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Abstract

Energy, transport, urbanization and burning are responsible for changes in atmospheric BC. This work uses direct solar atmo-

spheric column measurements of single scatter albedo [SSA] retrieved at multiple wavelengths from AERONET at 68 Asian

sites over 17 years. A MIE model is solved across the wavelengths using a core-shell mixing approximation to invert the

probabilistic BC, shell size, and UV SSA. Orthogonal patterns are obtained for urban, biomass burning [BB], and long-range

transport [LRT] conditions, which are used to analyze and attribute source types of BC across the region. Large urban areas

(thought to be dominated by urban BC) are observations during targeted times (shorter than seasonally) to yield significant

contributions from non-urban BC. BB and LRT are observed to dominate Beijing and Hong Kong 2 months a year. LRT is

observed during the clean Asian Monsoon season in both Nepal and Hong Kong, with sources identified from thousands of

kilometers away. Computing the shift in shell size required to constrain the results approximates secondary aerosol growth

in-situ, and subsequently aerosol lifetime, which is found to range from 11 days to a month, implying both a significant amount

of BC above the boundary layer, and that BC generally has a longer lifetime than PM2.5. These findings are outside of the

range of most modeling studies focusing on PM2.5, but are consistent with independent measurements from SP2 and modeling

studies of BC that use core-shell mixing together with high BC emissions.
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Key Points: 11 

• Urban sites throughout Asia are impacted not only by local sources but also biomass 12 
burning and sources conveyed long-range transport. 13 

• Quantifies the age and attributes the sources as a function of time based on multiple 14 
wavelength analysis. 15 

• Uncertainty analysis indicates that the number of very small particles and total absorbtion 16 
are underestimated by surface measurements. 17 

Abstract 18 

Energy, transport, urbanization and burning are responsible for changes in atmospheric BC. This 19 
work uses direct solar atmospheric column measurements of single scatter albedo [SSA] 20 
retrieved at multiple wavelengths from AERONET at 68 Asian sites over 17 years. A MIE model 21 
is solved across the wavelengths using a core-shell mixing approximation to invert the 22 
probabilistic BC, shell size, and UV SSA. Orthogonal patterns are obtained for urban, biomass 23 
burning [BB], and long-range transport [LRT] conditions, which are used to analyze and 24 
attribute source types of BC across the region. Large urban areas (thought to be dominated by 25 
urban BC) are observations during targeted times (shorter than seasonally) to yield significant 26 
contributions from non-urban BC. BB and LRT are observed to dominate Beijing and Hong 27 
Kong 2 months a year. LRT is observed during the clean Asian Monsoon season in both Nepal 28 
and Hong Kong, with sources identified from thousands of kilometers away. Computing the shift 29 
in shell size required to constrain the results approximates secondary aerosol growth in-situ, and 30 
subsequently aerosol lifetime, which is found to range from 11 days to a month, implying both a 31 
significant amount of BC above the boundary layer, and that BC generally has a longer lifetime 32 
than PM2.5. These findings are outside of the range of most modeling studies focusing on 33 
PM2.5, but are consistent with independent measurements from SP2 and modeling studies of BC 34 
that use core-shell mixing together with high BC emissions. 35 

Plain Language Summary 36 

Energy, transport, urbanization and burning are responsible for significant changes in 37 
atmospheric Black Carbon aerosol [BC]. This study analyzes atmospheric column measurements 38 
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using different parts of the solar spectrum with a physical model, to describe the solution set of 39 
BC and coating sizes in the atmosphere. This information is then used to make different aerosol 40 
types, including urban, biomass burning, and aerosols which have been in the atmosphere for a 41 
very long time. These type profiles are applied throughout Asia to analyze the sources of BC. 42 
While many sites are as expected, most large urban areas are observed to have both biomass 43 
burning and long-range transport types found when looking over short time periods which occur 44 
annually. Next, even during heavy Monsoon rains, urban areas are found to have significant 45 
amounts of long-range transported BC. The lifetime of the BC is also obtained from the growth 46 
in the shell size, demonstrating that BC stays in the atmosphere longer than current studies 47 
focusing on PM2.5 can observe. Focusing models more specifically on BC, formulating different 48 
controls during different periods of the year, and better studies of BC emissions could all yield 49 
improved understanding of BC and its effects. 50 

1 Introduction 51 

Black carbon (BC), organic carbon (OC) and dust (or Absorbing Aerosols - AA) can 52 
strongly interact with solar radiationi, leading to impacts on the atmospheric radiation budget, 53 
climate, water cycle, and more (Jacobson, 2001; Menon et al., 2002; Wu et al., 2008). Black 54 
Carbon can absorb solar radiation strongly in the visible and infrared. Small changes in BC 55 
loadings can cause a significant change in the local solar radiation absorption and hence altering 56 
the regional and global climate (Ramanathan et al., 2001a, 2001b). This interaction critically 57 
relies on the particle size distribution, chemical composition and mixing state in-situ (Jacobson, 58 
2001). The two most significant difficulties in estimation of the climate effects of black carbon 59 
are the variable physical-chemical properties of BC-containing particles (Miyakawa et al., 2017) 60 
and the heterogeneous distribution (Bollasina et al., 2013; Shen Z et al., 2020; Cooke et al., 61 
2002; Lu et al., 2011). While BC itself is water-insoluble once it has been in the atmosphere for a 62 
long enough time, it will become coated (Zhang et al., 2016; Cohen and Wang, 2014) in turn 63 
becoming hygroscopic (McMeeking et al., 2011) and therefore having the potential to impact 64 
climate via wet and ice clouds (Penner et al., 1992; Penner et al., 2001; Kuwata et al., 2007). Due 65 
to its long lifetime in the atmosphere, BC has also been known to travel very long distances, 66 
impacting regions thousands of km away from the source region, and underging in-situ 67 
processing such that it’s absorbance and impact on clouds may both be enhanced, further 68 
impacting the radiative balance over large scales (Liu et al., 2011; Zhang et al., 2015; Prasad et 69 
al., 2018; Guha et al., 2015; Wang et al., 2009). Taking all of these factors into consideration, the 70 
current range of radiative forcing estimates of BC (at TOA) range from +0.13 to +1.4 W/m2 71 
(Haywood and Shine, 1995; Haywood et al., 1997; Haywood and Ramaswamy, 1998; Myhre et 72 
al., 1998; Penner et al., 1998; Cooke et al., 1999; Jacobson, 2000; Wang, 2004; Wang et al., 73 
2014; Jacobson et al., 2001; Bond et al., 2013; Cohen et al., 2011). 74 

Attempts have been made to elucidate particle size, mixing state, emissions, and aging 75 
over highly polluted regions in Asia using different models and methods (Salam et al., 2012; 76 
Quinn et al., 2004; Kompalli et al., 2021; Han et al., 2013; Streets et al., 2003; Kühn et al., 2014; 77 
Xu et al., 2015; Song et al., 1999). However, at the present time there are few if any studies that 78 
have comprehensively focused on the long-term properties of the particle size and source (i.e. 79 
distance to a biomass burning or urban source) and aging (i.e how long the aerosol has 80 
undergone processing and deposition in-situ). Studies which have analyzed aerosols using 81 
remote sensing have tended to focus on the visible and IR radiative bands, with measurements 82 
from the UV band scarcely used (Corrigan et al., 2006). In specific, many present remote sensing 83 
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based studies merely focus on a fine mode and coarse mode (Eck et al., 2010; Koulouri et al., 84 
2008; Zhang et al., 2017; Kleidman et al., 2005). Attempts have also been made via field 85 
observations. Schwarz et al (2008) used an airborne single-particle soot photometer to quantify 86 
BC aerosol microphysical state in fresh urban and BB emissions. These differences contribute to 87 
significant impacts on the BC size distribution and concentration, when observed using 88 
measurements based on particulate absorption (Sato et al., 2003). However, results such as these 89 
from both remote sensing and field studies are not considered in most chemical transport and 90 
aerosol models today, which tend to not assume a Core-Shell approximation which in turn tends 91 
to underestimate the overall absorption profile, requiring scaling to match optical properties such 92 
as SSA, AAOD and size information (Myhre et al, 1998; Cooke et al.,1999; Jacobson et al., 93 
2000; Wang et al., 2009; Cohen et al 2011).  Consequently, these models tend to underestimate 94 
ultra-long-range transport and non-local polluted conditions, frequently induced by vertical 95 
transport and aging associated with underestimated absorption (Wang et al., 2020). It has been 96 
demonstrated that a Core-Shell model fits best with aerosol properties in heavily polluted region 97 
such as East, Southeast and South Asia where sulfate or nitrate can coat on BC in a short time 98 
after it has been emitted, consistent with the fact that in these parts of the world biomass burning 99 
sources and urbanization are located in close proximity to each other (Cohen and Wang, 2014; 100 
Peng et al., 2016; Zhang et al., 2016; Cohen et al., 2017). 101 

To achieve a better understanding of AA and its impact on the atmosphere, this work 102 
incorporates multi-spectral atmospheric column high frequency measurements and inversion 103 
products from AERONET including AOD and SSA, as well as mixing state and size 104 
measurements from ground station, in connection with a inverse constrained variance 105 
maximation approach to reveal size and absorbtion properties of aerosols in Asia. A specific 106 
focus is made on the added value of using measurements in the UV bands which provides deeper 107 
support for and quantiatiave insight into the loadings and sizes of smaller particles, allowing for 108 
better characterization of both aging as well as fresher particles. The inversely constrained 109 
particulate core and shell sizes based on the SSA valuess from the Mie model and constrainted 110 
by AERONET, allow for a new categorization of aerosols aerosols based on whether they are 111 
emitted locally in Urban areas [Urban], have undergrone Long-Rang Transport [LRT], or are 112 
emitted locally by Biomass Burning [BB]. The approach also allowes a stastitical solution space 113 
to indicate the range of mixtures of these source types which would also be capable of being 114 
physically realistic, taking into the specific particle size (both core and shell) distribution. This 115 
allows the use of typical and well classified sites to be used to improve understanding of 116 
different sources and their contributions to the atmospheric loading, as well as impacts on 117 
radiative forcing and subsequently on climate change. Since these are based on column 118 
measurements of the entire atmosphere, they provide important support to further promote 119 
improvement of models, in terms of capturing the total atmospheric loading, attirubiton of 120 
extreme or abnormal events, and impacts of high-frequecy changes on the overall performance of 121 
models, all of which are cited as important weaknesses of current aerosol modeling systems. 122 
Some specific scientific points of interest discovered include quantification of significant events 123 
in which mixing occurs between an expected and an unexpected source, detection of 124 
missing/previously unidentified sources, details about changes in the optical and size poperities 125 
of aerosols which are otherwise obscured when only looking at a PM2.5 or Fine Mode type of 126 
aerosol constraint, and quantifying of different aging rates occuring between BB and Urban 127 
cases. It is finally hoped that ongoing calculations incorporating the quantitative approach 128 
explicitly employed here will allow for further expansion and insights to be gained and for more 129 
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multi-wavelength measurement platforms of aerosol absorbtion to be further incorporated in the 130 
future, allowing for further understanding, advances in attribution, and improvement of models 131 
and impacts on people, health, and the climate system. 132 

2 Data and Methods 133 

2.1 AERONET Data 134 

This work uses Aerosol Optical Depth (AOD) and Single Scattering Albedo (SSA) from 135 
March 1997 to May 2017 using ground-based Aerosol Robotic Network (AERONET) 136 
observations. AERONET uses CET318-TS9 instruments to provide information about the 137 
spectral sun irradiance and sky radiances at multi-bands including at wavelengths of 340 and 380 138 
(AOD only), and 440, 670, 870 and 1020nm (both AOD and SSA) 139 
(https://aeronet.gsfc.nasa.gov/new_web/data_description_AOD_V2.html). This work uses level 140 
2.0 cloud screened and quality assured data (Holben et al., 2006), focusing on the time variations 141 
and loading/magnitude of the daily mean measurements over the entirety of the time series which 142 
have three or more individual measurements available within the time of one calendar day. To 143 
avoid the case where there is a weak signal and ensure sites have sufficient data to capture the 144 
feature of each site, all AERONET sites were filtered previous to classification, only retaining 145 
sites that have 100 or more days of data in addition to at least one of three conditions: high mean 146 
AOD, high extreme event AOD, or highly variable AOD. If a site has more than 300 days of 147 
total data (Wang et al., 2021; Dubovik and King et al., 2000; Dubovik et al., 2002), then the site 148 
is also used, even if it does not meet one of the three conditions. After filtering 68 sites remain 149 
for further analysis throughout East Asia, Southeast Asia, South Asia, Eastern Russia, and 150 
Australia. Furthermore, other than sites located in Western India and Western China, the 151 
remainder of the sites in this analysis do not generally have a significant dust loading, and 152 
therefore the major source of absorption is assumed to be black carbon (BC), allowing this work 153 
to assume a direct relationship between BC and SSA (Cohen and Wang, 2014). 154 

2.2 Mie Model 155 

A Mie model is used to connect the radiative measurements and observations from 156 
AERONET with approximations of the various optical, mixing state, and implied chemical 157 
properties of the aerosols. Mie Theory solves the aerosol optical properties based on a given size 158 
and optical distribution of particles, following Bohren and Huffman (1983). It assumed the time 159 
variation of the field is exp-iωt, leading exclusively to positive imaginary parts of the refractive 160 
index corresponding to absorbing media. Although externally, internally and core-shell mixtures 161 
are frequently used characterize particle morphologies and chemical compositions (Cheng et al., 162 
2008; Lin et al., 2013; Tao et al., 2019; Zhang et al., 2017), this work assumes that all the 163 
particles have a Core-Shell structure, which has been demonstrated to be reasonable in urban 164 
areas in Asia based on both modeling and measurement studies (Cohen et al., 2011; Cohen and 165 
Wang, 2014, Zamora et al., 2019), as well as being compatible with the AERONET inversion 166 
technique (Dubovick, 2002). 167 

Using particle size and refractive indices, this work computes the extinction coefficient 168 
(Qext), scattering coefficient (Qsca) and absorbing coefficient (Qabs). The resulting single-169 
scattering albedo (SSA) is calculated based on the equation (1) (Hansen et al., 2009). 170 𝑆𝑆𝐴 = 𝑆𝐶𝐴𝑇𝑇𝐸𝑅𝐼𝑁𝐺𝐸𝑋𝑇𝐼𝑁𝐶𝑇𝐼𝑂𝑁 = 𝑄௦௖௔𝑄௘௫௧ #(1)  
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Since AERONET does not report the SSA in the UV band, this work computes the SSA field 171 
using the MIE model at 340nm using a core-shell approximation where the aerosols contain a 172 
pure BC core with a scattering (i.e. Sulfate or Nitrate) coating, where the core refractive index is 173 
2.0+1.0i (Schuster et al., 2005) and the shell refractive index is 1.52-5*10-4i (B Aouierats et al., 174 
2010). This is physically consistent with the facts that many primary aerosols in these regions are 175 
organic and that they age rapidly as a function of their time in-situ (Cohen and Wang, 2014; May 176 
et al., 2015; Song et al., 1999). The model computes particle sizes of the core in steps of 0.01μm 177 
from 0.05μm to 0.50μm, and the shell in steps of 0.01μm from 0.01μm to 0.80μm. 178 

2.3 Copernicus Atmosphere Monitoring Service (CAMS) SO2 data 179 

CAMS global reanalysis product provides monthly average SO2 at 0.75°x0.75° resolution 180 
(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4-181 
monthly?tab=overview). This study uses data from 2019 data over 7 vertical levels from the 182 
surface to 700hPa. Additional measurements of SO2 at the surface are obtained over China from 183 
the Ministry of Ecology and Environment of the People’s Republic of China. 184 

2.4 Single Particle Soot Photometer (SP2) Measurement 185 

SP2 measures individual aerosol particles. These measurements are capable of determining 186 
the optical size and characteristics by scattering and absorption using 1040nm radiation, as well 187 
as induced laser incandescence of pure carbon-containing cores. In the real atmosphere at these 188 
wavelengths, the major source of absorption corresponds to BC (Bond, T.C., et al., 2013; Bond 189 
and Bergstrom, 2006; Bond, 2001; Penner, 1994), which can then be converted into a core 190 
diameter (Dc) using a mass equivalent diameter (ρ=1.8g/cm-3 for atmospheric BC) and assuming 191 
that BC is spherical (Martins et al., 1998; Smith and Grainger, 2014; Jacobson and M.Z., 2000, 192 
2001). The optical diameter of the non-BC portions of the particle (Dp) is calculated using Mie 193 
theory, and presented as (Dp/Dc). 194 

This study used SP2 data measured by the Institute of Atmospheric Physics Beijing 195 
(39.58’28’’N, 116.22’16’’E) observed from 2016.11.10 to 2017.09.15. This specific location is 196 
located very close to an AERONET station in Beijing (39.977N, 116.381E) which has 197 
measurements in 2001 (March to May), 2015 (September to December) and 2016 (January to 198 
July). The is an overlap between these two datasets from 2016.11.10 to 2017.01.12, which 199 
hereafter is used for the comparison between Dp/Dc inverted from AERONET and measured by 200 
SP2. 201 

2.5 In-situ lifetime calculation 202 

Considering that a minimum concentration of sulfuric (or nitric) acid is required before BC 203 
can age, the lifetime of SO2 provides an excellent proxy to approximate the time in-situ. This can 204 
be quantified following Equation 2 where M is the SO2 concentration, and k is the rate constant. 205 𝐷ሾ𝑀ሿ𝐷𝑡 = −𝑘ሾ𝑀ሿ#(2)  

The solution of Equation 2, after rearrangement of the terms is given in Equation 3 where k 206 
equals to t/τ, t is the in-situ time the particle spent in the atmosphere, τ is the e-folding time of 207 
SO2 in-situ, M(env.) is the mean environmental concentration of SO2 encountered by the particle, 208 
and M(growth) is calculated based on the [BB] Profile (more details in 4.1), based on the average 209 
atmospheric concentration of sulfate in the region studied being about 2.9ug/m3. 210 
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𝑡 = −𝑙𝑛 𝑀(𝑔𝑟𝑜𝑤𝑡ℎ)𝑀(𝑒𝑛𝑣. )τ #(3)  

In the background case, the assumed lifetime of SO2 is 1.56 days (Pham et al., 1995; Chuang 211 
et al., 1997; Chin et al., 1996; Croft et al., 2014; Restad et al., 1998). In the urban case, the 212 
lifetime is expected to be shorter, since the loading of OH is higher and coversion to H2SO4 gas 213 
and subsequent gas to particle conversion is faster (Cohen et al., 2011; Liu et al., 2018; Saiz-214 
Lopez et al., 2017; Saxena et al., 1987). This work recalculates the e-folding time assuming that 215 
Beijing is a representative site for urban chemistry. Based on the Beijing high time profile 216 
obtained by extracting the size value in the peak period (25 days in total) and the ground 217 
measurements of SO2 from the China EPA Beijing station, the urban lifetime is computed to be 218 
approximately 0.98 days. 219 

2.6 Statistics and analytics used in this work 220 

Considering that many sites in the region are undergoing rapid change and might have 221 
different characteristics during different time periods, a method is derived to look at extremely 222 
polluted days separately from the non-polluted days. This selection of heavily polluted days is 223 
made by defining the peaks of the data greater than the mean plus one standard deviation, 224 
removing these, and re-iterating 3 times. The net aggregation of those days is herein considered 225 
heavily polluted. 226 

3 Analyses of selected regions 227 

3.1 Time series of selected cases 228 

The temporal characteristics of daily average AERONET AOD (340nm) over different times 229 
are given in Figure 1, with non-polluted values shown in green, while those considered heavily 230 
polluted are uniquely represented as blue, black, and red respectively based on being filtered 231 
during the first, second, and third passes respectively. Common features observed include 232 
relatively regular signals of an annual peak and trough with a roughly similar start time, end time 233 
and duration. Some sites occasionally have large values and otherwise are relatively low or 234 
moderate in terms of AOD, but without any clear pattern (these patterns do not have any clear 235 
start or end time, duration, magnitude, or extremum), leading to the changes being associated 236 
with some process that locally varies significantly from time to time, consistent with long-range 237 
transport based events. In these cases, the average AOD during the non-peak times tends to be 238 
not high. In addition to the above situations, sometimes the distribution of AOD is completely 239 
irregular, with no obvious pattern during either the cleaner periods or the peak periods, and no 240 
obvious pattern in terms of high or low magnitude. In this case, the source region is more likely 241 
to be urban in nature, because urban emissions exist year-round without a large amount of 242 
variation, although small changes due to the day of the week, the season of the year, and local 243 
meteorology combine to provide temporal variability. 244 

Chiangmai is the biggest city in northern Thailand and is the only location in Northern 245 
Thailand, Myanmar, or Laos with an industrial presence (population of 127,000). However, 246 
based on previous work (Lin and Cohen et al., 2020; Wang and Cohen et al., 2020; Cohen et al., 247 
2017), this region generally has industrial and urban signals of emissions which are very small, 248 
instead having a signal dominated by biomass burning. Based on Figure 1a, the time series of 249 
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Chiangmai has a very unique feature with most of the year being relatively clean, and a short but 250 
intense time during which it is extremely polluted. The peak always occurs during roughly the 251 
same time (From February through 19 April) every year over the entirety of the 10 years of 252 
measurements, and furthermore a peak never occurs outside of this time. Given this and the 253 
previous works identified above, Chiangmai is considered the most representative region with 254 
respect to biomass burning. 255 

Taihu is a large lake located partially in Wuxi (7 million people) and partially in Suzhou (11 256 
million people), cities which have the second and third highest per capita PPP in China. The lake 257 
is located in the middle of the Shanghai, Nanjing, Hangzhou conurbation. For this reason, the 258 
region has a huge amount of individual vehicles, factories, manufacturing and other economic 259 
activity, yet is not adjacent to any specific road or factory. As such, it is quite representative of a 260 
region in which the major source of pollution is urban, as has been shown by previous works 261 
(Huang et al., 2021; An et al., 2021; Logan et al., 2013; Chen et al., 2020). As shown in Fig. 262 
1(b), a time series of the AOD tends to be high on average, and contains a large amount of 263 
variability that appears both random and not intensely concentrated during any specific periods 264 
of time. 265 

Palangkaraya is a small city located in southwestern Borneo, which is surrounded by forests 266 
and peatlands. The city itself is not a major source of emissions, and while the surrounding land 267 
had been frequently burned in the past, today it consists of plantations without any more 268 
burneding. The data available at this site ranges from 2012 through 2016, during which the 269 
location region was already transformed into plantation (nearly no local sources), but which was 270 
surrounded by generally high amounts of biomass burning hundreds to thousands of kilometers 271 
away coming from elsewhere in the Maritime Continent in 2012 and 2015, as demonstrated by 272 
the time series data itself, and previous studies (Deng et al., 2020; Cohen, 2014). The relatively 273 
low mean and  high standard deviation of AOD show a consistent pattern whereby the region is 274 
impacted by long-range transport of biomass burning from other regions. Consistently there is 275 
observed to be a variable start and end time changing year to year, starting as early as early 276 
august and ending as late as early November. Otherwise, this region tends to have very low 277 
levels of BC and generally is clean. This combination of conditions leads to it being an excellent 278 
candidate to represent long-range transport. 279 

Beijing as a typical megacity, with a population more than 18 million, and considerable 280 
sources from high tech, industry, and government. Based on the total available three year’s data 281 
in 2001, 2015 and 2016 the features in general appear to be like Taihu, consistent with the 282 
understanding that Beijing is also urban. The value of AOD during the highest period is about 283 
3.2, while most of the second pass and third pass data fall in the range of 1.5~3, with the concept 284 
that the temporal occurrence of peak events is random but tending to be of similar magnitude. In 285 
addition, there is a considerable amount of the total data (37%) which behaves like long range 286 
transport. This tends to occur during spring, but only occuring in specific years (Han et al., 2015; 287 
Wang et al., 2015; Wang et al., 2004). This is consistent with the fact that transport from western 288 
china (Shanxi, Shaanxi, Ningxia, etc.) and its large amount of energy and downstream energy 289 
emissions sources, or northeastern china (and its heavy biomass burning and industrial 290 
emissions) does occur at times when spillover occurs over the mountains surrounding the edges 291 
of Hebei and Beijng (Li et al., 2022; Qin et al., 2022; Wang et al., 2020). 292 

The temporal characteristics of AOD in the megacity of Hong Kong form another very 293 
interesting case, as observed in Figure 1(e). The value tends to have a relatively high mean with 294 
most measuremnts between 1.0 and 1.5, and seemingly occurring randomly throughout most of 295 
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the year. This result is consistent with its large industrial, transportation, and shipping sectors, 296 
and located in the middle of the highly populated and heavily industrialized Pearl River Delta 297 
region. However, there also is a recurring increase in the overall AOD (between 1.5 and 2.6) that 298 
occurs in October. These results are unexpected in Hong Kong when compared with many local 299 
studies (Tan et al., 2016; Fang et al., 2018; Xu et al., 2022), however they are consistent with 300 
recent studies which have focused on the changes in the Monsoon (Yang et al., 2006; Yao et al., 301 
2008; Lau et al., 1997) and biomass burning increases throughout Northern Southeast Asia (Lin 302 
et al. 2020; Wang et al., 2021). A major difference is that these studies which have observed 303 
these changes are whole-atmospheric studies, not specifically related to measurements at the 304 
surface. 305 

Lumbini in South Asia is a rapidly developing urban area in Nepal. The signal corresponds 306 
strongly with known urbanization, a high population density, and many small and randomized 307 
sources including rubbish and trash burning, small brick and cement kilns, and a growing 308 
proliferation of combustion-based transport options. The strength of the red signal varies in 309 
intensity and magnitude from an observed relative maximum in the middle and end of 2014 as 310 
development rapidly accellerated (Rupakheti et al., 2020). 311 

 312 
Figure 1. Time series of AOD at 340nm of different sites. (a) Chiang Mai Met Sta; (b) Taihu; (c) 313 
Palangkaraya; (d) Beijing; (e)Hong Kong PolyU; (f)Lumbini 314 

3.2 Typical Features of Well-Defined Source Regions 315 

To calculate the typical characteristics of biomass burning, the distribution of solutions of 316 
size pairs of core and shell radius corresponding to the intersection across all different 317 
wavebands of the measured SSA in Chiangmai during the high season will subsequently be used, 318 
hereafter called [BB], see Fig.2a. Since the burning in Chiangmai is local, the profile may be 319 
used to represent other regions which also have a significant local biomass burning source. If a 320 
region has a good match with the biomass profile, it implies that the local aerosol profile is 321 
influenced by local biomass burning. When a region has a good match with the biomass profile 322 
after being shifted upwards, it is consistent with a region that is impacted by biomass burning 323 

(a) (b) (c)

(d) (e) (f)



manuscript submitted to Earth’s Future 
 

 

which has undergone growth in-situ while undergoing transport between its source and where it 324 
was ultimately measured. In this case, an approximation of the age of the biomass burning can be 325 
obtained indirectly by considering how much upward shift is required to make the best fit, where 326 
the shift quantifies the amount of shell growth while in-situ. 327 

Similarly, the distribution from Palangkaraya is useds to compute the conditions under which 328 
long-range transport occurs, subsequently called [LRT] (Wang et al., 2021), see Fig.2b. The 329 
AOD pattern of Palangkaraya shows a combination of relatively low mean and a high standard 330 
deviation of AOD, which starts and ends around the same time every year. Local measurements 331 
of CO from the long-term WMO station in the same city also has a similar signal (Aouizerats et 332 
al., 2014). Basically, the local environment is nearly pollution free, except for when biomass 333 
burning occurs on Sumatra, Borneo, and other islands in the region, which then transport to the 334 
site. For these reasons, measurements at this site are an excellent candidate to represent sites 335 
typically impacted by long-range transport. 336 

Finally, the distribution of solutions of size pairs of core and shell radius corresponding to the 337 
measured SSA in Taihu referred to as [UR], see Fig.2c. Since Taihu is near the center of the 338 
world’s largest conurbation, yet located in the middle of a lake, highways and other immediate 339 
point sources are reduced, making the profile highly representative of a generalized urban area. 340 

 341 
Figure 2. BC core and Sulfate shell size distributions, with corresponding SSA (color) at the 342 
three well-defined source sites: Chiangmai [BB], Palangkaraya [LRT], and Taihu [UR]. 343 

3.3 Quantifying New Spatial and Temporal Relationships in BC Properties Induced by 344 
Various Natural and Anthropogenic Forcings 345 

The climatologically constrained SSA distribution in the 126 million population Greater Bay 346 
Conurbation (hereby defined based on measurements from the Hong Kong PolyU site) is given 347 
in Fig.3a. The climatological core and shell size distributions show mostly urban characteristics, 348 
as expected from the high population density, large and growing economic footprint in this 349 
region. However, the geographical location of Hong Kong places it in a region influenced by the 350 
Asian monsoon, in a dense urban area surrounded by significant agriculture, and upwind from 351 
the rapidly developing and transforming nations in ASEAN. 352 

As expected, the overall climatology of aerosol properties in Hong Kong, based on the 353 
magnitude of the SSA (i.e., color) and size distribution of both the core and shell (i.e., shape of 354 
the SSA distribution) derived over this station is mostly dominated by [Urban], with very small 355 
amounts of [LRT] and [BB] (Fig 3a). However, both inter-annual and intra-annual variability are 356 
observed to be very important in this region.  357 

A first case is observed in Fig 3b-c. Monsoon theory indicates that there is a strong Southeast 358 
wind occurring in July and August, leading to flow from the clean South China Sea to the 359 
Chinese Mainland, with Hong Kong being one of the first points of contact (Yang et al., 2014; 360 
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Lawrence and Lelieveld, 2010; Webster and Yang, 1992; Zhu et al., 2012). It has generally 361 
implied that during this time, the air should be extremely clean. And when analysis is done using 362 
all days from July and August as given in Fig 3b, the local signal is observed along with an LRT 363 
signal. However, a look at only the August data reveals a pure LRT signal (Fig.3c). Since the 364 
winds are not changing during this period of time, therefore the results are consistent with a 365 
significant change in the aerosol loading on the southern edge of the South China Sea. This is 366 
consistent with known massive fire events which occur starting in August on a nearly annual 367 
basis (Deng et al., 2021; Cohen, 2014; Cohen et al., 2017; Wang et al., 2020; Li et al., 2020; 368 
Chen et al., 2017). This data offers a first independent characterization of significant long range 369 
transport of biomass burning absorbing aerosol over 2000km from Borneo to Hong Kong.  370 

Furthermore, it can be seen in Figs 3d-g that in 2006 the [Urban] source occupies the vast 371 
majority of the September/October/November signal, with a very small amount of BB mixed in, 372 
while the September/October/November signal in 2014 is found to mostly consist of LRT with 373 
only a small amount of Urban. Similarly, the January signals in 2014 and 2006 are also vastly 374 
different from each other, with 2014 being mostly Urban in nature, and 2006 having an 375 
extremely strong BB signal. All of these results are consistent with the fact that 2006 was a 376 
strong El-Nino and 2014 was a mixture of a budding La-Nina occurring at the same time as a 377 
negative IOD (Logan et al., 2008; Deng et al., 2021; Cohen, 2014; van der Werf et al., 2008; 378 
Rinsland et al., 2008; Chi et al., 2019; Xie and Fang, 2019). 379 

 380 
Figure 3. Constrained distribution of SSA from model result of Hong Kong PloyU during 381 
different special time periods with urban, Biomass Burning and Long-range transport profile. 382 
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Lumbini is located in Nepal and represents the densely populated Southern Slopes of the 383 
Himalayas, a region impacted by biomass burning, the Monsoon, and very large variance in 384 
aerosol loadings from ultra clean to some of the most polluted conditions on the planet. Fig 4 385 
shows the constrained SSA distribution during three seasons where there are vastly different 386 
conditions observed. 387 

First during the monsoon season (JJAS) the majority of the sources are influenced by long 388 
range transport, consistent with the squeezing of air from the Continent into the foothills of the 389 
Himalayas (Dumka et al., 2015; Rupakheti et al., 2017; Rupakheti et al., 2020; Chen et al., 390 
2020). During this time, a mixture of long-range transport and urban aerosols are observed, with 391 
the solution covering a very wide range of particle radii from 210nm up to 1030nm. This result is 392 
consistent with the site being impacted by air masses both of a local origin as well as those 393 
having been transported very far away from regions with a very high loading. These results are 394 
consistent with the rapid onset in terms of wind speeds, and consistent direction from south to 395 
north. Localized fires, coupled with urban areas in Eastern India and Bangladesh are all upwind 396 
from Lumbini during this time. It is important to note that while heavy rain removes aerosols 397 
during this time of the year, that it also does not rain 24 hours a day 7 days a week over the entire 398 
domain, and therefore a significant amount of aerosols will be transported and not fully removed, 399 
consistent with findings by (Lee and Wang, 2015; Takeishi and Wang, 2021). This finding is 400 
further supported by the observed higher concentration of sulfate to BC ratio, requiring a smaller 401 
amount of overall freshly-emitted BC particles, and a longer time in-situ, both of which allow the 402 
surviving particles more time and greater opportunity to grow. It is also consistent with the 403 
highly humid atmosphere providing plenty of water to facilitate the growth of a shell. As 404 
demonstrated in Fig.4(a) the BC core size is less than 220nm, while the remaining 50 to 170nm 405 
is found in the shell. 406 

Second, during the latter part of the cold season (Fig4c-d)(specifically JF) there is observed 407 
to be a large amount of locally dominated aerosol sources (both [Urban] and local [BB] 408 
associated with economic activity, solid fuel used for cooking, etc.), which in turn fit well with 409 
the observed types (Dumka et al., 2008; Kumar et al., 2015). However, during the earlier part of 410 
the cold season, also termed the harvest season (ND), the majority of the sources are influenced 411 
by local biomass burning, with the results showing that there is a very absorbing fraction of 412 
biomass burning type solely observed during this period of time (Rupakheti et al., 2017). The 413 
impact of crops being harvested and some straw being left to dry can be observed in both of 414 
these seasons, and is ultimately burned to clear the land, or stored and later burned for heating 415 
later in the winter, completely consistent with the observed mixture of [Urban] and [BB] profile 416 
match in JF (Engling et al., 2011; Lee and Wang, 2017; Duc et al., 2021). This result is further 417 
consistent with works by Rupakheti (2019) who demonstrated that aerosols during the post-418 
monsoon season are mostly associated with the biomass burning. Wan et al (2017) who 419 
demonstrated the presence of biomass burning organic aerosol tracers is highest in winter and 420 
late autumn compared to other seasons of the year, and Liu and Cohen (2022) who demonstrated 421 
that areas in Northeastern India at the same time have a significant underestimate in NOx 422 
emissions associated with biomass burning. 423 

Overall, these conditions match well with the extensive use of local brick kilns and rubbish 424 
burning occurring in the winter, transport from India and Bangladesh during the monsoon, and 425 
burning of straw and other agricultural waste during the harvest season. However, given that the 426 
cold period has 2 different phases, further work should be clear about which of the two phases is 427 
being indicated when analyzing the impacts of biomass burning in this part of the world. 428 
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 429 
Figure 4. Constrained distribution of SSA from model result of Lumbini during winter(DJF), 430 
Harvest season and Monsoon with urban, Biomass Burning and Long-range transport profile. 431 

 432 
Beijing is a highly dense urban area with a very large population, extensive private transport 433 

and without much heavy industry, indicating that an urban profile would generally be expected 434 
to dominate. Figure 5 demonstrates that over 9 months of the year, that there is a very strong 435 
urban signal in the data, when analyzed on a month-by-month basis. However, Beijing is also 436 
located at the foothills of mountainous regions to the West and North, and therefore can be 437 
subject to biomass burning and dust transport due to its unique geography. 438 

A deeper investigation of the month-by-month properties show a clear intra-annual pattern 439 
which coherently and smoothly changes on a month-by-month basis, transitioning from one 440 
aerosol type to another, a very different finding from the hundreds of studies grouping Beijing 441 
aerosol properties on a seasonal basis (Liu et al., 2019; Wang et al., 2016; Han et al., 2014; Sun 442 
et al., 2015; Hu et al., 2017; Zhang et al., 2013; Zheng et al., 2005). November and December 443 
demonstrate a strong, narrow, and pure [BB] signal, while January has a strong [BB] signal, but 444 
one which is slightly less narrow. Feburary continues this transition to smaller BC core sizes and 445 
higher SSA values, with the entire pattern from January shifted to the left by 0.03um, 446 
demonstrating a mix of both [BB] and [Urban] signals. March continues this leftward shift and 447 
thickening of the solution space, with nearly all of the results falling in the [Urban] range, while 448 
also comprehensively filling the breadth of the [Urban] signal. Both April and May reveal a pure 449 
[Urban] signal, without [BB] or [LRT] being observed. This is also observed in September, but 450 
in this case, it is transitioning in terms of larger BC cores in the opposite direction from [LRT] 451 
back towards [BB]. In June, the signal shifts further left, with a loss of some [Urban] signal and a 452 
growing signal of [LRT]. In July, the maximum [LRT] contribution is obtained, with the [LRT] 453 
contributing roughly 50% and the [Urban] contributing the remainder. August starts to shift in 454 
the opposite direction, with the BC core size growing, and the fraction of [LRT] decreasing to 455 
40% and the fraction of [Urban] increasing. Finally, in October, the signal is thinner on average 456 

(a) (b)

(c) (d)



manuscript submitted to Earth’s Future 
 

 

and consists of mostly [Urban] signal and a small amount of [BB]. These results are indicative of 457 
the fact that while Beijing is an urban area, and the measurement site is located in the northern 458 
part of the urban core, that the sources of aerosols are highly variable from month-to-month, 459 
including biomass burning from near-by, and long-range-transported sources from beyond the 460 
JingJinJi area. It is hoped that further projects analyzing sources and profiles of absorbing 461 
aerosols in Beijing will look at a higher time frequency and move beyond the season-to-season 462 
approach currently adapted by the community. Some specific examples are that the biomass 463 
burning seems to cut between both the late Autumn and early Winter periods, and that the large 464 
sources of long-range transport seem to mostly exist in early summer, but over a shorter period 465 
than the summer as a whole. The fact that each month except for November and December is 466 
unique, indicates that there are far more complex forces at work. 467 

 468 
Figure 5. Constrained distribution of SSA month-by-month, demonstrating Urban, BB, LRT 469 
profiles all during different times of the year. 470 

The resulting BC and shell size information during only the high periods of AOD in time (as 471 
displayed in Fig.1) are shown in Fig.6. This focus on when the AOD is highest offers the 472 
perspective of the properties of the BC and shell size when the loadings are most significant. 473 
There is a clear long range transport path observed at both Dongsha Island and Chen Kung 474 
University, and a very small probability of long-range transport identified in Hong Kong, all of 475 
which are consistent with the high biomass burning time periods found throughout Continental 476 
Southeast Asia (Lin et al., 2014; Chan et al., 2003; Lee et al., 2017; Sahu et al., 2014). These 477 
results are found to match very well with the standard [LRT] signal observed in Chiangmai, but 478 
shifted vertically upwards. This result is consistent with the source being biomass burning from 479 
Chiangmai and other surrounding areas (Huang et al., 2013; Fu et al., 2012; Chuang et al., 2015), 480 
which later transports to Dongsha and Chen Kung. While in-route, there is continued in-situ 481 
growth due to SO2, NO2, and VOCs from urban areas, and DMS from the South China Sea. The 482 
high time first appears in Hong kong from February 12 through April 13, with only 2% of the 483 
total solution being [LRT], which given the local magnitude of emissions during the dry season 484 
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in the GBA area (Chen et al., 2020; Duc et al., 2021), may still offer a somewhat significant 485 
impact. The contribution in Dongsha is observed from February 19 to April 22 with a far larger 486 
percentage of of [LRT] at 42%, due to the fact that Dongsha does not have local sources (except 487 
for shipping), but it is still close enough to the GBA that it may contain some not-so-aged 488 
transported aerosols. Finally, the contribution in Chen Kung is observed from March 3 to May 8 489 
and has 62% of [LRT], indicating that long range transport dominates the total loading there, 490 
consistent with the fact that there are very few local sources. 491 

Under the assumption that Chiangmai is the source of the biomass burning, the particles will 492 
travel from west to east, first arriving in Hong Kong, next arriving at Dongsha, and finally at 493 
Chen Kung, assuming that the eastern wind in the lower free troposphere is relatively steady 494 
(Wang et al., 2013; Liu et al., 1999). Various one-off experiments and model studies have been 495 
conducted to study the impacts of the annually varying biomass burning events occurring in 496 
Continental Southeast Asia on surrounding areas. While there are many such studies which have 497 
demonstrated the plume in the near-downwind areas including Vietnam, Guangxi and Hainan 498 
(Huang et al., 2020; Ding et al., 2004; Li et al., 2007; Ding et al., 2021; Ding et al., 2013), there 499 
are very few which have been able to successfully transport as far as we have observed here 500 
(Cohen, 2014; Wang et al., 2021). Furthermore, while modeling studies of individual single fire 501 
events transporting in such a manner have been found (Aouizerats et al., 2015; Yen et al., 2013; 502 
Cohen et al., 2017; Wang et al., 2021), there has been no clear observational study, using data 503 
over multiple years (12 at Chen Kung, 10 at Hong Kong, and 6 at Dongsha), in which such a 504 
finding has been made. Furthremore, these findings are not limited in time to a single season or a 505 
single transport event, and provide a comprehensive, fully measurement based analysis. 506 

 507 
Figure 6. Constrained distribution of SSA from model result of sites that located along possible 508 
transport path. 509 
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4 Applications of Results 510 

4.1 In-situ Lifetime of Sulfur Dioxide 511 

The computed e-folding time is generally long, consistent with the fact that the air parcels 512 
have spent a significant amount of time being transported through the free troposphere, as 513 
demonstrated in Table 1. These e-folding times are approximated around the idea of DMS and/or 514 
anthropogenic SO2 decaying into SO4- which then condenses onto the shell. The results are not 515 
strongly influenced by the quick removal of SO2 and conversion into H2SO4 that occurs in the 516 
boundary layer near emissions sources under very high OH, wet and warm conditions found in 517 
heavily polluted conditions in this part of the world. Instead, the aging is mainly controlled by 518 
gas phase oxidation process happening in cooler and lower pressure air, which is also more likely 519 
to be exposed to UV radiation since it is found above the cloud layer. The results therefore 520 
should be consistent with relatively higher amounts of OH (closer to urban than background), 521 
due in part to the extra amount of UV radiation available above the cloud layer. Additionally, the 522 
results should show slower growth due to the lower pressure and cooler conditions. Base on 523 
equation (3) the maximum and minimum lifetime of SO2 in two different chemical background 524 
conditions (the background case results are given in the columns of 4 and 5; the urban case 525 
results are given in the columns of 6 and 7) are calculated in this manner and listed in Table 1 526 
and the possible uncertainty have been evaluated.  527 

The results are consistent with the lifetime of SO2 being longer as compared to the lifetime in 528 
the boundary layer where the temperature and recycling of OH are both high. In the free 529 
troposphere, although the OH may be high due to stronger UV, the lack of water vapor and 530 
VOCs lead to OH regeneration being very slow. Since the lifetime in urban areas is faster, it 531 
would make sense that by efficiently reducing the SO2 emitted from urban areas, the longer 532 
timescale the aging of BC and sulfate is reduced (Cohen et al., 2011) for the BC emitted from the 533 
biomass burning and subsequently transported downwind over urban areas. Overall, while these 534 
lifetimes are long, they are not so long as to be ruled out based on the amount of time it takes to 535 
transport form the source region to the measured destination. 536 

Testing the values of the e-folding time under background OH conditions yield a maximum 537 
lifetime with a value ranging from 21 to 32 days and a minimum ranging from 16 to 20 days. 538 
This increase in the amount of time, in particular for the minimum number of days from 10 to 16 539 
leads to a set of solutions which are likely not possible. The amount of time required to grow 540 
would be more than the amount of time that it would take to be transported. Overall, the breadth 541 
of the solution range for lifetime is different between the minimum and maximum cases, 542 
consistent with the fact that the decay of atmospheric SO2 into sulfate is slower than expected, 543 
but still reasonable in the case of a higher OH concentration, with the difference from 0 days to 9 544 
days. The results require that a significant amount of the total BC is observed above the 545 
boundary layer. 546 

There are other possible methods and assumptions which could be made to decrease the 547 
aging lifetime, which have not been considered herein due to the lack of data. First, higher levels 548 
of SO2 that provided by CAMS, possibly due to increased vertical transport of SO2 from urban 549 
areas along the path of transport, or from heightened DMS emissions or from faster chemical 550 
processing of DMS could lead to higher M(env.) in equation 3. Second, this work didn’t consider 551 
the NO2+OH reaction to calculate HNO3, which is optically the same as H2SO4 and has the same 552 
effect on the result, which will make the in-situ lifetime shorter. Third, this work didn’t consider 553 
reactions which may occur on the liquid water existing on the coated BC surface (e.g. potentially 554 
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sulfate aerosol production via aqueous phase oxidation), which would also make the in-situ 555 
lifetime shorter. If all these processes are taken into consideration, it would make the in-situ 556 
lifetime shorter, but not so short that the background OH cases would then be too short to match 557 
with the transport lifetimes. In general, the difference between the max lifetime of background 558 
OH and the min lifetime of urban OH allow the real world observed transport lifetime to be 559 
matched, based on the assumption of whether the oxidation and growth is purely based on the 560 
gas-phase oxidation and equation 1, or whether these other processes are also important. 561 
Site_name Longitude Latitude Max(BG,days) Min(BG,days) Max(UR,days) Min(UR,days) 

ARM_Darwin          130.891 -12.425 27 25 17 15 
ARM_Nainital        79.458 29.359 23 19 15 12 
Anmyon              126.33 36.539 25 19 16 13 
Bac_Giang           106.225 21.291 26 20 17 12 
Bac_Lieu            105.73 9.28 22 16 14 10 
Baengnyeong         124.63 37.966 28 22 17 14 
Bandung             107.61 -6.888 26 21 16 13 
Beijing             116.381 39.977 30 26 21 17 
Beijing-CAMS        116.317 39.933 28 24 18 15 
Chen-Kung_Univ      120.217 23 24 18 15 12 
Chiang_Mai_Met_Sta  98.972 18.771 — — — — 
Chiayi              120.496 23.496 26 20 16 13 
Darwin              130.892 -12.424 — — — — 
Dhaka_University    90.398 23.728 29 24 19 15 
Doi_Ang_Khang       99.045 19.932 29 23 19 14 
Dongsha_Island      116.729 20.699 23 17 14 11 
EPA-NCU             121.185 24.968 26 21 17 13 
Fukuoka             130.475 33.524 30 21 19 13 
Gandhi_College      84.128 25.871 31 23 19 14 
Gangneung_WNU       128.867 37.771 26 20 16 12 
Gosan_SNU           126.162 33.292 21 18 13 12 
Gual_Pahari         77.15 28.426 31 25 20 15 
Gwangju_GIST        126.843 35.228 26 20 16 12 
Hankuk_UFS          127.266 37.339 29 22 18 14 
Hokkaido_University 141.341 43.075 26 21 16 13 
Hong_Kong_PolyU     114.18 22.303 31 22 19 14 
Jabiru              132.893 -12.661 27 23 17 14 
Jaipur              75.806 26.906 28 21 18 13 
Jomsom              83.714 28.778 25 21 16 13 
KORUS_Kyungpook_NU  128.606 35.89 26 21 16 13 
KORUS_UNIST_Ulsan   129.19 35.582 25 22 15 14 
Kaashidhoo          73.466 4.965 26 19 16 12 
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Kanpur              80.232 26.513 31 24 19 15 
Kathmandu-Bode      85.39 27.68 — — — — 
Kathmandu_Univ      85.538 27.601 31 26 19 16 
Lahore              74.325 31.542 31 22 19 14 
Luang_Namtha        101.416 20.931 30 23 16 14 
Lumbini             83.28 27.49 — — — — 
Mukdahan            104.676 16.607 26 19 16 12 
NCU_Taiwan          121.192 24.967 26 21 17 13 
NGHIA_DO            105.8 21.048 27 20 17 13 
Nainital            79.458 29.359 28 22 18 14 
Nong_Khai           102.717 17.877 29 21 18 13 
Noto                137.137 37.334 26 19 16 12 
Osaka               135.591 34.651 24 20 15 12 
Palangkaraya        113.946 -2.228 — — — — 
Pimai               102.564 15.182 26 20 16 12 
Pokhara             83.971 28.151 27 26 17 16 
Pune                73.805 18.537 31 27 20 17 
Pusan_NU            129.083 35.235 28 21 17 13 
SACOL               104.137 35.946 32 26 20 16 
Seoul_SNU           126.951 37.458 28 21 18 13 
Shirahama           135.357 33.693 24 18 15 11 
Silpakorn_Univ      100.041 13.819 29 21 18 13 
Singapore           103.78 1.298 23 18 15 11 
Son_La              103.905 21.332 30 20 19 13 
Songkhla_Met_Sta    100.605 7.184 24 17 15 11 
Taihu               120.215 31.421 — — — — 
Taipei_CWB          121.5 25.03 26 21 17 13 
Taiping             114.362 10.376 — — — — 
USM_Penang          100.302 5.358 23 17 14 11 
Ubon_Ratchathani    104.871 15.246 25 18 16 11 
Ussuriysk           132.163 43.7 30 23 19 15 
Vientiane           102.57 17.992 26 20 17 12 
XiangHe             116.962 39.754 30 23 19 14 
Xinglong            117.578 40.396 30 22 19 14 
Yonsei_University   126.935 37.564 24 22 15 14 
Yulin               109.717 38.283 30 29 19 18 
 562 
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4.2 Sensitivity of Solutions to Different AERONET Data Assumptions 563 

The AERONET measurements contain some data which is of lower or questionable quality 564 
as compared to the bulk of the data. This is frequently due to either not enough absorption to 565 
successfully measure the SSA (i.e., when the AOD<0.4), non-successfully cleared thin clouds, or 566 
other such phenomenon. To account for this uncertainty, this work has previously focused solely 567 
on the middle 80% of the total SSA measurements for each given dataset at each wavelength and 568 
time period studied. By discarding the top and bottom 10%, the reliability of the remaining 569 
measurements is much higher, and therefore the model results are more believable. The fact that 570 
differences on a monthly-basis are already clearly observed is proof that this is a reasonable 571 
approach.  572 

However, selecting the central 80% is also arbitrary. So, a further sensitivity study is done to 573 
consider the effects of choosing the central 90% and 70% of data respectively, and quantify the 574 
impact of this cutoff on the computed BC and SO4 size distributions. The results are given in 575 
Fig.7. A respective use of 70% and 90% of the data lead to a slightly biased change, although not 576 
leading a significant overall difference. In the case of 70% of data, the SSA distribution reduces 577 
by 32%, 27% and 30% respectively in the urban, LRT and BB cases. As observed, there is a 578 
slight bias with the decrease in urban being a further separation from LRT, and the decrease in 579 
BB being a move towards urban. In the case of 90% of data, the SSA distribution increases by 580 
23%, 25.7% and 50% respectively in the urban, LRT and BB cases. As observed, there is a slight 581 
bias in the LRT case, in which case it extends further from the urban and in the BB case, in 582 
which case it also extends further from the urban. However, in all cases, the biases do not 583 
significantly alter the shape, and if anything, make it easier to distinguish the different 584 
underlying factors from each other. 585 

 586 
Figure.7 SSA distribution of three profiles with different amount of AERONET measurement 587 
data used to constrain the MIE inversion. When the central 70% of the measurements are used, 588 
the results are given in dark blue, when the standard 80% of the measurements are used the 589 
results are given in medium blue, and when the central 90% of the measurements are used the 590 
results are given in light blue. The plot on the left is for Urban, the plot in the center is for LRT, 591 
and the plot on the right is for BB. 592 

4.3 Comparison with Independent Measurements 593 

The MIE model inverted core and shell sizes in Beijing overlap at the same time with 594 
measurements taken by SP2 in Beijing from 2016.11.10 to 2017.01.12, as shown in Fig.8a. The 595 
inverted ratio of Dp/Dc from the MIE model approach and as observed from SP2 are shown in 596 
Fig.8b. This comparison assumes that the refractive index of core and shell are the same between 597 
the surface SP2 measurements and the column inverted Mie outputs. In general, the two methods 598 
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compare well with each other, with nearly all of the SP2 measurements (the 99.5% larger than 599 
1.2) falling within the range of the MIE model inverted results. Next, the bulk of the SP2 data 600 
occurs with a ratio of 1.4-1.6, which also happens to be the mode of the range of outputs of the 601 
MIE model inversion. The only discrepancy is that the MIE model inversion has a range of 602 
values with Dp/Dc larger than 2, which is not observed in the SP2 data. 603 

There are a few known possibilities for this discrepancy. First, is that the SP2 may fail to 604 
capture very small particles of BC, which may disaggregate or disintegrate when being hit by the 605 
laser associated with the SP2 detector. Similarly, some of the sulfate shell may be evaporated 606 
due to the heating of the BC, leading to a smaller than actual shell being measured. A third 607 
possible source of disagreement is that the SP2 only measures particles near the ground, while 608 
AERONET measures particles throughout the troposphere, and particles which are aloft as 609 
pointed out already, are more likely to have been in the air longer, and therefore be more 610 
significantly aged, leading to a larger value of Dp/Dc. It is possible that the ageing scale or 611 
transport range observed at the surface urban site may not pick up the fact that there are some 612 
biomass burning aerosols which are mixed into the total column but not necessarily at the 613 
surface, consistent with the fact that 28% of the observed solution space is BB while 72% is 614 
Urban.  615 

 616 
Figure.8 Size distribution during overlapping time period between AERONET and SP2 617 
measurement in Beijing(left) plot. Probability density comparison of Dc and Dp/Dc of two 618 
datasets. 619 

5 Conclusions 620 

Applying a Mie-model with a core-shell approximation over multiple UV bands of the 621 
observed clear sky AERONET SSA has successfully allowed for a new inversion of BC and 622 
shell size and mixing state information to be obtained. These results are observed to group very 623 
well at typical geographical locations with well characterized BC properties. These results help 624 
deepen the understanding of first order chemical aging and particulate growth, and how the 625 
distribution of particle size and absorbing optical characteristics behave under these different 626 
classifications. By narrowly focusing on the size of BC, the size of the refractive shell, and the 627 
mixing state, results are found to be consistent with advanced modeling studies and independent 628 
measurements. The results conform very well over regions that are known to be heavily polluted, 629 
both in terms of urban, biomass burning, long-range transport and mixed sources. 630 

(a) (b)



manuscript submitted to Earth’s Future 
 

 

Deeper analysis of the temporal and spatial variance, allows for disentanglement of 631 
overlapping source types, clearly identifing multiple characteristics as a function of space and 632 
time. Some of these characteristics are mixed in time with others, showing that multiple source 633 
types are possible to quantify in a probabilistic manner. These results are consistent with the 634 
atmospheric column quite reasonablying having different sources located near the surface from 635 
those observed at the same time in the free troposphere. During specific times, individual sites 636 
are observed to rapidly transition from one dominant characteristic state to a different one, 637 
indicating significant different sources, atmospheric properties, and driving factors behind the 638 
aerosol distribution, even within a single geographic place. Frequently these changes occur at 639 
time scales with short temporal duration, although consistently across many different years, 640 
indicating new definitions of climate, season, and dynamical driving patterns may be more 641 
appropriate to use, rather than standard climatological definitions. 642 

The work demonstrates that these types can be successfully divided into three distinct and 643 
unique size distributions for [Urban], [BB] and [LRT] conditions. These findings are applied 644 
across many different regions in terms of geography, economic development levels, and national 645 
boundaries, all of which have their own unique air pollution control rules, environmental goals, 646 
and air pollution emissions characterizations. Three excellent examples are observed in Hong 647 
Kong, Kathmandu and Beijing. These sites clearly exhibit local sources as expected, but also 648 
have periods of time where intense biomass burning, long range transport, and mixtures of these 649 
dominate. However, such shifts frequently occur only during specific months, although these 650 
patterns are found to hold consistently over many years. In each case, there is an unexpected 651 
scientific result: Hong Kong is found to have long-range transport during the Asian Monsoon 652 
(usually thought to be clean), associated with LRT transport from Southeast Asia; Nepal is found 653 
to have LRT during the monsoon rapidly switching to BB post Asian Monsoon, even when the 654 
region experiences the Monsoon rains; and Beijing is exhibited to have all different types 655 
slowing shifting from one to another and back, but only observed on a month-by-month basis, 656 
vastly different from the typical analyses which group Beijing season-by-season and do not 657 
identify these regular occuring and shifting patterns. 658 

Based on how these best fit distributions change in time, in specific being shifted from a 659 
standard distribution to one with more shell growth, allows for an indirect way to quantify in-situ 660 
lifetime. This is clearly observed across many of the sites, allowing for a new observational 661 
constraint on the lifetime of aerosols and a quantitative way to constrain the mixing between 662 
local and non-local sources. The in-situ age of aerosols at different sites reveals a vast difference 663 
in in-situ lifetime, ranging from a week and a half up to a month, based on assumptions of the 664 
time of year and pure gas-phase aging and growth. Since these changes are observed throughout 665 
the total column, they are reflective of lifetime on a climatological scale, and provide support to 666 
many studies which have indicated that absorbing aerosols can transport significant distances, 667 
such as across the Pacific Ocean and to the three poles.  668 

This work demonstrates that control strategies can be strategically developed for each 669 
individual location and adapted during different times of the year. Locations which have a single 670 
type would adopt a single stragey, while those with multiple times or time varying types would 671 
develop strategies which are multi-perspective and vary from time to time. This approach may 672 
allow for significant cost savings and/or more efficient control efforts. Locations with special 673 
events could opt for control of different types and amounts during different periods of the year. 674 
This flexibility will provide new opportunities to enhance the local atmospheric environment. 675 
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