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Abstract

Hydroclimate extreme events, especially precipitation and streamflow extremes during wet seasons, pose severe threats to life,
livelihoods, and infrastructure. Therefore, timely and skillful projections of attributes of seasonal streamflow extremes are
imperative to plan mitigation strategies. In particular, the number of ‘events’ — i.e., exceedances of flow thresholds that result
in flooding and the magnitude of such extremes during the season, will be of immense use to policymakers for early planning
and implementation of flood risk mitigation and adaptation strategies. However, predicting seasonal extremes is challenging,
particularly under spatial and temporal non-stationarity. To address this need, we develop a space-time model to project
seasonal flow risk attributes using a Bayesian hierarchical modeling (BHM) framework in this study. In this model, the number
of events exceeding a threshold during a season at a suite of gauge locations on a river network are modeled as Poisson margins.
The seasonal daily maximum flows are modeled as a generalized extreme value (GEV). The rate parameters of the Poisson
distribution and scale and shape parameters of the GEV are modeled as a linear function of suitable covariates. Gaussian
Elliptical Copulas are applied to capture the spatial dependence. The best set of covariates is selected using the leave-one-
out cross-validation information criteria (LOOIC). The modeling framework results in the posterior distribution of the risk
attributes for each season and, thus, the uncertainties. We demonstrate the utility of this modeling framework to project the
flood risk attributes during the summer peak monsoon season (July-August) at five gauges in the Narmada River basin of
West-Central India. As potential covariates, we consider climate indices such as El Nifio-Southern Oscillation (ENSO), the
Indian Ocean Dipole (IOD), and the Pacific Warm Pool Region (PWPR) from the precedent season, which have shown strong
teleconnections with the Indian monsoon. This spatiotemporal modeling framework helps in the planning of seasonal adaptation
and preparedness measures as predictions of monsoon high flow risk occurrence become available up to 3 months before actual

flood occurrence.
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Flooding in Madhya Pradesh, late August 2020.
Photo: Government of Madhya Pradesh
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Study Region and Data

Streamflow

« Daily observed streamflow during the peak monsoon
season (July-August) — India Water Resource
Information System (IWRIS)

* Period: 1978-2018 (37 years), no. of sites 5

« Daily maximum peak monsoon season (July-August)
streamflow

Precipitation

« Daily gridded precipitation - India Meteorology
Department (IMD)

» Spatial Resolution: 0.25°
» Period: 1978-2018

Climate Indices
 Period; 1978-2018
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General Bayesian Model Structure

streamflow at each gauge (Q)
Forecast
precipitation

| Climate
Daily seasonal maximum | covariates

Nonstationary GEV Margins
q(t)~GEV (u(t),0,¢)
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Covariates for each lead time

« |OD, PWPR, Ninol+2, Nino 3.4
» Basin average monsoon (July-August) total precipitation (AMTP) forecast

« We consider our own index (NI) for each lead time based on the region of
highest correlation between the first PC of maximum streamflow and SST
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Implementation and Model

Fitting

 The BHNM implemented in STAN
using MCMC

» Weakly informative independent
priors for f and o

« 3000 samples for each parameter

» R statistic is below 1.1 for all the
cases (ensure convergence)

 Best model was selected based
on the lowest LOOIC value
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Results-cross validation Handia

(a) 0-month lead
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CRPSS (ESS)

Model performance

Distributional performance
« Skill decreases as the lead time increases
« Coherent forecast (no worse than

climatology)

 For high flow years median CRPSS values
above 0.1 up to 1-month lead

» Good spatial skill even up to 3-month lead
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NEETM forecast

« NEETM: Number of Events that Exceed a
Threshold during monsoon season (July- August)

- Same structure but with a Poisson margin at
each site

Nonstationary Poisson
Margins
NEETM(t)~Poisson(A(t))
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Time varying regression

BHM provides higher accuracy Climatology AD) = Bo + B2

to detect the occurrence of high flow events
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Summary and Conclusions

 We implemented a BHM for forecasting of seasonal
streamflow extremes in the NRB

 The model provides robust and reliable streamflow forecast
ensembles up to 1-month lead time and beyond

* The first effort to model seasonal streamflow extremes in
the NRB and India

. ;‘(r)lizsz)can be combined with daily forecast (ossandon et al.
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