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Abstract

A variety of smoke model frameworks are used to simulate smoke for research and forecast applications. Here, a comprehensive

summary is provided which covers the many different smoke models that are available, while simultaneously highlighting some

of the strengths and weaknesses of each model, along with the uncertainties surrounding each of these frameworks. This review

also provides an in-depth discussion on coupled wildfire-atmosphere models, which is a relatively newer smoke modeling tool

not previously discussed in other review papers. Key processes related to smoke transport and dispersion, such as the wildfire

plume rise, are also discussed in length. This review wraps up with a discussion of future smoke modeling needs and potential

new research directions for smoke transport and dispersion models.
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11 Abstract:

12 A variety of smoke model frameworks are used to simulate smoke for research and forecast 

13 applications. Here, a comprehensive summary is provided which covers the many different 

14 smoke models that are available, while simultaneously highlighting some of the strengths and 

15 weaknesses of each model, along with the uncertainties surrounding each of these frameworks. 

16 This review also provides an in-depth discussion on coupled wildfire-atmosphere models, which 

17 is a relatively newer smoke modeling tool not previously discussed in other review papers. Key 

18 processes related to smoke transport and dispersion, such as the wildfire plume rise, are also 

19 discussed in length. This review wraps up with a discussion of future smoke modeling needs and 

20 potential new research directions for smoke transport and dispersion models. 

21
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24 1. Introduction

25 Smoke is a product of the combustion process that contains various chemical species and 

26 particulates, which can degrade air quality across a broad range of spatiotemporal scales 

27 (Goodrick et al., 2012). Increased fire activity due to climate change (Westerling et al., 2006; 

28 Spracklen et al., 2009) and robust population growth across the western U.S. is expected to 

29 expose 82 million Americans to smoke in the coming decades (Liu et al., 2016a). As wildfires 

30 increase in frequency and intensity, it is imperative that tools are developed and improved upon 

31 for studying and forecasting smoke and combustion products detrimental to health, including 

32 particulate matter with a diameter less than 2.5 µm (PM2.5) and precursors for ozone (O3) 

33 formation downwind of the fire (Jaffe and Widger, 2012).  Some objectives of smoke modeling 

34 includes limiting the public’s exposure to unhealthy concentrations of smoke and determining 

35 how smoke could impact active fire management operations during active wildfires and 

36 prescribed burns (Kochanski et al., 2018; Peterson et al., 2020). Prescribed burns, for example, 

37 are used to manage forests, combat wildfires, and mitigate public exposure to smoke (Rappold et 

38 al., 2014). Igniting fires in a controlled setting, limits the intensity and fuel consumption of 

39 wildfires, and therefore reduces smoke production relative to uncontrolled wildfires with no fuel 

40 thinning (Haikerwal et al., 2015). Smoke models can also be used to forecast meteorology that 

41 can favorably disperse smoke from prescribed burns, and to inform burn decisions so that the 

42 public’s exposure to unhealthy concentrations of smoke is limited (Lahm, 2015). Finally, smoke 

43 models are also needed to elucidate processes that govern the chemical makeup and transport of 

44 smoke. Such processes range from small-scale mechanisms that drive the wildfire plume rise 

45 (Mallia et al., 2020a) to the global impacts of smoke aerosols on climate (Peterson et al., 2018; 

46 Christian et al., 2019). 
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47 Forecasting and simulating smoke transport is an inherently difficult task as wildfires and 

48 smoke transport is a multi-scale phenomenon with many interconnected processes (Figure 1). 

49 For example, the wildfire plume rise, which is responsible for injecting smoke in the atmosphere, 

50 is controlled by many factors such as atmospheric stability, wind shear, heat fluxes, and fire 

51 geometry (Figure 1) (Freitas et al., 2007; 2010). Pyroconvective plumes can also affect local 

52 meteorology by increasing near surface winds (Clements et al., 2007; Kochanski et al., 2013), 

53 shading areas underneath the plume (Figure 1) from direct insolation (Robock, 1988; 1991; 

54 Lareau et al., 2015; Walters et al., 2016; Kochanski et al., 2019), and in rarer cases; plumes can 

55 initiate fire-generated thunderstorms (i.e pyrocumulonimbus; Fromm et al., 2010). These 

56 processes can often feedback to the local meteorology at the fire line and impact wildfire 

57 behavior. 

58 The amount of smoke and heat that is being emitted by the fire serve as essential inputs for 

59 smoke models (see #1 in Figure 1). Smoke emissions are used to determine the mass flux of 

60 chemical species into the atmosphere while the heat flux and fire area are important variables for 

61 determining how far up smoke might be lofted into the atmosphere. However, accurately 

62 quantifying fire emissions and heat fluxes from wildfires remains challenging. Estimating smoke 

63 emissions and heat fluxes requires information on the exact location and geospatial context of 

64 active burning, a description of fuels that are being consumed by the fire, and how intensively 

65 that fuel burns (see Chapter 5). Previous work has estimated that uncertainties associated with 

66 PM2.5 emissions from fires could be as high as 64% (Urbanski et al. 2011). Errors in emission 

67 estimates often stem from the errors in the estimated burned area, which can be difficult to 

68 quantify due to ambiguities associated with differentiating the burned from unburned areas 

69 within and around the fire perimeter (Battye and Battye, 2002). Emission factors for different 
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70 chemical species and aerosols emitted by the fire are yet another major source of uncertainty and 

71 can exhibit significant variability due to heterogeneous fuel type and condition (Urbanski, 2014), 

72 as well as combustion characteristics (flaming vs. smoldering) (Lobert, 1991; Yokelson et al., 

73 1996; Chen et al., 2007; McKeeking et al., 2009; Burling et al., 2010). Lastly, burn severity, 

74 which is related to fuel consumption, can also affect emission estimates, and add uncertainties to 

75 smoke emission inventories (Urbanski et al., 2011). 

76 Forecasting smoke emissions and heat fluxes adds additional challenges, as it requires a 

77 model to make future projections for fuel consumption, on top of the underlying assumptions 

78 needed to convert burned biomass into emissions of different chemical species and aerosol 

79 particles (see Chapter 7). The uncertainties surrounding fire-emitted fluxes can also influence the 

80 vertical plume extent and plume dynamics (Freitas et al., 2007), which in turn, can impact how 

81 smoke is transported and dispersed from the fire. 

82 Many atmospheric and chemical modeling frameworks can be used to simulate the transport 

83 of smoke from wildfires and prescribed burns. These smoke modeling frameworks range from 

84 simple box and Gaussian plume models (Lavdas, 1996) to more sophisticated modeling systems 

85 that can simulate smoke on an atmospheric grid with full physics and photochemistry (Hu et al., 

86 2008; Liu et. al, 2009; Hodzic et al., 2007; Grell et al., 2011, Larkin et al., 2009; Kochanski et 

87 al., 2016). The primary difference between smoke models is how they account for physical 

88 processes that govern smoke transport and dispersion (Figure 1), along with other underlying 

89 processes such as fire emissions and burn area, fire-atmosphere interactions, plume entrainment, 

90 atmospheric chemistry, aerosol physics and particle deposition, and plume entrainment (Figure 

91 1; Table 1). These models can also differ in terms of the reference frame that they use to 

92 simulation smoke, i.e., the Eularian versus the Lagrangian perspective.
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93 The type of model used to simulate smoke often depends on the application and the scientific 

94 question or application that the researcher or fire manager is addressing. For example, for some 

95 applications, a Gaussian plume models could be more practical for a case where the wind field is 

96 unidirectional and constant between the smoke source and receptor. However, if the user 

97 attempts to model a case where there is a large wildfire in complex terrain, with erratic wind 

98 fields generating intense pyro-convection, a Gaussian plume model may not be sufficient; thus, 

99 necessitating the need for a more complex and computationally demanding modeling framework 

100 such as a coupled fire-atmosphere model. 

101 In the following sections of this Chapter (Section 2 & 3), we will provide a brief overview of 

102 important smoke-related processes (Section 2) while highlighting the different modeling 

103 frameworks used to simulate smoke transport (Section 3). Section 3 will be divided by smoke 

104 transport model type. This section will then be followed up with a list of plume-rise models, 

105 which are often integrated within various smoke transport models to vertically distribute smoke 

106 emissions (Section 4). Finally, Section 5 will summarize some of the major discussion points of 

107 Sections 2, 3 and 4, while Section 6 will discuss future smoke modeling needs and directions.

108

109 2. Smoke-related processes

110 As discussed in the previous section, smoke models need to represent many critical fire and 

111 atmospheric processes such as (1) fire growth or burned area, (2) smoke emissions, (3) the 

112 buoyant rise plume rise driven by the fire, (4) mixing between smoke plume and the ambient air 

113 outside of it, often referred to as entrainment, (5) deposition processes, (6) downwind smoke 

114 dispersion, and (7) plume chemistry (Figure 1). It should be emphasized that these processes do 

115 not operate independently, and are sometimes dynamically linked together (Fromm et al., 2010; 
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116 Lareau and Clements, 2016; 2017; Kochanski et al., 2019; Mallia et al., 2020a). For example, 

117 heat fluxes generated by the fire can sometimes result in intense pyroconvection. If the smoke 

118 plume reaches a high enough altitude, water vapor will condense into liquid cloud water that can 

119 aid in in the formation of pyrocumulus (pyroCu) or pyrocumulonimbus (pyroCb) clouds. There 

120 have been several documented cases of pyroCbs reaching altitudes of 15-km or more (Fromm et 

121 al., 2010; Peterson et al., 2018). The range of scales involved in the dynamics of fire-generated 

122 plumes is immense as it encompasses small scale processes driving combustion and heat release 

123 at a fire front, up through large-scale global weather patterns, which are responsible for driving 

124 long-range smoke transport. The processes discussed above are conceptualized in Figure 1. 

125 Currently, most smoke modeling frameworks are developed to deal with smoke transport 

126 targeted at specific spatiotemporal scales. It should be emphasized that assumptions made within 

127 one model may not necessarily be valid for another model that deals with smoke transport at a 

128 different scale. Thus, there is no single model that encompasses the full range of scales needed to 

129 explicitly resolve smoke generation, plume rise and dispersion. This concept is conceptualized in 

130 Table 1, where individual smoke models have ‘niches’ in the continuum of spatial and temporal 

131 scales. Combustion resolving models such as Wildland-Urban Interface Fire Dynamics 

132 Simulator (WFDS; Mell et al., 2007) and FIRETEC (Linn and Cunningham, 2005) operate at 

133 smaller scales while, models such as Daysmoke (Achtemeier et al. 2011) or WRF-SFIRE/WRF-

134 FIRE (Mandel et al. 2011; Coen et al. 2013) and others focus on simulating smoke at larger 

135 spatiotemporal scales, but at the expense of small-scale processes that need to be simplified as 

136 parameterizations. Chemical transport models such as GEOS-CHEM resolves the coarsest 

137 processes, but simulates smoke at the largest scale possible (global). Aside from spatiotemporal 

138 scales, smoke models can also be classified based on how they represent critical smoke-related 

Page 7 of 130 AGU Books



For Review Only

7

139 processes and the frame of reference used to simulate smoke.

140

141 2.1 Fire burn area and emissions

142 The fire burned area and emissions, which are related to fire activity, are critical inputs for 

143 most smoke models (see Chapters 3 and 5). Fire burned area emission can be represented in 

144 several different ways within smoke models. In many cases, models simply rely on external fire 

145 emission inventories such as GFED (Van der Werf et al., 2010), FINN (Weidenmeyer et al., 

146 2009), or MFLEI (Urbanski, 2017) to provide historical estimates of smoke emissions and fire 

147 area. Some fire emission inventories, such as Missoula Fire Laboratory Emission Inventory 

148 (MFFEI), include emission uncertainty estimates using a Monte Carlo analysis (Urbanski et al., 

149 2011). A more comprehensive list and description of fire emission inventories can be found in 

150 Chapter 4. Satellites are also playing increasing large role to estimate fire emissions and heat 

151 fluxes. Operational smoke forecast models, such as HRRR-Smoke (Amohdav et al., 2017), use 

152 satellite fire radiative power (FRP) to estimate smoke emissions and heat fluxes, and then scale 

153 fire activity by an average fire diurnal cycle. A subset of smoke models, mainly, coupled fire-

154 atmosphere models, can project future fire activity based on a fire spread parametrization that 

155 accounts for local meteorology, fuel types and characteristics, and terrain. 

156 FIRETEC and WFDS employ a physics-based approach for estimating fire growth and the 

157 burned area. The physics-based approach utilizes models that explicitly represents combustion, 

158 heat transfer, aerodynamic drag, and turbulence. These models can predict fire growth, which 

159 can be used to estimate the burned area at any time, along with the amount of fuel consumed, and 

160 subsequently, smoke emissions. While physics-based models represent the most realistic way to 

161 simulate combustion processes and fire progression (where and when a fire moves), they 
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162 simplify smoke transport processes such that smoke is assumed to be a passive tracer; thus, 

163 ignore smoke chemical transformations and radiative impacts. Finally, explicitly resolving 

164 combustion requires very detailed information about fuels at high spatial resolutions (order of 

165 meters) and therefore are very computationally demanding. Ultimately, this limits the size of 

166 simulated fires to less than 100 acres for physics-based approaches (Liu et al., 2019). 

167 An alternative method for estimating fire progression can be accomplished through 

168 empirical-based parameterizations. The most widely used fire progression parameterization is the 

169 Rothermel surface fire spread model (Rothermel, 1972), which was developed within the United 

170 States Forest Service (USFS) during the 1960 and 1970s. Unlike the physics-based approach, fire 

171 spread models, like the Rothermel model, estimate fire growth rates through a quasi-empirical 

172 equation that relates fire spread to variables such as fuel type and characteristics, terrain slope, 

173 and wind. Since fire spread parameterizations rely on simple algebraic formulas, they estimate 

174 fire growth rates at a more modest computational cost (Liu et al., 2019). Coupled fire-

175 atmosphere models such as WRF-SFIRE and WRF-FIRE employ an empirical-based 

176 parameterization to estimate fire growth, fuel consumption, fire heat fluxes, and smoke 

177 emissions.

178 2.2 Plume rise 

179 The fire plume rise, i.e., the vertical transport of smoke, is yet another important 

180 phenomenon that must be accounted for when simulating smoke transport from prescribed burns 

181 or wildfires. The plume rise is primarily driven by heat released from the fire along with the 

182 atmosphere’s response to this heating (Figure 1). Essentially, the fire plume rise acts as a 

183 chimney, which can loft smoke high in the atmosphere, with plume rise altitudes sometimes 

184 reaching upwards of 15-km in exceptional cases (Fromm et al., 2010; Peterson et al., 2018). The 
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185 height over which the plume extends is referred to as the plume injection height and is a function 

186 of intensity and geometry of surface fire, ambient atmospheric conditions such as stability, wind 

187 shear, and moisture profile, and plume microphysics. 

188 The smoke injection height can control for the fate of smoke, among other factors, such a 

189 large-scale weather patterns and convection. For example, when smoke is lofted at a lower 

190 altitude, weaker winds near Earth’s surface can limit how far the smoke is transported, while 

191 particle removal processes such as dry deposition are more dominant near the ground (Zhang et 

192 al., 2001; Emerson et al., 2020). For cases of limited smoke transport, smoke can accumulate in 

193 areas local relative to the smoke source region, which can further degrade the air quality, locally 

194 (Kochanski et al., 2019). Conversely, smoke that is injected higher in the atmosphere will often 

195 travel further from the fire and can degrade air quality over a much larger geographical region. 

196 At this same time, the fire plume rise can also cause the smoke to overshoot areas near the fire, 

197 therefore limiting local impacts of smoke on air quality.

198 The injection height can also play a vital role on aerosol feedbacks within the climate system. 

199 Smoke that is lofted into the upper troposphere and lower stratosphere can have a much longer 

200 residence time relative to smoke aerosols injected into the lower troposphere and planetary 

201 boundary layer (PBL). Previous research has demonstrated that smoke lofted further up in the 

202 atmosphere can have greater impacts on climate forcing (Barnes and Hofmann, 1997; Robock, 

203 2000). The few examples provided above exemplify the need to accurately resolve the fire plume 

204 rise for smoke modeling applications. 

205 A variety of different modeling approaches currently exist for quantifying the vertical 

206 transport of smoke by fire plume rise (Liu et al., 2010; Paugnam et al., 2016). These models 

207 range from simple approximations that release smoke at altitudes that correspond climatological 
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208 averages to full-physics models that can explicitly resolve the wildfire plume rise and plume rise 

209 dynamics (Trentmann et al., 2006; Kochanski et al., 2016). Sometimes plume rise models are 

210 integrated directly within smoke transport models (Larkin et al., 2009; Amohdav et al., 2017) 

211 while other frameworks run the plume rise model in an offline setting (Mallia et al., 2018). A 

212 separate section in this chapter (Section 4) has been dedicated to describing the various plume 

213 rise modeling approaches used within smoke transport models.

214 Work carried out by Mallia et al. (2018) found that simulations of local-scale smoke 

215 transport were highly sensitive to the altitude in which emissions were injected at. A regional-

216 based study by Walters et al. (2016) also found that smoke transport within WRF-Chem was 

217 sensitive to the plume injection height, with simulated aerosol optical depth values varying by as 

218 much as ±50% depending on the plume height injection scheme that was used. In both studies, 

219 the simulations that attempted to estimate vertical plume extent performed better than model 

220 configurations that injected smoke emissions at single level or at the surface.

221 While the work outlined above has indicated the plume rise models have improved smoke 

222 simulations, several studies have noted inconsistencies between simulated and observed plume 

223 top heights (Val Martin et al., 2012; Raffuse et al., 2012). Val Martin et al. (2012) concluded that 

224 implementing plume rise models within smoke transport models “remains a difficult 

225 proposition” given the uncertainties surrounding the formulations of plume rise 

226 parameterizations and model inputs such as fire heat fluxes and area. 

227 2.3 Meteorology

228 Meteorological models are often needed to simulate the downwind transport of smoke. 

229 Numerical weather prediction models (NWP) are the most widely used method for characterizing 

230 the three-dimensional structure of meteorological variables such as winds, temperature, 
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231 humidity, and pressure. Approximated forms of partial differential equations that describe the 

232 atmosphere are used to predict the state of the atmosphere for any given time and location. These 

233 equations are solved numerically on an atmospheric mesh that covers the simulated domain 

234 (Kalnay, 2003). Certain meteorological processes, such as cloud microphysics, land-atmosphere 

235 interactions, and solar radiation are usually too small or too complex to be explicitly accounted 

236 for by governing equations. Thus, most NWP models parameterize these processes using a 

237 variety of different methods (Kalnay, 2003). Depending on the grid spacing of the 

238 meteorological model, certain processes can be either parametrized (if the model resolution is too 

239 coarse to resolve them) or explicitly resolved if the model resolution is sufficient (Weisman et al. 

240 2008; Shin et al. 2015). NWP models such as Weather Research and Forecast model (WRF; 

241 Powers et al., 2017) operate across a large range of spatiotemporal scales and therefore 

242 parameterize processes such as convection in coarser domains but can explicitly resolve 

243 convective processes when run at a fine spatial resolution. 

244 In essence, NWP models provide the inputs needed to simulate the transport of smoke from 

245 the fire source to the area(s) of interest. Some smoke modeling frameworks, such as WRF-

246 SFIRE (Mandel et al., 2011; Kochanski et al., 2016), WRF-Chem (Grell et al., 2005), and 

247 HRRR-Smoke directly account the transport of smoke within the dynamical core of the WRF. 

248 Other models, compute the transport of smoke in an offline setting, where output from a NWP 

249 model such as WRF, North American Mesoscale Forecast System (NAM) or the Global Forecast 

250 System (GFS) is used to trace the transport smoke. Smoke modeling frameworks such as 

251 HYSPLIT and CMAQ use the offline method. One benefit of the offline method is that the 

252 smoke modeler does not always need to run their own meteorological model, which can be 

253 timely and computationally expensive. However, this method does not allow two-way coupling 
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254 between the smoke and the atmosphere, which can sometimes be important when simulating the 

255 interactions between the smoke and meteorology (Kochanski et al., 2019). Smoke models, such 

256 as VSMOKE preclude the use of NWP models, and simply assume that the wind fields are 

257 steady state, therefore using wind data from a nearby weather station.

258 2.4 Aerosol physics 

259 Smoke particles directly interact with energy from the sun by scattering and absorbing 

260 incoming solar radiation due to the presence of black and organic carbon (Figure 1). Interactions 

261 between smoke particles and incoming solar radiation can result in differential heating of the 

262 atmosphere that can impact atmospheric stability and/or near-surface temperatures, i.e., aerosol 

263 direct effects (Bauer and Menon, 2012). For example, smoke shading effects occurs when 

264 incoming energy from the sun is blocked by the opaque smoke plume, which results in cooling at 

265 the surface (Robock, 1988; 1991; Trentmann et al., 2006). Smoke shading can impact 

266 temperature forecasts, or in more extreme circumstances, it can affect smoke transport (Segal 

267 and Arrit,1992; Kochanski et al. 2019). An observational-based field campaign in Northern 

268 California found evidence of smoke-induced density currents where differential solar heating 

269 between areas with and without smoke resulting in a self-propagating, surfaced-based smoke 

270 plume that opposed the ambient wind (Lareau et al., 2015). A modeling-based study carried out 

271 by Kochanski et al., (2019) found that localized reductions in incoming solar radiation within 

272 smoke-filled mountain valleys reduced surface temperatures while increasing temperatures near 

273 the top of smoke layer. In this scenario, there was evidence that smoke was responsible for 

274 cooling the surface, suppressing convective boundary layer growth, which effectively limited 

275 ventilation between the smoke-filled layer and the atmosphere. In turn, this resulted in an 

276 accumulation of smoke and subsequently, more cooling via a nonlinear feedback mechanism.
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277 Smoke particles can also interact with atmosphere via indirect effects where smoke particles 

278 alter cloud microphysics (Lindsey at al., 2008; Lee et al., 2018). To summarize, smoke particles 

279 can promote the formation of additional cloud water droplets at the expense of larger cloud water 

280 droplets since cloud droplets have to compete for a finite amount of water vapor (Andreae et al., 

281 2004). A simulation of a PyroCb in the Texas Panhandle found that the smoke particles played 

282 an important role towards enhancing the strength of the convective updraft (Zhang et al., 2019). 

283 These results were consistent with Grell et al. (2011) who also concluded that simulated 

284 convection over Alaska was stronger in the presence of smoke, albeit the convection produced 

285 less precipitation. 

286 Several existing smoke modeling frameworks such as WRF-Chem, WRF-SFIRE, and 

287 HRRR-Smoke are equipped to deal with some of the interactions noted above. Other processes 

288 not previously discussed, such as wet and dry deposition represent important loss processes for 

289 atmospheric particles like smoke (Zhang et al., 2011; Saylor et al., 2019) and are parametrized 

290 within most smoke transport models that simulate particulate matter. WRF-Chem contains a full 

291 suite of aerosol parameterizations that can account for effects ranging direct aerosol effects to 

292 indirect effects that can impact cloud microphysics and PyroCb development (Grell et al., 2011; 

293 Zhang et al., 2019). GEOS-Chem is another popular aerosol transport model for simulating 

294 smoke transport and for quantifying the impacts of smoke on radiative forcing at the global scale 

295 (Christian et al., 2019). 

296 A variety of methods are used within smoke models to simulate aerosol physics. For 

297 example, some aerosol schemes use the bulk method where only the total mass of the aerosol 

298 compound is known, therefore this is no information about the particle number and aerosol size 

299 distribution (Chin et al., 2000). While this method is simple, it is numerically efficient and 
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300 computationally cheaper to run. Modal aerosol schemes are slightly more complex in that they 

301 include aerosol size distributions using three or more modes that includes the Aitken, 

302 accumulation, and coarse modes (Liu et al. 2016b). The most sophisticated method for 

303 simulating aerosol physics is through a bin method where aerosols are distributed into many 

304 discrete size bins, which are simulated separately (Zaveri et al., 2007). Bin methods are typically 

305 computationally expensive to run. 

306

307 2.5 Chemistry 

308 Smoke plumes are made of a mixture of many chemically active species and aerosols such as 

309 nitrogen oxides (NOx = NO + NO2), nitrous acid (HONO), volatile organic compounds (VOCs), 

310 which can impact air quality through the formation of ozone (O3), and secondary organic 

311 aerosols (SOA) (Andrea and Merlet, 2001; Akagi et al., 2011; Jaffe and Wigder, 2011; 

312 Kochanski et al., 2016; Brey and Fischer, 2016; Peng et al., 2020). O3 is formed through the 

313 chemical reaction between molecular oxygen (O2) and atomic oxygen (O(3P)). The supply of 

314 atomic oxygen is driven by chemical reactions involving NOx and non-methane organic 

315 compounds that simultaneously exposed to sunlight photo-dissociate creating O(3P). Since O2 is 

316 abundant in the atmosphere, O3 production is typically limited by the availability of NOx. The 

317 most common sources of NOx are anthropogenic emission sources and wildfires (Finlayson-Pitts 

318 and Pitts, 1986). 

319  Smoke plume chemistry is sensitive to several factors including time of day, meteorology, 

320 altitude, chemical composition of the plume, combustion efficiency, transport time, and nearby 

321 emission sources (Giglio, 2007; Jaffe et al., 2004; Lim et al., 2019; Peng et al., 2020). Smoke 

322 shading effects within the plume can also reduce O3 production by limiting photochemical 

Page 15 of 130 AGU Books



For Review Only

15

323 reactions (Jaffe and Wigder, 2011) producing molecular oxygen. The sequestration of NOx as the 

324 smoke plume ages can also limit O3 production downwind of the fire (Tanimoto et al., 2008). 

325 Due to the complex and non-linear interactions between O3 and other chemical processes, 

326 accurately simulating O3 chemistry within smoke can be difficult (Jaffe and Wigder, 2011; 

327 Kochanski et al., 2016). 

328 There are several existing modeling frameworks that have been used to both better 

329 understand smoke plume chemistry and to make air quality forecasts for chemical species such 

330 as O3.  The Community Multiscale Air Quality (CMAQ) model is a state-of-the-art air quality 

331 model that can simulate many atmospheric chemical processes related to gas, aqueous, and 

332 aerosol phase chemistry (Sarwar et al., 2011; 2013). Therefore, models such as CMAQ can 

333 simulate complex chemistry associated with O3 and SOA. Operational air quality modeling 

334 frameworks such as AIRPACT (http://lar.wsu.edu/airpact/) are based on the CMAQ model (see 

335 Chapter 9). CMAQ generally estimates anthropogenic emissions using the Sparse Matrix 

336 Operator Kernal Emissions (SMOKE; https://www.cmascenter.org/smoke/) combined with fire 

337 emissions defined by the Satellite Mapping Automated Reanalysis Tool for Fire Incident 

338 Reconciliation (SmartFire2)–BlueSky framework (Larkin et al., 2009).  WRF-Chem and WRF-

339 SFIRE-Chem have also been used to simulate chemical reactions within wildfire plumes (Pfister 

340 et al., 2011; Kochanski et al., 2016). For example, work by Kochanski et al. (2016) integrated 

341 WRF-SFIRE with WRF-Chem’s Model of Ozone and Related chemical Tracers (MOZART; 

342 Emmons et al., 2010) chemical mechanism to forecast O3 for the 2007 Witch-Guejito Santa Ana 

343 fires. Chemical models such as WRF-Chem and CMAQ also need chemical boundary conditions 

344 from either a larger-scale chemical transport model or a data assimilation product that utilize 

345 satellite observations. This is covered more in-depth in Chapter 7.
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346

347 3. Smoke transport models

348 3.1 Box model

349 Box models are one of the simplest approaches used to simulate smoke exposure (Letteau 

350 1970). As suggested by the name, a box model assumes that air for a specified domain can be 

351 represented by a box, which is often bounded by the surface and the top of the PBL. Smoke 

352 within the box model is often assumed to be instantaneously diluted throughout the entire 

353 column, thus eliminating the need to simulate smoke dispersion and the fire plume rise. Because 

354 of relative simplicity of the underlying assumptions within a box model, these models are easy to 

355 run, and require limited computational resources (Goodrick et al., 2012). 

356 Box models have been previously used for smoke management applications in mountain 

357 valleys, where the lateral boundaries of the box are bounded by valley walls. Research presented 

358 Brown and Bradshaw (1994) indicated that while box models struggle with predicting near-

359 surface smoke concentrations from local fires, these models can be useful for assessing smoke 

360 loading within remote mountain valleys for prolonged smoke episodes. Another study by Pharo 

361 et al. (1976) found that box model tended to overestimate smoke concentrations near fires. It was 

362 hypothesized that overestimated smoke concentrations stemmed from the instantaneous dilution 

363 assumption made by box models, which is not valid in the vicinity of the fire where the plume 

364 dynamics and interactions with winds and atmospheric stability control mixing and dilution.

365 Zero-dimensional box models are also popular choice for simulating complex atmosphere 

366 chemistry within smoke plumes for research-based applications (Wolfe et al., 2016; Decker et 

367 al., 2021). Zero-dimensional box models are deployed by atmospheric chemists to investigate 

368 different chemical mechanisms (Archibald et al., 2010), analyze field observations (Decker et al., 
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369 2021), and for laboratory chamber experiments (Paulot et al., 2009). The models are particularly 

370 useful for understanding specific chemical processes, developing conceptual models, and testing 

371 hypotheses through sensitivity experiments (Wolfe et al., 2016). 

372

373 3.2 Gaussian plume model

374 The Gaussian plume model represents the simplest way for simulating the downwind 

375 transport of smoke. Instead of letting smoke dilute within a targeted domain like what is done for 

376 box models, the Gaussian plume model attempts to account for atmospheric transport and 

377 dispersion (Taylor, 1922). Crosswind transport, i.e., dispersion is parameterized as a Gaussian 

378 distribution that takes the form of a steady state solution of the advection-diffusion equation. The 

379 direction of the smoke transport is determined by the wind speed and direction. Since winds are 

380 assumed to be constant in time and space, smoke is assumed to travel in a straight line from 

381 where it is emitted until it reaches the end point of the smoke plume or model domain. As a 

382 result, areas that frequently experience highly variable weather phenomena such as sea breezes, 

383 frontal passages, and mountain-valley circulations may not be appropriate for a Gaussian plume 

384 model. However, for cases where meteorological conditions are homogenous, Gaussian plume 

385 model models can be an ideal tool for simulating downwind horizontal smoke transport given the 

386 limited computational demands and model inputs for these models. 

387 As of today, there are two smoke models that utilize Gaussian plume theory to simulate 

388 smoke transport and exposure. VSMOKE (Lavdas, 1996) is often used by land managers in the 

389 Southeastern U.S. to provide a quick and simple estimate of smoke impacts for prescribed burns 

390 based on planned fire activity and weather forecasts (Jackson et al., 2007). No wildfire plume 

391 rise is used within VSMOKE, thus the user must specify a fraction of smoke that is released near 
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392 the ground and at the PBL.  For smaller prescribe burns, its generally safe to partition most of the 

393 smoke emissions within the PBL. However, for larger prescribe burns and wildfires, this 

394 assumption could be inadequate, as the fire plume rise can sometimes inject smoke into the free 

395 troposphere (Banta et al., 1992). The Simple Approach Smoke Estimation model (SASEM; 

396 Sestak and Fiebau, 1988) is another Gaussian plume model that was designed to estimate smoke 

397 transport across relatively flat terrain. Like VSMOKE, SASEM can estimate ground-level smoke 

398 concentrations. SASEM can also estimate visibility impairment and the height of the fire plume 

399 rise as predicted by the Briggs (1975) plume rise model (see Section 4b). SASEM is mostly used 

400 for prescribed burns in the state of Arizona (Goodrick et al., 2012). 

401

402 3.3 Puff models

403 Puff models represents another class of dispersion models, which reduces the number of 

404 assumptions made by Gaussian plume models (Lin, 2012). The Puff model represents the smoke 

405 plume as a collection of independent smoke “puffs” that are assigned an average smoke 

406 concentration that is representative of the puff’s volume. Puffs are constantly released 

407 throughout the duration of a burn, with each puff having a total mass of smoke that is related to 

408 the smoke emissions at the time of when the puff was emitted from the fire (Goodrick et al., 

409 2012). Once the puffs are released into the atmosphere, they are transported by winds that can 

410 vary in time and space, unlike Gaussian plume models. Since Puff models follows a fluid parcel 

411 as it travels through time and space, e.g., moving reference frame, these models are classified as 

412 being Lagrangian. 

413 Puff models are well suited for areas with lots of variability in winds such as mountainous 

414 areas and coastlines. The effects of diffusion and entrainment are also accounted by Puff models. 
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415 For cases where the Puff’s volume increases, the smoke concentration within the Puff would 

416 decrease, while a decrease in the Puff’s volume would correspond in an increase in smoke 

417 concentration. While Puff models represent a significant step forward relative to Gaussian plume 

418 modeling approaches, areas with strong wind shear and turbulence can distort puffs into non-

419 Gaussian shapes (Lin, 2012). In these situations, ad hoc parameterizations such as puff splitting 

420 or merging are often necessary (Walcek, 2002). 

421 CALPUFF (Scire et al. 2000) and Hybrid Single-Particle Lagrangian Integrated Trajectory 

422 (HYSPLIT; Draxler and Hess, 1997) are the most commonly used model frameworks that utilize 

423 Puff models. The CALPUFF model is driven by a diagnostic meteorological model (CALMET) 

424 that grids variables such as winds, temperature, PBL heights, friction velocity, and the Monin 

425 Obukhov length on a three-dimensional micrometeorological domain. The three-dimensional 

426 data is either obtained by interpolating meteorological data from nearby near-surface and upper-

427 air observations and/or from a Eulerian NWP model. CALPUFF is commonly used by the 

428 Environmental Protection Agency to assess the impact of atmospheric pollutants on air quality 

429 for an area of interest (Scire et al., 2000). Even though CALPUFF does not explicitly resolve the 

430 plume rise, it utilizes the Brigg plume rise parameterization to estimate the injection height of 

431 atmospheric pollutants. Several studies have used CALPUFF for assessing the impacts of fires 

432 on different airsheds across North America. In one study, CALPUFF was used to quantify the 

433 impacts of agriculture burning for areas along the USA-Mexico border (Choi and Fernando, 

434 2007). Converting fire activity, fuel conditions, and burn time into smoke emissions was listed as 

435 one of the major limitations of simulating smoke with CALPUFF. Jain et al. (2007) found that 

436 smoke plumes from agriculture burns in the Pacific Northwest exhibit large variability and were 

437 sensitive to fire input parameters when using CALPUFF. Despite the uncertainties associated 
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438 with meteorology and fire input parameters, CALFPUFF was mostly able to reproduce surface 

439 PM2.5 concentrations when evaluated with nearby air quality stations. 

440 HYSPLIT is another modeling framework that can be used to simulate the transport of 

441 pollutants as puffs, single trajectories, or an ensemble air parcel trajectories, with the latter being 

442 discussed more in Section 3d. Similar to CALPUFF, an external three-dimensional NWP model 

443 needs to provide meteorological inputs such as temperature and wind to determine transport 

444 pathways for puffs within HYSPLIT. A joint project between the United States National Oceanic 

445 and Atmospheric Administration (NOAA) and the Australia’s Bureau of Meteorology led to the 

446 implementation of several modules, which allow HYSPLIT to account for chemical reactions in 

447 the atmosphere. HYSPLIT’s puff model assumes that puffs continuously grow until they reach a 

448 size threshold that is larger than the meteorological grid cell. Once puffs reach the size threshold, 

449 they are split up into smaller puffs with identical properties in terms of pollutant concentrations. 

450

451 3.4 Lagrangian Particle Dispersion models

452 While Puff models can account for changing flow fields, these models make many 

453 assumptions regarding the expansion and contraction of the puff, along with interactions between 

454 different puffs. Lagrangian particle dispersion models (LPDMs) attempt to rectify some of these 

455 issues by simulating atmospheric transport as an ensemble of particles, with each particle 

456 representing a parcel of air with equal mass. These particles possess several important properties 

457 such as (1) being small enough where they can follow the wind field without becoming 

458 deformed, but (2) much larger than the average distance between air molecules, and (3) have 

459 fluid properties that are nearly identical to the surrounding air; thus, are unaffected by 

460 gravitational settling and/or buoyancy (Lin, 2012). These particles are transported by the mean 
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461 wind ( ) and a stochastic turbulent component ( ), which can be parameterized as a Markov 𝐮 𝐮′

462 process (Lin, 2012). As a result, these models are well-equipped to handle cases with strong 

463 turbulence and/or wind shear. Simulated particles can also be referred to as trajectories. Since 

464 LPDM models must use thousands of particles to accurately depict turbulent dispersion (Mallia 

465 et al., 2015), these models are more computationally expensive than puff models. However, the 

466 downside of the added computational cost of simulating thousands of particles through three-

467 dimensional space is generally outweighed by LPDM’s ability to naturally simulate the effects of 

468 turbulence and wind shear.  Several LPDM models are currently used to simulate smoke from 

469 prescribed burns to reduce human exposure to smoke or used for research-based applications. 

470 For example, LPDMs have been deployed in inverse-based studies to better understand 

471 spatiotemporal variability of fire emissions (Kim et al., 2020). LPDM models have also been 

472 used to identify major source regions of wildfire smoke and to quantify the role of the wildfire 

473 plume rise on smoke transport (Mallia et al., 2015; 2018).

474 FLEXPART (Stohl and Thomson, 1999) is a LPDM model that simulates long-range 

475 atmospheric transport and dispersion for a many atmospheric pollutants, tracers, and greenhouse 

476 gases. FLEXPART parameterizes the effects of wet and dry deposition. FLEXPART was first 

477 applied to wildfire smoke by Wotawa and Trainer (2000), who used FLEXPART to examine the 

478 impacts of Canadian wildfires on air quality in the southeastern U.S. Based on simulated results 

479 from FLEXPART, Wotawa and Trainer (2000) found that wildfire smoke was large responsible 

480 for elevated concentrations of carbon monoxide (CO) during the summer of 1995. FLEXPART 

481 was integrated with the National Observatory of Athens FireHub platform 

482 (http://ocean.space.noa.gr/fires) to simulate smoke plumes over Greece. An analysis carried out 

483 Solomos et al. (2015) found that FLEXPART, driven by winds from WRF, was able to capture 
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484 long-range smoke transport over Greece, along with transport near complex terrain features such 

485 as mountains and coastlines. A column-based plume rise model was integrated within 

486 FLEXPART to handle the vertical transport of smoke due to the fire plume rise. 

487 DaySmoke (Achtemeir et al., 2011) is another model that uses Lagrangian-based framework 

488 to simulate downwind smoke transport. DaySmoke was originally built off the ASHFALL 

489 model, which was used to simulate deposition of ash particles from agriculture fires. Today, 

490 DaySmoke is used to simulate smoke dispersion to limit smoke exposure of communities 

491 downwind of prescribed burns. DaySmoke consists of 4 components for simulating smoke, 

492 including an entraining torrent model, a detraining particle model, a large eddy parameterization 

493 used to simulate the PBL, and a smoke emissions model, which describes the emission history 

494 prescribed burns. The entraining torrent model handles the effects of convective uplift from the 

495 fire plume rise. In addition, the convective updraft within DaySmoke can be separated into multi-

496 core updrafts, which have weaker updrafts, smaller diameters, and are more sensitive to the 

497 entrainment. Ultimately, the separation of the convective updraft into multiple cores can limit the 

498 altitude at which smoke is injected, thus correctly specifying the number of updraft cores is 

499 critical when simulating the fire plume rise (Liu et al., 2010). Once the smoke particles are 

500 discharged from the smoke plume, they are traced through the atmosphere by a mean and 

501 turbulent wind component (Achtemeir et al., 2011). Like other LPDM models, the turbulent or 

502 convective mixing component is considered stochastic.  Since DaySmoke employs relatively 

503 simple physics and no chemistry, the model requires less computational resources relative to 

504 other smoke modeling frameworks. 

505 HYSPLIT is a popular tool for simulating smoke transport at larger scales (10-1000 km), and 

506 can be run as a LPDM or, as previously mentioned as a puff model, depending on the options 
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507 selected at runtime (Draxler and Hess, 1997). HYSPLIT has been integrated with the BlueSky 

508 modeling framework (Larkin et al., 2009; O’Neill et al., 2008), which utilizes fuel maps and fire 

509 consumption rates to estimate smoke emissions (https://www.arl.noaa.gov/hysplit/smoke-

510 prescribed-burns/). The meteorology used to drive HYSPLIT trajectories generally comes from 

511 an external NWP model such as the many model outputs provided by the National Centers for 

512 Environmental Prediction (NCEP). 

513 The Stochastic Time-Inverted Lagrangian Transport (STILT) model (Lin et al. 2003), which 

514 is based off HYSPLIT and has since been merged back with HYSPLIT (Loughner et al., 2021) is 

515 another LPDM that has been used to simulate the impacts of smoke on air quality across the 

516 Western U.S. (Mallia et al., 2015). Smoke emissions used by STILT can be vertically distributed 

517 using the Freitas plume rise model (Freitas et al., 2007; Mallia et al., 2018). STILT typically uses 

518 ‘backward’ trajectories to determine the origin of air that is arriving at a receptor location. 

519 Backward trajectories can be used to derive the footprint for a receptor which can then be 

520 mapped with smoke emissions to determine contributions of smoke from upwind fires (Figure 

521 2a). The receptor-orientated approach used by STILT makes this modeling framework 

522 particularly useful for identifying fires responsible for deteriorating air quality as seen in Figure 

523 2b. Since the NWP models used to drive backward trajectories are often imperfect, STILT has 

524 the unique ability to translate wind errors into modeled smoke uncertainties (Figure 2b) (Mallia 

525 et al., 2015).

526 3.5 Eulerian grid models

527 Smoke transport can also be simulated from the Eulerian perspective where instead of 

528 following a puff or particle in a moving coordinate system, a Eulerian ‘grid model’ simulates 

529 smoke transport on a fixed reference plane. A Eularian model can be visualized as collection of 
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530 individual cubes that are stacked within a large box, with the box being representative of the 

531 lateral boundaries of the model. Equations used to describe the transport of smoke are then 

532 solved for each individual cube, which is often referred to as a model grid cell. While tracking 

533 individual smoke plumes with a Eularian based model can be more difficult, grid models are 

534 more suited for simulating interactions between different plumes and for determining how 

535 anthropogenic emission sources might interact with these plumes to form secondary pollutants 

536 like O3 (Goodrick et al., 2012). Eularian grid models heavily rely on NWP models to determine 

537 how smoke is transported throughout the model domain. Meteorological data can be provided as 

538 an input for Eularian-based smoke models or smoke transport and chemistry can be solved inline 

539 with the meteorology. One potential limitation of Eulerian-based frameworks is that emissions 

540 are assumed to be instantaneously diluted through model grid cells, which can be unrealistic, 

541 especially in coarser-scale model simulations (Goodrick et al., 2012). 

542 CMAQ is a state-of-the-art air quality model, which is one of the most widely used tools for 

543 air quality applications. Such applications include regulatory and policy analysis, research, and 

544 operational forecasting (Byun and Schere, 2006; Baker et al., 2018). CMAQ contains a suite of 

545 atmospheric chemistry and emission routines that enables the model to simulate smoke-related 

546 chemical and aerosol processes such as photochemistry, SOA formation, and advanced aerosol 

547 physics. While CMAQ does not simulate its own meteorology, NWP model data can be provided 

548 as an input, or the model can be coupled directly with the WRF model (Zou et al., 2019). 

549 Routines exist within CMAQ, where smoke can be injected between two specified vertical levels 

550 either by the user or by an offline plume rise model. AIRPACT (http://lar.wsu.edu/airpact/), 

551 which is an operational model used to make air quality forecasts across the Pacific Northwest, is 

552 an example of an air quality modeling system that uses CMAQ driven by an external WRF 
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553 model and fire emissions generated from BlueSky. More details on AIRPACT can be found in 

554 the Chapter 9. 

555 Another popular choice for simulating smoke is with WRF-Chem, which is a chemical 

556 transport modeling framework that can simultaneously model meteorology, aerosol physics, and 

557 chemical transformations in the atmosphere (Grell et al., 2005). Since the chemical and aerosol 

558 modules within WRF-Chem are directly coupled with the dynamical core and physical 

559 parameterizations, smoke emissions can modify weather conditions through smoke shading 

560 and/or cloud microphysical processes. This type of coupling is unique to modeling frameworks 

561 like WRF-Chem, where smoke simulations are computed in-line with meteorology.

562 Smoke emissions within WRF-Chem are typically provided by an external emission 

563 inventory such as Fire Inventory from NCAR (FINN; Weidenmeyer et al., 2010), while smoke 

564 can be vertically distributed within WRF-Chem using the Freitas et al. (2007) plume rise model.  

565 A study by Grell et al. (2011) found that smoke emissions had the potential to affect mesoscale 

566 (10-100 km) weather patterns across Alaska by changing vertical temperature and moisture 

567 profiles in areas absent of cloud cover. Sensitivity tests also revealed that high concentrations of 

568 PM2.5 were responsible for altering cloud microphysical processes, which ultimately impacted 

569 the modeled spatiotemporal distribution of precipitation across Alaska in 2004. The National 

570 Oceanic and Atmospheric Administration (NOAA)’s operational smoke forecast system, HRRR-

571 smoke is based on WRF-Chem v3.9, with several in-house modifications related to smoke 

572 aerosol physics (Amohdav et al., 2017). More details on HRRR-smoke can be found in Chapter 

573 9.

574 Global-scale simulations of smoke transport can be achieved with modeling frameworks such 

575 as GEOS-Chem (http://acmg.seas.harvard.edu/geos/), which has been used in previous work to 
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576 isolate the impacts of wildfire smoke on global climate and air quality (Christian et al., 2019; Li 

577 et al., 2020). Like CMAQ and WRF-Chem, GEOS-Chem includes chemical and aerosol routines 

578 to simulate changes in the chemical composition of the atmosphere (Bey et al., 2001). 

579 Meteorology for GEOS-Chem is provided as an input from an external global NWP model, 

580 while smoke emissions are estimated using GFED or FINN. Since GEOS-Chem is a global 

581 model, the horizontal grid spacing within the model is very coarse relative to the grid spacing of 

582 the other models presented in this chapter. Despite having a coarser model resolution, GEOS-

583 Chem is one of the few models specifically designed to simulate the large-scale impacts of 

584 smoke on global air quality, weather, and climate. 

585

586 3.6 Coupled fire-atmosphere models

587 Advancements in computational facilities have led to the development and deployment of 

588 coupled fire-atmosphere models. Like Eulerian grid models, these coupled fire-atmosphere 

589 models simulate smoke transport on a three-dimensional grid. Coupled-fire atmosphere models 

590 also simulate their own meteorology using a computational fluid dynamics weather prediction 

591 model. Unlike some of the Eulerian grid models discussed in the previous section, coupled fire-

592 atmosphere models simulate fire progression using a formula that parameterize fire growth based 

593 on local meteorology, terrain, and fuel characteristics (Mandel et al., 2011), or through the 

594 explicit representation of combustion processes (Mell et al., 2007; Mell et al., 2010; Linn et al., 

595 2002; Linn and Cunningham, 2005). 

596 Coupled fire-atmosphere models can utilize information about the predicted burned area and 

597 fuel loading to forecast fuel consumption, heat fluxes, and smoke emissions. The heat fluxes 

598 forecasted by these models can also dynamically interact with the atmosphere, which allows 
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599 coupled-fire atmosphere models to explicitly simulate phenomena such as the wildfire plume rise 

600 (see Section 4d) and fire-induced winds near the fire front. Some coupled fire-atmosphere 

601 models such as WRF-SFIRE can simulate the impacts of smoke on meteorology through aerosol 

602 physics and chemistry coupling (Kochanski et al. 2016; Kochanski et al. 2019). While coupled 

603 fire-atmosphere models represent the most sophisticated way to simulate smoke, these models 

604 can be computationally demanding compared to other models due to the computations needed to 

605 resolve near-fire circulations and plume dynamics. However, multi-scale coupled fire-

606 atmosphere models such as WRF-FIRE and WRF-SFIRE use a nested domain setup that allows 

607 these models to embed small-scale, high-resolution domains within larger and coarser 

608 computational domains. Ultimately, this allows modeling frameworks like WRF-FIRE and 

609 WRF-SFIRE to simulate smoke dispersion across large distances at a relatively lower 

610 computational cost. Outside of forecasting applications, coupled fire-atmosphere models are 

611 ideal tools for studying how fire and fire behavior dynamically interacts with the atmosphere.

612 FIRETEC and WFDS use a finite-volume, large eddy simulation to model fine-scale 

613 meteorological flows near the fire of interest. Here, large eddies within turbulent flow are 

614 explicitly resolved by within the numerical grids of FIRETEC and WFDS, while smaller eddies 

615 are parameterized with sub-grid scale models (Mell et al., 2007; Linn and Cunningham, 2005). 

616 Typically, the grids used by FIRETEC and WFDS are on the order of meters. Since FIRETEC 

617 and WFDS use a physics-based approach for simulating fire growth and combustion, detailed 

618 information about fuels and fuel density on a scale ~1-m is needed. This attention to detail comes 

619 at a cost as FIRETEC and WFDS simulations are computationally expensive to run. Therefore, 

620 these models are only feasible for research-based applications. Furthermore, the model grid 

621 spacing used within FIRETEC and WFDS also limits these models to individual fire-scale 
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622 problems that are typically less than 100 acres in size.  Due to the domain size limitations 

623 associated with FIRETEC and WFDS, these models are better suited for describing fire behavior 

624 and hyper-local smoke transport (Liu et al. 2019). While models such as FIRETEC and WFDS 

625 can represent detailed combustion processes and the fire-atmosphere interactions, they do not 

626 account for the microphysical and radiative impacts of smoke on the atmosphere or chemical 

627 transformations of smoke downwind from the fire.

628 Models such as WRF-FIRE and WRF-SFIRE operate on a slightly different scale than 

629 FIRETEC and WFDS, so that they can be used in both research and forecast applications. To 

630 reduce computational costs, fire growth within WRF-FIRE and WRF-SFIRE is parameterized 

631 using an empirical formula instead of taking a physics-based approach (Mandel et al., 2011; Liu 

632 et al., 2019). While models such as WRF-FIRE and WRF-SFIRE parameterize fire growth rates, 

633 heat fluxes generated from the modeled fire are dynamically coupled to the atmosphere. 

634 Typically, these models resolve fire progression on scales on the order of tens of meters, while 

635 the meteorology from WRF, which is used to drive the fire and simulate smoke transport, is 

636 solved on grid with a horizontal grid spacing between 400-1,300m (Kochanski et al., 2019). This 

637 allows models such as WRF-FIRE and WRF-SFIRE to simulate smoke across a larger domain 

638 compared to FIRETEC and WFDS. In addition, WRF-based modeling frameworks use a nested 

639 domain configuration where meteorology and smoke simulated in the innermost domain centered 

640 on the fire is fed into subsequently coarser, but larger domains. Despite using a coarser 

641 atmospheric grid relative to FIRETEC and WFDS, both WRF-FIRE and WRF-SFIRE can 

642 explicitly resolve the wildfire plume rise and first order fire-atmosphere interactions (Liu et al., 

643 2019). Both models treat smoke as a passive tracer, with smoke emissions being estimated based 

644 on the fuel consumed by the simulated fire. 
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645 WRF-SFIRE was recently coupled to WRF-Chem to allow smoke generated by the fire to 

646 undergo chemical transformations while smoke aerosols can be scavenged from the atmosphere. 

647 Coupling with the WRF-Chem’s aerosol model (GOCART) also allows smoke to interact with 

648 atmospheric radiation, therefore allowing WRF-SFIRE to account for smoke shading effects. 

649 This type of coupling is unique to only WRF-SFIRE. Preliminary work carried out by Kochanski 

650 et al. (2016) found that WRF-SFIRE, coupled with WRF-CHEM was able to reproduce elevated 

651 concentrations of NOx and PM2.5 for two large fires in Southern California during the 2007 fire 

652 season. A follow up study by Kochanski et al. (2019) found that WRF-SFIRE simulations were 

653 able to capture smoke shading effects within mountain valleys across northern California. A 

654 positive feedback mechanism was also identified where smoke aerosols resulted in cooler 

655 temperature at the surface, which allowed additional smoke aerosols to accumulate at the base of 

656 mountain valleys. WRF-SFIRE simulations coupled with WRF-Chem were also used to forecast 

657 a wildfire smoke event in Salt Lake City, UT during the summer of 2018. WRF-SFIRE smoke 

658 simulations during this event were able to skillfully capture the orientation and shape of the 

659 plume, along with local-scale nocturnal mountain valley circulations (Figure 3) (Mallia et al., 

660 2019).

661

662 4. Plume-rise models

663 4.1 Simplified approaches

664 Earlier smoke modeling frameworks often assumed that smoke from biomass burning was 

665 either injected at a fixed altitude, evenly distributed throughout the PBL (Pfister et al., 2008; 

666 Hyer and Chew, 2010), assumes some type of ratio for partitioning emissions between the PBL 

667 and free troposphere (FT) (Turquety et al., 2007; Leung et al., 2007; Elguindi et al., 2010), or is 
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668 prescribed based on local measurements such as satellite (Chen et al., 2009). For continental-

669 scale smoke simulations across North America, the vertical distribution of smoke was found to 

670 be insensitive to the modeled plume injection height. It was hypothesized by Chen et al. (2009) 

671 that strong summertime convection tends to mix smoke throughout the troposphere, which 

672 limited the influence of the plume injection height on vertical smoke distributions. 

673 4.2 Empirical

674 Another way to estimate the plume injection height is through empirically based models, 

675 which require inputs such as buoyancy, fire power, fire area, and/or generalized characteristics of 

676 the atmosphere such as atmospheric stability or the PBL height. 

677 The Briggs equations (Briggs, 1975), which is one of the first plume injection models, was 

678 originally developed to estimate the height of plumes released from smokestacks. Today, the 

679 Briggs equations are commonly used by smoke modeling frameworks such as CMAQ, BlueSky 

680 and HYSPLIT. The Briggs model consists of a series of equations used for different stability 

681 conditions and whether the plume is momentum or buoyancy dominated. The plume injection 

682 height estimated by the Briggs model is a function of buoyancy, ambient wind speeds, and 

683 stability. Since the Briggs formulas contain no direct input for the fire heat release, the fire heat 

684 release needs to be converted into a buoyancy flux (Raffuse et al., 2012). Plume rise results with 

685 the Briggs model have been mixed, which is reasonable considering that it was originally 

686 developed to model plumes from smokestacks. Work by Raffuse et al. (2012) and Gordon et al. 

687 (2018) found that the Briggs model typically underestimated plume rises, especially for larger 

688 wildfires. Achtemeier et al. (2011) hypothesized that models like Briggs are unable to account 

689 for microphysical impacts such as latent heat releases. As a result, the Briggs model is unable to 

690 account for extreme pyroconvection like pyrocumulus or pyrocumunimbus clouds. However, 
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691 Achtemeier et al. (2011) suggests that the Briggs model may perform better for smaller wildfires 

692 and prescribed burns. 

693 A newer methodology for estimating wildfire smoke plume heights was presented in (Sofiev 

694 et al., 2012). Like the Briggs models (Briggs, 1975), this methodology uses a semi-empirical 

695 formula to estimate fire plume tops. This parameterization uses an energy-balance-based 

696 approach to estimate plume tops, similar to convective cloud parameterizations used within 

697 larger-scale atmospheric models. The plume height within the Sofiev et al. (2012) scheme is 

698 estimated from the following:

699 𝐻𝑝 =  𝛼𝑧𝑖 +  𝛽(𝐹𝑅𝑃𝑃𝑓0 )𝛾𝑒𝑥𝑝( ―𝛿𝑁2
𝐹𝑇

𝑁2
0

)
700 where  is part of the PBL passed freely,  weights the contribution of fire intensity,  𝛼 𝛽 𝛾

701 determines the power-law dependence on the fire radiative power (FRP),  weights the 𝛿

702 dependence of the stability of the FT on the plume rise height (Hp),  is the reference fire 𝑃𝑓0

703 power (Pfo = 106 W),  is the Brunt-Vaisala frequency reference number (  = 2.5 x 10-4 s-2), 𝑁2
0 𝑁2

0

704 and  is the Brunt-Vaisala frequency of the FT. A learning subset of satellite fire smoke plume 𝑁2
𝐹𝑇

705 observations from the Multi-angle Imaging SpectroRadiometer (MISR) were then used to 

706 determine the value of the empirical calibration constants ( , , , ) where  represents is the 𝛼 𝛽 𝛾 𝛿 𝛼

707 part of the plume that passes freely through the PBL,  accounts for the weighted contribution 𝛽

708 from the fire intensity,  quantifies the power-law dependence of the fire’s FRP on the plume 𝛾

709 height, and  defines the plume top dependence on the atmospheric stability within the free 𝛿

710 troposphere.

711 Results in Sofiev at el. (2012) found that their methodology outperformed both the Briggs 

712 and 1-D column models when applied to 2000 fire plumes from an independent MISR database 
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713 across North America and Siberia. One potential limitation of this model is that the parameters 

714 defined in Sofiev at el. (2012) are primarily tuned for shallower smoke plumes, since the training 

715 data set to develop the parameters only included plume rises with heights less than 4-km 

716 (Paugnam et al., 2016). 

717

718 4.3 Column models 

719 Another way for estimating plume top heights is through one-dimensional column models 

720 such as the Freitas et al. (2007; 2010) model. The Freitas plume rise model is based off a plume 

721 model develop by Latham (1994), which simulates the wildfire plume rise using the equations 

722 for vertical momentum, first law of thermodynamics, mass continuity, and cloud microphysics. 

723 In addition, the effects of entrainment near the edges of the plume are also parameterized as two 

724 entrainment coefficients, with one accounting for the effects of turbulence plume edge, and the 

725 other describing for ambient wind shear effects. The final plume injection height is often used 

726 within chemical and smoke transport models such as WRF-CHEM (Grell et al., 2005; Pfister et 

727 al., 2011; Sessions et al., 2011), STILT (Mallia et al., 2018), and HRRR-smoke. One added 

728 benefit of a column-based approach is that this method can provide the vertical plume 

729 characteristics, in addition to the final injection height (Figure 4). The final injection height is 

730 typically assumed when the upward vertical velocity w reaches 0 m s-1. Since the Freitas plume 

731 rise model is cloud resolving, it can simulate moist pyroconvection. The Freitas model’s ability 

732 to simulate moist pyroconvection can be seen in Figure 4, which shows a secondary increase in 

733 vertical velocity between 2.5 – 5 km that is collocated with an increase in liquid cloud water and 

734 latent heat releases.

735 Inputs for the Freitas plume rise model includes a one dimensional profile of ambient 
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736 atmospheric conditions such as temperature, relative humidity, and wind speed, along with 

737 surface boundary conditions provided by the fire, i.e., heat flux and fire area. Natively, the 

738 Freitas model assumes fire heat fluxes and area based on the vegetation type that is being burned. 

739 The heat flux and fire area are then used to compute a buoyancy flux (F) following the 

740 expression derived by Viegas et al. (1998):

741 𝐹 =
𝑔𝑅
𝑐𝑝𝑝𝑒

 𝑟2

742 where g is equal to the gravity constant (g = 9.81 m s-1), R represents the ideal gas constant (R = 

743 287 J K-1 kg-1,  denotes specific heat at a constant pressure (  = 1004 J kg-1),  is the ambient 𝑐𝑝 𝑐𝑝 𝑝𝑒

744 surface pressure, and r defines the radius of the fire. The buoyancy flux can be used to compute 

745 the near-surface vertical wind velocity and temperature.

746 More recent work by Val Martin et al. (2012) tried alternative methods for prescribing fire 

747 input parameters, such as using satellite FRP to estimate sensible heat fluxes and aggregating 

748 satellite fire pixels to construct burned areas. This method resulted in slightly improved 

749 simulated plume rises when compared to satellite observations, however, the authors note the 

750 Freitas model was unreliable for identifying plumes that were injected into the FT. It was 

751 hypothesized that model errors in plume rises likely stemmed from uncertainties surrounding fire 

752 input parameters rather than plume rise model formulation. A study conducted by Mallia et al. 

753 (2018) showed the Freitas model was able to realistically capture the plume rise for an 

754 extensively instrumented prescribed burn in Eglin Airforce Base, FL, when driven by observed 

755 fire heat fluxes and burned area. It should be noted however, that this analysis was carried out for 

756 a single case study, for a relatively small burn (area = 1.51 km2), where no pyroCu or Cb activity 

757 was observed. 

758
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759 4.4 Fully physical three-dimensional representation of plume dynamics

760 Continued advancements in computational resources have resulted in a newer generation 

761 smoke models that can explicitly resolve wildfire plume rises. For the full physics method, heat 

762 fluxes from the fire are injected directly into the near-surface grid cells of a high-resolution 

763 three-dimensional atmospheric model (Goodrick et al., 2012). Like the column-based approach, 

764 the atmosphere will respond to the fire heating by generating a buoyant convective plume. One 

765 way that this approach different from the column-based approach is that here the plume is 

766 resolved in three-dimensional space instead of one-dimensional. In addition, these models 

767 typically run at a fine enough resolution where key processes such as entrainment, multiple 

768 plume cores, pyroconvection and upward smoke transport are directly simulated by the model, 

769 instead of being parameterized. The full physics approach typically requires the model to have a 

770 sufficiently fine grid-spacing so that the model can explicitly resolve plume rise dynamics while 

771 simultaneously having the volume needed to encompass the convective plume (Goodrick et al., 

772 2012). As such, short model time steps, combined with fine grid cells, often covering a large 

773 volume, can drastically increase computational resources needed to explicitly resolve the wildfire 

774 plume rise. 

775 Directly simulating the wildfire plume rise using a fully physical approach was first 

776 pioneered by Trentmann et al. (2006) and Luderer et al. (2006), who used a high-resolution 

777 atmospheric model to simulate extreme pyronvection over the Chisholm wildfire located in 

778 Alberta, Canada. The plume rise associated with the Chisholm wildfire reached an altitude of 13-

779 km, according to radar observations. The plume rise simulations carried out by Trentmann et al. 

780 (2006) and Luderer et al. (2006) were able to replicate the intense pyroconvection observed 

781 during this event while also illustrating how meteorological dynamics are coupled with large 
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782 wildfires. Coupled fire-atmosphere models such as WRF-SFIRE and WRF-FIRE also explicitly 

783 resolve the wildfire plume rise. WRF-SFIRE simulations conducted by Kochanski et al. (2016; 

784 2018) and Mallia et al. (2020a) found that modeled plume top heights compared reasonably well 

785 to satellite-estimated plume heights (average error = ± 500 m). An example of a full physics 

786 simulation of a wildfire plume rise by WRF-SFIRE can be seen in Figure 5. 

787

788 5. Summary

789 The number of large and devastating fires are expected to increase in the coming decades, 

790 which will expose communities to poor air quality. Therefore, smoke models will be an 

791 important tool for limiting the public’s exposure to degraded air quality through smoke forecasts 

792 and for determining the optimal time for igniting prescribed burns. Wildfires are also projected 

793 to emit more aerosols into the atmosphere, which can affect weather and climate if the smoke is 

794 injected high up into the atmosphere (Peterson et al., 2018).

795 Within this chapter, we’ve provided a brief introduction to the different types of smoke 

796 models that are available for researchers, and air quality and land/fire managers alike. This 

797 chapter reviews models that range from simple box and Gaussian plume models to more 

798 sophisticated modeling systems that can simulate smoke on an atmospheric grid with full physics 

799 and photochemistry. Also provided in this chapter is an in-depth discussion on coupled fire-

800 atmosphere models, which has not been included in other review articles. This chapter also 

801 reviews processes that are important in the context of smoke transport and how these 

802 fundamental processes are resolved within smoke modeling frameworks. 

803 While we attempt to cover all smoke models that are available to researchers and managers, 

804 covering every smoke model in existence would prove to be an exhaustive effort that could 
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805 probably be a book in itself! Nonetheless, we attempt to present a description of a diverse range 

806 of smoke transport and dispersion models to the reader.  Ultimately, there is no smoke modeling 

807 tool that can be treated as a “silver bullet” as each of the models presented here have strengths 

808 and weaknesses that are dependent on the application that the model is being used for. Thus, we 

809 emphasize that determining the best smoke model for any given application will be dependent on 

810 the needs of the user and what they need the smoke model to do.

811

812 6. Future directions

813 Fundamentally, the processes that govern smoke transport and dispersion are well 

814 understood, especially in the absence of significant pyroconvection (Goodrick et al., 2012). 

815 However, processes related to the fire plume rise (Val Martin et al., 2012; Paugnam et al., 2016), 

816 aerosol microphysics (Forrister et al., 2015; Xie et al., 2018), and plume chemistry (Jaffe and 

817 Widger, 2011) are less understood. Recent field campaigns such as the NASA-NOAA FIREX-

818 AQ campaign and Joint Fire Science’s Fire Smoke and Model Evaluation Experiment (Prichard 

819 et al., 2019; Liu et al., 2019) have started unravelling some of the unknowns associated with 

820 smoke plume chemistry and aerosol physics, however, work is still needed that integrates 

821 observations with existing modeling smoke models. For example, shading from smoke aerosols 

822 can limit O3 production in smoke plume despite wildfires emitting chemical precursors that are 

823 conducive for O3 production (Verma et al., 2009). There are also questions surrounding the 

824 timescale it takes for NOx to be converted into peroxyacetyl nitrate and then back to NOx, which 

825 can be used to form O3 (Alvarado et al., 2010). These are just a few of the many questions that 

826 needs to be addressed regarding smoke plume chemistry.

827 Properly evaluating fire plume rise models also continues to be a challenging proposition. 
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828 There are a limited number of observational datasets that measure the plume height and 

829 properties, while simultaneously constraining surface fire characteristics, such as the fire heat 

830 flux, burned area, and fuel consumption. Incomplete observational datasets makes it difficult to 

831 disentangle whether a simulated plume rise result is erroneous due to assumptions made within 

832 the model, or if errors stem from the model inputs, e.g., fire area and heat fluxes (Val Martin et 

833 al., 2012). 

834 Finally, work is also needed to better project future fire behavior and emissions. Outside of 

835 coupled fire-atmosphere models, most smoke modeling frameworks either use a persistence 

836 assumption (smoke today will be the same as smoke yesterday) or scale current fire heat fluxes 

837 and emissions using a diurnal curve. Therefore, most smoke models are unable to account for 

838 weather-driven fire effects on the plume dynamics. Recent studies have indicated that climate 

839 change is now impacting how some fires behave during the nighttime (Chiodi et al., 2021), 

840 which could further limit the usefulness of diurnal scaling techniques. While running a coupled 

841 fire-atmosphere model for every wildfire may not be practical with today’s computing resources, 

842 new approaches could be developed to project future fire intensity based forecasted weather 

843 conditions. 

844 As we head further into the future, our ability to monitor fires will continue to improve as 

845 remote sensing products and their post-processing algorithms become more sophisticated. New 

846 and exciting new tools are emerging that synthesizes remote sensing products with machine 

847 learning techniques. These sorts of tools can provide detailed fire information at a high 

848 spatiotemporal resolution, therefore reducing some of the uncertainties described earlier in this 

849 chapter (Farguell et al., 2021). Such tools will be critical for providing accurate inputs into 

850 smoke modeling frameworks. It is expected that these emerging technologies, combined with 
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851 data assimilation and improved computational resources will play an increasingly important rule 

852 towards improving the representation of smoke transport and dispersion within smoke model.

853

854
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856 Figures and Tables:
857
858
859
860
861
862
863
864
865
866
867 Table 1. List of commonly used smoke modeling frameworks for research and operational-based 
868 applications. The scale column are loose approximations of scales most appropriate for the listed 
869 model framework. Dashes within a column denote processes that are not accounted for. Gray 
870 shading intensity refers to the degree that specific processes are resolved where red is prescribed, 
871 yellow refers to processes that are parameterized, and green refers to explicitly resolve and/or 
872 parameterized and coupled. 

873874 1. Lavdas (2006), 2. Sestak and Fiebau (1988), 3. Scire et al. (2000), 4. Draxler and Hess (1997), 5. Stohl and Thomson (1999), 6. Lin et al. 
875 (2003), 7. Achtemeir et al. (2011), 8. Larkin et al. (2009), 9. Grell et al. (2005), 10. http://acmg.seas.harvard.edu/geos/, 11. Coen et al. (2013), 12. 
876 Mandel et al. (2011), 13. Mell et al. (2007), 14. Linn and Cunningham (2005)
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898
899 Figure 1. A schematic of important smoke transport processes. Definitions and details of these 
900 processes can be found in the chapter text.
901
902
903
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907

908
909 Figure 2. (a) STILT footprint (gray), which highlights backward trajectory transport pathways 
910 averaged between August 10-21, 2012. PM2.5 contributions from wildfires towards Brigham City 
911 are shown by the color-filled contours. (b) Observed vs. modeled PM2.5 concentrations at 
912 Brigham City, UT for an episodic smoke event (fall 2012) with model uncertainties (+/-1σ) 
913 related to transport errors are shaded as pink. 
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914
915
916
917
918
919
920

921
922
923 Figure 3. WRF-SFIRE-simulated and observed PM2.5 concentrations for the Pole Creek and Bald 
924 Mountain fire on September 15th, 2018. Simulated smoke concentrations are represented by the 
925 color-filled contours, while observed PM2.5 concentrations are denoted by the color-filled circles. 
926 All PM2.5 concentrations displayed here are in units of µg m-3. The white polygons in the lower 
927 right represent model-estimated burned areas, while the black arrows represent simulated near-
928 surface winds. 
929
930
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941
942
943
944
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946
947

948
949
950 Figure 4. Plume rise simulation generated from the Freitas plume model for the 2012 Dry Creek 
951 Fire in Alaska.
952
953
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962
963
964
965
966
967

968
969
970 Figure 5. WRF-SFIRE simulated wildfire plume rise for the Anabella Reservoir prescribed burn. 
971 Warm-colored surface contours represent the modeled burn area, while the vectors represent 
972 simulated cross-sectional winds. Smoke is denoted by the transparent gray isosurface. 
973
974
975
976
977
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