (Table S5). When our model performance evaluation is limited to 329 
hours when observed O3 concentrations are greater than the 50%ile value, average annualized 330 
NMB is reduced to ~25% (Table S5). Lastly, and further confirming WRF-CMAQ’s challenges 331 
with capturing low O3 concentrations, the NMB in our model-simulated daily maximum 8-hr 332 
running average O3 (MDAO3) is ~27% when annualized, ~25% in O3 season months, and only 333 
±2% when MDAO3 is greater than 60 ppb (Table S5). 334 

Unlike model simulated O3, our simulated hourly PM2.5 concentrations have low biases and low 335 
correlations (Figure 2 and Table 2). The annualized average correlation of hourly PM2.5 is 0.4, 336 
with NMB of -10% and NME of 56%. August 2018 hourly PM2.5 has the largest bias (-38%) and 337 
lowest correlation (r = 0.25), while the highest NME (67%) and highest positive NMB (16%) are 338 
found in October 2018. Within the Great Lakes region, we find that our model-observation 339 
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agreement for PM2.5 has higher correlations and similar NMEs to Bickford et al., 2013. 340 
Compared to other WRF-CMAQ studies within the continental U.S., our PM2.5 NME is lower 341 
than (Hogrefe et al., 2015), but higher than (Liu et al., 2010) and (F. Wang et al., 2021). Our 342 
PM2.5 NMB and MB are similar to Hogrefe et al. (2015) and Wang et al. (2021), but lower than 343 
Liu et al. 2010 and (Torres‐Vazquez et al., 2022).  344 

The agreement of our model simulated SO2 and CO compared to the AQS observations were the 345 
lowest of the 5 criteria pollutants (Figure 2 and Table 2). Annualized average correlation of SO2 346 
is 0.18, with NMB = 25% and NME = 116%. Annual average correlation of CO is 0.35, with 347 
NMB = -26% and NME = 44%. Few previous WRF-CMAQ studies report their performance of 348 
SO2 and CO. Compared to those that do, our simulation of SO2 had lower NMBs, higher NMEs, 349 
and lower correlations (Bickford et al., 2014; Campbell et al., 2019). 350 

3.3 Domain-wide Characterization of WRF-CMAQ Simulated Pollutants 351 

In Figure 3, we show monthly-average simulated NO2, O3, and PM2.5 concentrations over the 1.3 352 
km domain (d03) for each season. Simulating pollutants at a 1.3 km spatial resolution facilitates 353 
the characterization of distinct urban-rural patterns, the influence of Lake Michigan on regional 354 
O3 distributions, pollutant hotspots over highway corridors, stationary emitting sources, and 355 
urban centers. In the following, we individually discuss domain-wide analyses of each pollutant 356 
and then highlight the model’s characterization of pollutants within the city of Chicago. 357 

The simulated NO2 concentrations largely track high-population areas and highway corridors 358 
(Figure 3a-e). In all seasons, the interstate highway system that connects population centers is 359 
highlighted by the spiraling web of roadways with elevated NO2 concentrations. The lowest NO2 360 
concentrations in our domain are simulated over northernmost and easternmost portions of Lake 361 
Michigan, in areas distant from emissions sources. Likewise, rural areas distant from roadways 362 
have low NO2 concentrations. We find that the average annual urban concentration of NO2 in our 363 
domain is simulated to be 3.5 ppb (59.8%) higher than average concentrations in rural portions 364 
of our domain (Table S6.0 & Figure 3). Across seasons, domain-wide NO2 concentrations tend 365 
to correspond to changes in simulated NOx emissions (Figure S3). In January 2019, domain 366 
average NO2 concentrations are highest (μ = 3.2 ppb; Figure 3c), which corresponds to our 367 
highest simulated NOx emissions (Figure S3). The lowest domain average NO2 concentrations 368 
occur in April 2019 (μ = 2.4 ppb; Figure 3d), which co-occurs with low NOx emissions (Figure 369 
S3) and the highest domain average O3 concentrations (Figure 3i).  370 



371 

372 
373 
374 
375 
376 

377 
378 
379 
380 
381 
382 
383 
384 
385 
386 

387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 

Figure 3
(k-o) for 
2018, Oc
annotated
average. 

In contra
roadways
distributi
concentra
concentra
simulated
April 201
than cool
S2), we f
areas, wi

Across al
Lake Mic
consisten
Dye et al
water (e.
thought t
breeze. E
In the mo
breeze, w
layer. (2)
dwindles
photoche

 Monthly an
the 1.3 km s

ctober 2018, 
d in the lowe

ast to NO2, O
s, with indiv
ion of O3 con
ations varies
ations occur
d in January 
19 and Augu
l-season con
find that O3 o
ith the greate

ll seasons, th
chigan (Figu
nt with previ
l., 1995; Fole
g., Chesapea
to be depend
Elevated O3 o
orning land-b
which combi
) As the day 
s. Fewer NO
emical produ

ma

nd annualize
simulation d
January 201

er left of eac

O3 concentrat
vidual highw
ncentrations
s by season. 
r in April 201

2019 (μ = 3
ust 2018), we
ncentrations. 
over urban a
est urban-rur

he highest si
ure 3f-j). The
ious Lake M
ey et al., 201
ake Bay, (Go
dent on the c
over the lake
based emiss
ne with ship
warms, the 
x emissions 

uction of O3 

anuscript subm

d average W
domain (d03)
19, and Apri
ch panel. The

tions are sim
way corridors

 is relatively
Of the four m
19, (μ = 49.4

33.9 ppb; Fig
e find that d
Comparing 

areas is simu
ral difference

imulated con
e simulation 

Michigan obse
11), and sim
oldberg et al
irculation of
e occurs thro
ions (O3 pre

pping emissio
land-lake tem
are transpor
over the lak

mitted to JGR A

 

WRF-CMAQ
). From left-
l 2019, with
e right-most 

mulated to be
s apparent (F
y consistent, 
months that 
4 ppb; Figure
gure 3h). Ov
omain-wide 
concentratio

ulated to be ~
e in cool sea

ncentration o
of elevated 

ervation and
ilar to other
l., 2014)). El
f primary po
ough the foll
ecursors) are 
ons, and are 
mperature gr
ted to the lak
e is enhance

Atmospheres 

Q simulated N
-to-right each
h the domain

column pro

e relatively l
Figure 3f-j). 

however the
we simulate
e 3i), while t

ver simulated
 O3 concentr
ons across th
~3.3 ppb (9.4
ason months 

of O3 in the 1
over-lake O

d modeling c
studies focu

levated O3 o
ollutants from
lowing ideal
transported 

 trapped belo
radient weak
ke. (3) As su

ed. Due to th

NO2 (a-e), O
h column pre

n-average (μ)
ovides the an

ow over urb
Across seas
e magnitude
e, we find th
the lowest c

d warm seaso
rations are ~
he urban-rur
4%) lower th
 (Table 3). 

1.3 km doma
O3 concentrat
campaigns (D
used on inlan
over Lake M
m land to lak
lized sequenc
d over the lak
ow a shallow
kens, and the
unlight incre
he lack of dep

O3 (f-j) and P
esents Augu
) concentrati

nnualized 

ban areas and
ons, the spat

e of O3 
hat the highes
oncentration
on months (i

~1.5 times hi
ral divide (Fi
han over rur

ain occurs ov
tions is 
Doak et al., 2
nd bodies of 
ichigan is 

ke via the lak
ce of events
ke by a land-
w boundary 
e land breez
eases 
positional 

 

PM2.5 
ust 
ions 

d 
tial 

st O3 
ns O3 
i.e., 
igher 
igure 
al 

ver 

2021; 
f

ke-
: (1) 
-

e 



manuscript submitted to JGR Atmospheres 

 

pathways over the lake, O3 accumulates. (4) On days where a lake breeze forms, O3 is advected 399 
inland, often to areas not responsible for the original precursor emissions. Lake breeze effects are 400 
primarily a warm season phenomenon, however, the lack of over-lake depositional pathways also 401 
contributes to elevated cool season O3 concentrations (Figure 3f-j) (Doak et al., 2021; Dye et al., 402 
1995).  In our simulations land-lake O3 concentration differences are greatest in August 2018, as 403 
the average concentration of O3 over land (39.8 ppb) is 11 ppb lower than the average O3 404 
concentration over the lake (50.4 ppb). 405 

Compared to NO2 concentrations, domain-wide simulated PM2.5 concentrations show greater 406 
spatial homogeneity in that elevated hot spots have a larger diffusive footprint (Figure 3k-o). 407 
Across months, the spatial pattern of simulated PM2.5 concentrations is relatively consistent and 408 
largely tied to the location of emission sources. Despite consistent spatial patterns across months, 409 
the relative magnitude of PM2.5 concentrations is influenced by meteorological conditions (e.g., 410 
boundary layer height and wind speeds), the magnitude of seasonal primary PM emissions, and 411 
secondary PM pollutant formation reactions. The domain-wide average concentration of PM2.5 412 
peaks in January 2019 (μ = 6.9 μ/m3) and is lowest in April 2019 (μ = 4.5 μ/m3), which mirrors 413 
the pattern of emissions of PM and its precursors (Figure S2). Both stationary and mobile 414 
sources of PM2.5 typically co-emit NOx emissions, as such simulated PM2.5 hotspots tend to co-415 
occur with NO2 hotspots over urban areas, highways, and stationary sources (Figure 3a-e and k-416 
o). However, compared to NO2, the PM2.5 hotspots are more spatially diffuse, likely due to 417 
longer PM2.5 lifespans, secondary formation of PM2.5, and the influence of meteorology, which 418 
disperses PM2.5 concentrations from point sources. Despite the large number of sources within 419 
the domain of PM2.5, the concentrations in urban areas are simulated to be 22% higher than rural 420 
areas (Table 3). Simulated grid cells with the highest concentration of PM2.5 occur outside of 421 
urban areas and are primarily associated with emissions from industrial and manufacturing point 422 
sources.  423 

3.4 Domain-wide Characterization of WRF-CMAQ Simulated Pollutants 424 

Our domain-wide analysis demonstrates the ability of the 1.3 km WRF-CMAQ simulations to 425 
characterize differences in urban-rural regimes and identify pollutant hotspots, however it does 426 
not highlight the ability of the model to resolve and characterize neighborhood-scale air quality. 427 
To demonstrate this ability, we provide an in-depth analysis of a sub-region of the 1.3 km 428 
modeling domain, i.e., the city of Chicago (Figure 4a). Chicago sits close to the center of our 1.3 429 
km domain, and in Figure 3 is identifiable as both an NO2 and PM2.5 hotspot at the southwest 430 
corner of Lake Michigan. Chicago has a population of 2.7 million people that are divided 431 
amongst 77 named community areas (Figure 4a). Major sources of emissions within Chicago 432 
include transportation, industry, and buildings. The city has 5 major interstate highways (I-290, 433 
I-294, I-90, I-94, I-55, I-57) that loosely outline the City’s lakeside central business district or 434 
“Loop”. There are two airports within City limits, O’Hare in the northwest and Midway in the 435 
south central. Most industrial activities occur on the west and southwest sides of the city.  436 

  437 
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The highest annualized concentrations of NO2 (where μ > 19.5 ppb) are simulated on the West 455 
side of Chicago and in the Loop, where highways are prevalent (e.g., I-90, I-290, and I-55) and 456 
simulated NOx emissions are high (Figure S3). The lowest NO2 concentrations (where μannual < 457 
11.3 ppb) are simulated in the lake-front neighborhoods, with the exception of those in the Loop. 458 
Lakefront neighborhoods are east of the main interstate highways, where lower NOx emissions 459 
and ventilation contribute to the relatively low simulated NO2 (Figure S3). Across seasons, NO2 460 
concentrations within Chicago remain highest over the 3 most-trafficked inter-state highways: I-461 
290, I-90, and I-94 (Figure 4b). Simulated NO2 concentrations are lowest in April 2019 (μ  = 462 
14.2 ppb) and highest in October 2018 (μ  = 18.7 ppb), although the greatest NO2 bias was also 463 
found in October 2018. Compared to the full model domain (μ  =  2.4-3.2 ppb; Figure 3a-d), 464 
average NO2 over Chicago is nearly 5 times higher (μ  = 14.2-18.7 ppb) across seasons (Figure 465 
5a-d). The differences in average NO2 concentrations over Chicago are reflected in the 466 
emissions, which are highest in October 2018 and are lowest in April 2019 (Figure S3). 467 

Simulated annualized and individual month O3 concentrations within Chicago tend to be the 468 
spatial inverse of simulated NO2 concentrations (Figures 4 & 5). The lowest concentrations 469 
(μannual < 28.5 ppb) of O3 are simulated on the West side of the city, near the interstates. These 470 
locations are also simulated to have the highest NO2 concentrations, i.e., O3 is suppressed via 471 
titration by NO. O3 concentrations are highest in the warm months, with August 2018 (μ = 35.7 472 
ppb) and April 2019 concentrations (μ = 41.1 ppb) nearly double October 2018 (μ = 23.3 ppb) 473 
and January 2019 concentrations (μ = 22.7 ppb). Average annualized O3 concentrations in 474 
Chicago (μ = 30.7 ppb) are simulated to be significantly lower than the domain average because 475 
of the lake reservoir of O3 (μ = 40.0 ppb). Even when land-only O3 concentrations are isolated, 476 
Chicago has concentrations that are slightly lower than the rest of the full model domain (μ = 477 
38.8 ppb). Warm-season O3 is highest near Northern lake-front neighborhoods, which are distant 478 
from the major interstates, have low NOx emissions (Figure S3), and subject to lake breeze 479 
advection of the reservoir of O3 over Lake Michigan. In the cool months, O3 concentrations are 480 
simulated to be highest on the western edges of the city. However, the cooler months have a 481 
lower range of O3 concentrations (±8.9 ppb) than warmer months (±15.5 ppb). 482 

Annualized PM2.5 concentrations in Chicago correspond well with the spatial patterns of the 483 
interstate system, though the PM2.5 footprint is spatially more extensive than that of NO2 (Figure 484 
4). PM2.5 concentrations in Chicago are simulated to be 2 times higher than the average 485 
concentration of the full model domain (μdomain,annual = 5.5 μg/m3, μChicago,annual = 10.2 μg/m3). 486 
PM2.5 concentrations peak on the west side of Chicago near Midway airport and the intersection 487 
of I-290 and I-55 with I-90 (μ  = 12 – 13 μg/m3). The lowest concentrations of PM2.5 occur on 488 
the lakefront (μ  = 8 – 10 μg/m3). Similar to O3, Chicago PM2.5 levels show strong seasonal 489 
variations, though the simulated concentrations of PM2.5 are highest in the seasons when O3 is 490 
lowest. As such, simulated PM2.5 peaks in the cooler months (Figure 5j-k) and is lowest in April 491 
2019 (8 μg/m3). Areas of high PM2.5 in Chicago are consistent across seasons, in particular on the 492 
west side of the city and within the Loop.  493 
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km and correlations are higher. In contrast, we find that observed T2 is better captured in the 4 517 
km simulation, as lower bias and error and higher correlations are found compared to the 1.3 km 518 
simulation. Within Chicago (with just one LCD station) the 1.3 and 4 km simulations perform 519 
similarly to their domain-wide performance, with WD showing slightly lower biases in the 4 km 520 
domain (Table S8). 521 

For simulated pollutant concentrations we find higher model-observation correlations in the 522 
higher resolution (1.3 km) simulation, though this improvement is coupled with increased ME 523 
(Table S9).  The 1.3 km simulation showed higher correlations than then 4 km simulation for all 524 
criteria pollutants, though this increase was marginal (Δr < 0.1, Table S9). The 1.3 km 525 
simulation of NO2 has a closer agreement to the EPA stations, but this comes with slightly higher 526 
normalized errors (+0.25%; Table S9). On average, the 1.3 km simulation NMB was lower than 527 
that of the 4 km model simulation for each season, which came at a trade-off, as NME was only 528 
lower in the 1.3 km simulation in April 2019. The correlation between AQS observation and 529 
model outputs for NO2 were similar for the 1.3 km and 4 km resolution simulations. The 1.3 km 530 
simulation lowered the NMB by 8% in August 2018 and January 2019, with marginal bias 531 
improvement in April 2019 and January 2019. In contrast, the 1.3 km simulation of O3 showed 532 
higher NMB and NME than the 4 km simulation. For PM2.5, we find that the 1.3 km resolution 533 
simulation has a lower NMB than the 4 km simulation for 3 out of 4 seasons, but the NME is 534 
marginally higher (0.9%) in the higher resolution simulation. Simulated SO2 showed the largest 535 
improvement with finer model resolution (ΔNMB = 10%, Δr = 0.03), however this was also the 536 
pollutant with the lowest performance in both the 1.3 km and 4 km domains. CO had slightly 537 
better performance in the 4 km domain, as the NME and NMB were 0.5% to 1% higher, 538 
respectively, in 1.3 km simulation.  539 

These meteorological and pollutant performance analyses are limited due to the low number of 540 
sensors relative to the number of grid cells simulated in our modeling domain (125 EPA stations 541 
and 10 NCDC stations vs 90,720 grid cells). In addition, the finer resolution creates opportunities 542 
for local-scale meteorological processes to influence agreement, particularly for pollutants which 543 
are not well mixed in the atmosphere (Zhang et al., 2014a). The measurement-prediction 544 
relationship can be greatly influenced by model grid cell size, plumes, and wind speeds and 545 
directions. For example, while the relative amount of SO2 simulated in a plume may be correct, 546 
due to the increase in the number of grid cells in a higher resolution simulation, the probability 547 
that an erroneously simulated wind direction will adversely influence model grid cell-548 
observation fidelity increases.  549 

Given that model performance when assessed against limited station observations is similar 550 
between the 1.3 km and 4 km simulations, we now turn our focus to the primary advantage of the 551 
higher resolution simulation, i.e., the ability to characterize neighborhood-scale air quality. As 552 
Chicago is the densest metropolitan area in our modeling domain, we focus our analysis on air 553 
quality differences between the 1.3 and 4 km simulations within city limits. We find that over 554 
Chicago the 1.3 km simulation has higher average NO2 and PM2.5 concentrations and lower O3 555 
concentrations (Figure 6) than the 4 km simulation. Differences in pollutant concentrations at 556 
different model resolutions can be caused by several factors, including differences in the 557 
underlying emissions data, the ability to resolve fine-scale processes, and the nuances of grid 558 
cell-geography-chemistry feedbacks. In the following, we provide examples of each. 559 
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 560 

Figure 6 Average annualized NO2 (a), O3 (c), and PM2.5 (e) within Chicago city limits as 561 
simulated in the 4 km simulation. (b,d,f). Relative pollutant differences between 1.3 km and 4 562 
km resolution simulations. Average Chicago concentrations (μ) are annotated, with average 563 
differences also noted. 564 
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The overall higher concentrations of NO2 and PM2.5 simulated over Chicago at 1.3 km are in part 565 
due to differences in the underlying meteorologically-informed emissions. In the 1.3 km 566 
simulation, NO2 concentrations are ~0.3 ppb higher than in the 4 km simulation. In the 1.3 km 567 
simulation, the rate of NO2 emissions over Chicago is 2.5% higher than the in the 4 km 568 
simulation (Figure S4a). It is potentially these higher NOx emission rates that result in slightly 569 
lower over-Chicago O3 concentrations (-0.07 ppb) at 1.3 km, though VOC emissions are higher 570 
at 1.3 km as well (Figure S4b). Similarly, for PM2.5, organic and elemental carbon emissions 571 
over Chicago are 1% higher in the 1.3 km emissions than in the 4 km emissions (Figure S4c). 572 
For PM2.5 pollution, this difference leads to most (59/73) of Chicago’s neighborhoods having 573 
higher PM2.5 concentrations when simulated at the higher spatial resolution.  574 

In our simulations, we also note that the higher resolution simulation better captures fine-scale 575 
processes. This ability is best illustrated by examining emissions and pollutants over highways 576 
(compare Figures 4 and 6). While the 4 km simulation shows elevated NO2 and PM2.5 (and 577 
depressed O3) concentrations over the center of the city, the larger grid cells smooth the 578 
underlying emissions (Figure S4a, Figure S5) which leads to lower concentrations of NO2 and 579 
PM2.5 over highway pollutant corridors, features that are critical to resolve when assessing 580 
neighborhood-scale exposure. These finer-scale processes captured in the 1.3 km simulation may 581 
have profound implications for environmental justice-focused analyses. 582 

4 Discussion 583 

In the above we present the first neighborhood-scale (1.3 km) two-way coupled WRF-CMAQ 584 
simulations focused on the southern Lake Michigan-Chicago region. We perform hindcast 585 
simulations of individual months from each season and assess the model’s performance against 586 
meteorological and pollutant station observations, as well as against coarser resolution (4 km) 587 
simulations. Below we summarize our results and discuss notable findings and experimental 588 
caveats. 589 

In our WRF-CMAQ simulations, we show that the WRF-simulated meteorological variables 590 
WD, WS, and T2 meet performance criteria suggested by Emery et al. (2001). The lowest 591 
performing simulated meteorological variable is WD, a variable that models have historically 592 
struggled to reproduce with high fidelity and which has previously been shown to be sensitive to 593 
model resolution, boundary layer parameterization, and land cover schemes (Carvalho et al., 594 
2012). In our simulations, we find that WRF-CMAQ best-captures observed WD in January 595 
2019 and October 2018, but struggles in August 2018 and April 2019, likely due to more diffuse 596 
warm season winds, similar to findings presented in Zhang et al. (2014). In addition, recent WRF 597 
simulations have demonstrated the influence of different lake temperature datasets on 598 
meteorology, particularly air temperatures and convection, in domains near to Lake Michigan (J. 599 
Wang et al., 2022). Future work should assess the role of lake temperatures, and uncertainties 600 
therein, on the simulation of pollutants.  601 

In the CMAQ portion of our two-way coupled WRF-CMAQ simulation, NO2 concentrations 602 
show the highest agreement amongst EPA criteria pollutant AQS station observations. We find a 603 
similar correlation between observed and simulated O3 concentrations, which reflects the strong 604 
anticorrelated relationship between O3 and NO2. However, we find that O3 is biased high for all 4 605 
months of simulation. Previous studies have noted that high O3 biases in CTMs can be due to 606 
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overestimated NOx emissions (Huang et al., 2018), excessive boundary layer mixing (Travis et 607 
al., 2016), long-range transport and boundary conditions (Sharma et al., 2017), and low night 608 
time titration by NO (Sharma et al., 2017). Compared to NO2 and O3, simulated PM2.5 has lower 609 
correlation with EPA AQS station observations, though our model performance is comparable to 610 
results reported by many previous studies (e.g., Wang et al. 2021 and Torres‐Vazquez et al., 611 
2022). Given that SO2.and CO both contribute to secondary PM formation, the relatively poor 612 
performance of WRF-CMAQ with respect to the simulation of these constituents likely also 613 
influences the PM2.5 model-observation agreement. Previous studies have reported that model-614 
station agreement of PM2.5 can be strongly influenced by wind direction, wind speed, transport, 615 
and  emissions inventories (Hughes et al., 2021; Zhang et al., 2014a) and it is likely that these 616 
meteorological factors also play a role here. For instance, in the results presented here, we 617 
employ MOVES2014a which does not account for emissions from off-road idling of heavy-duty 618 
vehicles. MOVES3, released in 2020 (EPA, 2020) does include these processes, which may be 619 
critical for more accurate simulation of PM, particularly in high-density warehouse environments 620 
common within urban settings.      621 

Since the two-way coupled WRF-CMAQ methodology employs nested domains of increasing 622 
spatial resolution, we take the opportunity to discuss differences, advantages, and disadvantages 623 
of neighborhood-scale (1.3 km) simulations versus those performed at coarser resolutions (4 624 
km). By and large, when model results are assessed against meteorological and pollutant station 625 
observations, we find comparable performance between the two resolutions. We note a few 626 
occurrences of slightly degraded model-observation fidelity at higher-resolution (e.g., T2 and 627 
O3), but primarily find that higher resolution simulations marginally improve hindcast 628 
simulations of both meteorology and atmospheric chemistry, similar to previous thematically-629 
similar studies (Torres‐Vazquez et al., 2022). We note that our 1.3 km to 4 km simulation 630 
comparison is not a pure resolution-focused sensitivity experiment. MOVES emissions 631 
processing influences on-road sector emissions, and due to differences between the 1.3 km and 4 632 
km WRF-simulated meteorology, on road emissions differ over roadways (Figure S3). However, 633 
total emissions are the same within the 1.3 km domain subset of the 4 km domain. Despite 634 
emissions differences of 1-6% over Chicago (Figure S3), pollutant concentrations differ by only 635 
1-2% between the 1.3 km and 4 km simulations (Figure 6). Ultimately, we find that the most 636 
valuable feature of increasing model resolution comes from the finer characterization of emission 637 
sources and subsequent pollutant concentrations. The ability to resolve air pollution at 638 
neighborhood-scale resolutions, using a physics- and chemistry-based numerical model, 639 
represents a step change in air quality research, and continued efforts should be made to both 640 
improve model performance and apply these tools to fundamental research queries in the fields 641 
of health, policy, and environmental justice.     642 

Characterizing neighborhood-scale spatial heterogeneities in pollutant concentrations over urban 643 
settings, such as Chicago, is critical for better understanding health impacts and constraining the 644 
contribution of pollutants to inequitable impacts across population subgroups. In our simulations, 645 
we find that Chicago has 2 to 5 times higher NO2 and PM2.5 concentrations than neighboring 646 
rural areas (Fig. 2), and within city limits annualized pollutant concentrations between 647 
neighborhoods can vary by a factor of 1.8 (Figure 4). Results such as these suggest that 648 
summarizing city-wide air quality using limited observations or coarse-scale model simulations 649 
could be problematic. To highlight the utility of high resolution spatially resolved model 650 
simulations, we analyze zonally averaged annualized pollutant concentrations from Chicago’s 651 
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of the averaging domain is depicted around Chicago.  Concentrations are plotted across 668 
longitudes and stretch from the western suburbs to Lake Michigan in the east.  669 

Neighborhood-scale simulations may also be critical for designing effective mitigation and 670 
abatement strategies. For example, given Chicago's current EPA O3 non-attainment status, 671 
designing strategies that effectively target O3 precursors requires foreknowledge of the City and 672 
region’s chemical regime. Localized formation of tropospheric O3 is a nonlinear process that 673 
depends on the relative abundances of precursor emissions, the transport of O3 and other 674 
precursor emissions from upwind areas, and the scale and magnitude of local sinks. Despite this 675 
complexity, O3 production environments are often simplified as either NOx-limited or VOC-676 
limited regimes (Sillman et al., 1990; Kleinman, 1994). An area is considered “NOx-limited” 677 
when VOCs are more available than NO2, and as such, O3 production is limited by the radical 678 
termination of NO2 by OH. O3 production is “VOC-limited” when NOx is abundant, and O3 679 
production is limited by the availability of peroxy radicals from VOC oxidation (Schroeder et al., 680 
2017). To determine if areas are NOx- or VOC-limited, the ratio of HCHO to NO2 can be 681 
analyzed. This ratio serves as a proxy to describe the chemical loss of HO2 + RO2 (LROx) over 682 
the chemical loss of NOx (LNOx) (Shroeder et al., 2017). While there are not universally agreed 683 
upon HCHO:NO2 ratio values to delineate if an area is NOx- or VOC-limited, it is accepted that 684 
very low ratios (e.g., < 1) of HCHO:NO2 indicate an area is VOC-limited, very high ratio values 685 
(e.g., > 2) indicate that an area is NOx-limited, and values between the high and low range are 686 
considered “transitional” (Jin et al., 2017).  687 

Several previous studies using a variety of methods have attempted to quantify the HCHO:NO2 688 
ratio of Chicago. These studies have arrived at different conclusions over the years, including 689 
some that have found Chicago to be NOx-limited (Laughner & Cohen, 2019), VOC-limited 690 
(Blanchard et al., 2008; Koplitz et al., 2022), or in a transitional state (Jin et al., 2020; Jing & 691 
Goldberg, 2022). In Table S10 and Figure 8, we provide the HCHO:NO2 ratios from our WRF-692 
CMAQ simulations. We compute column average HCHO:NO2 ratios for each individual 693 
simulated month and the annualized mean for TropOMI’s overpass time (1 – 3 PM) and the 694 
daytime average (7 am – 7 pm), though the ratio values computed for Chicago do not change 695 
substantially between overpass and daytime average (Table S10). We find robust heterogeneity 696 
in column average HCHO:NO2 ratios in both space and time. HCHO:NO2 ratios vary across 697 
seasons (Table S10, Figure 8), with the lowest Chicago-average ratio simulated in January 2019 698 
(0.20, VOC-limited) and highest in August 2018 (1.57, transitional). Chicago is simulated to be 699 
VOC-limited for most months except August 2018, where it is in a transitional regime. The 700 
HCHO:NO2 ratio is higher over the full 1.3 km domain than over Chicago, indicating the full 701 
domain is more NOx limited than the city itself. In the annualized mean plot (Figure 8), we find a 702 
robust spatial gradient in the HCHO:NO2 ratio, suggesting that Chicago’s chemical regime may 703 
change over relatively short distances, and in modeling studies, may be resolution dependent. 704 
The consequence of this finding, and its effect on policy design for O3 precursor control alludes 705 
to the complexity of the system and the benefits of resolving atmospheric chemistry and 706 
pollutants at the neighborhood-scale.    707 
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profound consequences on pollutant concentrations (Garcia-Mendez et al., 2017), and this facet 718 
should be remembered when considering our results. A key example/consequence from our 719 
study is the anomalously high O3 concentration in our April 2019 simulation. Typically, O3 in 720 
this region peaks in July, however April of 2019 (our chosen simulation month) had higher O3 721 
concentrations than the typical summer O3 season. A second key consideration of our study is 722 
that the EPA air quality monitoring system was not designed with CTM-validation in mind. AQS 723 
sensors are relatively sparse and very often not within urban settings. As such, we use EPA data 724 
here, but would advocate for the use of hyper-local observing networks to operationally monitor 725 
neighborhood-scale air quality and perform model validation. 726 

5 Conclusions 727 

In the above, we present the first neighborhood-scale two-way coupled WRF-CMAQ simulations 728 
to be performed over a Chicago-centric southern Lake Michigan domain. Both the 729 
meteorological and chemical components of our model largely perform at or above 730 
recommended standards. We note that our 1.3 km simulation outperforms our 4 km simulation 731 
with respect to most air quality-relevant meteorological variables. In terms of chemical 732 
performance, we observe that the 1.3 km simulation outperforms the 4 km simulation with 733 
respect to grid cell-to-observation station comparisons for NO2, O3, PM2.5, and CO 734 
concentrations. SO2 is the only pollutant that showed higher model-observation fidelity at the 735 
coarser model resolution, but this was also the chemical with the lowest model-station agreement 736 
at both the 1.3 km and 4 km resolutions. Consideration of these performance assessments should 737 
be tempered by knowledge that both meteorological and pollutant observing networks allow for 738 
model-to-observation comparisons at a maximum of 0.1% of simulated grid cells.     739 

Neighborhood-scale, 1.3 km simulations, are made possible by spatial surrogates curated for the 740 
region by LADCO. These surrogates facilitate the simulation of fine-scale features and 741 
processes, none more evident than the effect of resolving on-road emissions within urban 742 
settings, where we simulate anomalously high roadway-adjacent NO2 and PM2.5 concentrations, 743 
and anomalously low O3 concentrations. Over our full simulation domain, we find that the 744 
highest concentrations of O3 are found over Lake Michigan during warm season months, where 745 
concentrations are simulated to be a full 30% higher than the domain average. In the largest 746 
urban area simulated in our domain, Chicago, IL, we find that concentrations of NO2 are five 747 
times higher than the domain average, PM2.5 three times higher, and O3 slightly lower. We also 748 
note spatiotemporal O3 regime variability within the full model domain, where simulated column 749 
average HCHO:NO2 ratios differ substantially by season and location. Over Chicago, conditions 750 
are simulated to be VOC-limited, except during the summer, during which time conditions are 751 
considered transitional. Likewise in Chicago, our higher resolution simulations show higher 752 
average concentrations of NO2 and PM2.5 than our coarser model simulations, suggesting that 753 
coarser models may underestimate exposure to these pollutants and their associated health 754 
impacts. Lastly, within Chicago city limits, we find that pollutants can vary by a factor of ~2 755 
between neighborhoods, a finding potentially corroborated by observed inequitable health 756 
outcomes.  757 
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