Rethinking the role of transport and photochemistry in regional ozone pollution: Insights from ozone mass and concentration budgets

Kun Qu¹, Xuesong Wang², Xuhui Cai³, Yu Yan⁴, Xipeng Jin³, Mihalis Vrekoussis⁵, Jin Shen⁶, Teng Xiao³, Limin Zeng⁷, and Yuanghang Zhang⁸

November 23, 2022

Abstract

Understanding the role of transport and photochemistry is essential to alleviate regional ozone pollution. However, budget studies often report conflicting conclusions. Using the modeling results of WRF-CMAQ, we calculated the contributions of both processes to the variation of total ozone mass and mean ozone concentration (noted as ozone mass and concentration budget, respectively) within the atmospheric boundary layer (ABL) of the Pearl River Delta, China. Transport, especially the exchange between ABL and free troposphere, controls the ozone mass budget, whereas local photochemistry drives the rapid increase of ozone concentration in the daytime. Though transport has a limited effect on ozone concentration, its high contribution to the ozone mass budget determines that most ozone emanates from the outside regions. Consequently, the role of transport and photochemistry in ozone pollution may differ, depending on which of the two budgets is considered. Attention should be paid to budget type selections in future studies.

¹Peking University; University of Bremen

²College of Environmental Sciences and Engineering

³Peking University

⁴Peking university

⁵Institute of Environmental Physics, University of Bremen

⁶Guangdong Environmental Monitoring Center

⁷College of Environmental Sciences and Engineering, Peking University

⁸State Key Lab

Rethinking the role of transport and photochemistry in regional ozone pollution:

Insights from ozone mass and concentration budgets

K. Qu^{1,2,3}, X. Wang^{1,2,*}, X. Cai^{1,2}, Y. Yan^{1,2}, X. Jin^{1,2}, M. Vrekoussis^{3,4,5}, J. Shen⁶, T. Xiao^{1,2},

L. Zeng^{1,2} and Y. Zhang^{1,2,7,8,*}

- ¹State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
- 7 Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
- ²International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing,
- 9 100816, China.
- ³Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of
- Environmental Physics (IUP), University of Bremen, Bremen, Germany.
- ⁴Center of Marine Environmental Sciences (MARUM), University of Bremen, Germany.
- ⁵Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Cyprus.
- ⁶State Key Laboratory of Regional Air Quality Monitoring, Guangdong Key Laboratory of
- 15 Secondary Air Pollution Research, Guangdong Environmental Monitoring Center, Guangzhou
- 16 510308, China.
- ⁷Beijing Innovation Center for Engineering Science and Advanced Technology, Peking
- University, Beijing 100871, China.
- ⁸CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of
- 20 Sciences, Xiamen 361021, China.
- 21 Corresponding author: X. Wang (xswang@pku.edu.cn) and Y. Zhang (yhzhang@pku.edu.cn)

Key Points:

22

23

24

25

26

27

- Regional ozone mass and concentration budgets were calculated based on WRF-CMAQ modeling results in the Pearl River Delta.
- Ozone mass budget is mainly controlled by transport, while ozone concentration budget is driven by photochemistry in the daytime.
- The difference between two budgets leads to conflicting conclusions about the role of transport and photochemistry in ozone pollution.

Abstract

Understanding the role of transport and photochemistry is essential to alleviate regional ozone pollution. However, budget studies often report conflicting conclusions. Using the modeling results of WRF-CMAQ, we calculated the contributions of both processes to the variation of total ozone mass and mean ozone concentration (noted as ozone mass and concentration budget, respectively) within the atmospheric boundary layer (ABL) of the Pearl River Delta, China. Transport, especially the exchange between ABL and free troposphere, controls the ozone mass budget, whereas local photochemistry drives the rapid increase of ozone concentration in the daytime. Though transport has a limited effect on ozone concentration, its high contribution to the ozone mass budget determines that most ozone emanates from the outside regions. Consequently, the role of transport and photochemistry in ozone pollution may differ, depending on which of the two budgets is considered. Attention should be paid to budget type selections in

Plain Language Summary

future studies.

Ozone pollution occurs in many regions around the world. To tackle ozone pollution, it is needed to better understand and characterize processes that influence the variations of ozone, especially transport and daytime chemistry. However, reported studies often have different views on the relative importance of these two processes, which may limit their help for policy-makers to control ozone pollution effectively. We aim to answer why these studies report — at first glance — contradicting results. The WRF-CMAQ modeling results were used to calculate the influences of both processes on the changes of ozone mass and concentration in a typical city cluster. We found that transport controls the changes of ozone mass, but chemical processes contribute to the rapid increase of ozone concentration in the daytime. Although transport does not lead to big changes in ozone concentration, its high contribution to ozone mass increase explains why most ozone comes from the outside regions. The different influences of transport and daytime chemical processes on the changes of ozone mass and concentration seems to explain the contradicting views mentioned before. Future studies should be careful with that.

1 Introduction

- Nowadays, many urban regions around the globe still experience tropospheric ozone (O₃)
- pollution (Schultz et al., 2017), which threatens human health, crop yields and ecosystem (Mills
- et al., 2013; Ainsworth, 2017; Zhang et al., 2019). High O₃ concentrations within a region are
- generally attributed to daytime photochemical production from O₃ precursors, i.e. NO_x (NO +
- NO₂) and volatile organic compounds (VOCs). However, since O₃ has a moderately long
- atmospheric lifetime (~ 22 d; Stevenson et al., 2006), transport, including horizontal transport
- 67 (advection) and vertical exchange between atmospheric boundary layer (ABL) and free
- troposphere (FT) (entrainment and detrainment), may also contribute to high O₃ levels. To
- alleviate O₃ pollution effectively, it is required to understand the role of both processes during
- O_3 -polluted periods.
- Budget analysis provides valuable information to indicate the causes of regional O₃ pollution. O₃
- budgets have been massively reported based on various observational and modeling methods, but
- they may come up with completely different conclusions. O₃ budgets based on in-situ (Su et al.,
- 74 2018; Tan et al., 2018; Tan et al., 2019; Yu et al., 2020), aircraft measurements (Lenschow et al.,
- 75 1981; Trousdell et al., 2016; Trousdell et al., 2019) and Process Analysis or alike modules in
- chemical transport models (CTMs) (Hou et al., 2014; Li et al., 2021; Yan et al., 2021) often
- suggest that O_3 production through local photochemistry drives the noon-time increase of O_3
- 78 concentration, whereas transport reduces O₃ over the same period. It does not mean that transport
- 79 plays a less important role in O_3 pollution at every hour of the day; during several hours after
- sunrise, transport, especially ABL-FT exchange, may contribute to the rapid increase of O₃ levels
- (Kaser et al., 2017). However, in some studies (Memmesheimer et al., 1997; Lehning et al.,
- 82 1998; Myriokefalitakis et al., 2016), O₃ transport fluxes are comparable to the contributions of
- photochemistry to O_3 , suggesting that the influence of transport on O_3 pollution cannot be simply
- ignored. O₃ source apportionment using CTMs provides the contributions of emissions from
- 85 different regions to O₃, thus it also serves as a tool for budget analysis. O₃ source apportionment
- results often showed that most O₃ emanates from non-local sources (Guo et al., 2018; Pay et al.,
- 2019; Liu et al., 2020), emphasizing the dominant role of transport in O_3 pollution. Even for the
- same region and during the same season, conflicting O_3 budget results may be found, making
- 89 policy-makers confused whether it is more effective to reduce emissions locally or on a larger

scale. Therefore, we must re-think the role of both transport and photochemistry in O₃ budget 90 and explore why this discrepancy occurs. 91 In this study, we quantified the contributions of various processes (including transport and 92 93 photochemistry) in regional O₃ budgets using the results from the Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models. The Pearl River 94 Delta (PRD) region, a city cluster located on the southeast coast of China and exposed to severe 95 O₃ pollution in summer and autumn (Gao et al., 2018), was selected as the targeted region in 96 97 analysis. Since O₃ is well-mixed within the convective ABL during pollution (Tang et al., 2021), O₃ budgets within the ABL of the PRD are the focus of this study. Unlike using fixed values as 98 in previous budget studies, here, the ABL heights were provided by the WRF modeling results. 99 Thus, the volume defined by the grids below the ABL changes throughout the day. Two types of 100 budgets were defined here, namely, O₃ mass and concentration budgets. They describe the 101 102 contributions of processes to the variation of total O₃ mass and mean O₃ concentration, 103 respectively, in the ABL of the PRD. The discrepancy between the aforementioned budget 104 studies is hidden behind the difference between these two O₃ budgets. 2 Methodology: O₃ budget calculations 105 Figure 1 displays all processes considered in the O₃ budget calculations and the distributions of 106 the PRD grids (lower-left panel), including the border grids (defined as the PRD grids adjacent to 107 108 the outside regions). The contributions of horizontal transport through the borders of the PRD in four directions, ABL-FT exchange due to the changes of ABL height (marked as ABL-FT-H) 109 110 and large-scale air motion (advection through the ABL top; marked as ABL-FT-M) were 111 calculated using meteorological parameters and O₃ concentrations modeled by WRF-CMAQ. The contributions of gas-phase chemistry (including daytime photochemical O₃ production and 112 O₃ titration by NO), cloud process (including below and in-cloud mixing, aqueous-phase 113

that the contributions to the O_3 mass variation per time are defined as O_3 fluxes.)

chemistry, wet deposition; Liu et al., 2011) and dry deposition were provided by the Process

expected to have a minor influence on the variation of O₃ mass and concentration, we did not

involve it in O₃ budgets. The calculations of transport contributions in O₃ budgets are described

in the following sections. More details about the calculation process are given in Text S1. (Note

Analysis results of CMAQ. Because diffusion near the boundaries and top of the region is

114

115

116

117

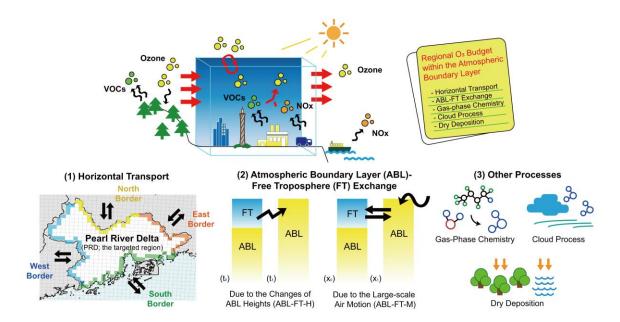


Figure 1. Schematic illustration of regional O₃ budgets (upper panel) and processes considered (lower panel): (1) Horizontal transport through the borders of the Pearl River Delta (PRD) in four directions (the distributions of the PRD grids are also shown (white for the non-border PRD grids; yellow, green, blue, orange for the north, south, west and east border grids, respectively)); (2) Exchange between atmospheric boundary layer (ABL) and free troposphere (FT), including the process due to the changes of ABL heights (ABL-FT-H) and large-scale air motion (ABL-FT-M); (3) Other processes, including gas-phase chemistry, cloud process and dry deposition.

2.1 Transport contributions in the O₃ mass budget

Using the method in Yang et al. (2012) and Chang et al. (2018), we calculated the horizontal transport fluxes of O_3 . For instance, the O_3 flux attributed to the advection through the west interface of grid cells within the ABL (F_{htrans}) in the time interval dt is calculated as:

$$F_{htrans} = \int_0^H cuL \, dz \, dt \tag{1}$$

where c indicates O_3 concentration in the adjacent grid; u is the mean speed of the horizontal wind passing through the interface; L is the width of the grid cell (equal to the horizontal resolution of the model); dz is the height of vertical layers; H is the ABL height. The horizontal

- transport fluxes of O₃ through every interface between one type of border and the outside regions
- were summed up as the net contribution of horizontal transport through that border in the O₃
- mass budget.
- ABL-FT exchange occurs through turbulence; thus, the quantification of its flux differs from that
- of horizontal transport flux (Zhang et al., 2018). The ABL-FT exchange flux of O_3 (F_{ABL-FT}) in
- the time interval dt is calculated as in Sinclair et al. (2010) and Jin et al. (2021):

$$F_{ABL-FT} = F_{ABL-FT-H} + F_{ABL-FT-M}$$

$$= c_h \frac{\partial H}{\partial t} L^2 dt + c_h \left(u_h \frac{\partial H}{\partial x} + v_h \frac{\partial H}{\partial y} - w_h \right) L^2 dt$$
(2)

- where c_h is the O₃ concentration in the ABL top; u_h , v_h and w_h are the ABL-top wind speeds in
- the x, y and z-direction, respectively. Two terms on the right-hand side of Eq. (2) separately
- describe the contributions of ABL-FT-H and ABL-FT-M (denoted separately as $F_{ABL-FT-H}$ and
- $F_{ABL-FT-M}$). The ABL-FT exchange fluxes of O₃ within all PRD grids were summed up as the
- net contributions of ABL-FT exchange in the O₃ mass budget.
- 2.2 Transport contributions in the O₃ concentration budget
- The effects of transport on the variations of O_3 mass and concentration are different. According
- to the calculations in the last section, O_3 being transported into (out of) the region results in O_3
- mass increase (decrease), which corresponds to a positive (negative) O₃ transport flux. However,
- whether O₃ concentration in the region increases or decreases also depends on the O₃
- 152 concentration in the transported air parcels. For instance, clean air parcels transported into the
- region dilute O_3 pollution and reduce O_3 concentration. Therefore, we applied different methods
- to quantify transport contributions in the O_3 concentration budget.
- Suppose that an air parcel with a volume of dV is transported into the ABL of the PRD (its
- original volume is V) within a short time. For horizontal transport:

$$\left[\frac{\partial \langle c \rangle}{\partial t}\right]_{htrans} = \frac{F_{htrans} + \langle c \rangle(V - dV)}{V} - \langle c \rangle = \frac{F_{htrans} - \langle c \rangle dV}{V}$$
(3)

- where $\langle c \rangle$ denotes mean O₃ concentration in the ABL of the PRD. The contributions of ABL-FT-
- 158 M are quantified using a similar formula.
- 159 Through ABL-FT-H, air parcels in the FT are merged into (or segmented out of) the ABL, thus:

$$\left[\frac{\partial \langle c \rangle}{\partial t}\right]_{ABL-FT-H} = \frac{F_{ABL-FT-H} + \langle c \rangle V}{V + dV} - \langle c \rangle = \frac{F_{ABL-FT-H} - \langle c \rangle dV}{V + dV} \tag{4}$$

- 160 If the targeted region was small enough, Eqs. (3) and (4) would have the same forms as those
- used in 1-D models (Janssen and Pozzer, 2015; Vilà-Guerau de Arellano et al., 2015), which
- 162 confirms the applicability of the above calculations (for details, see Text S2). For the hourly
- 163 contributions of each process to O₃ concentration variations, their calculations are not trivial
- because V in Eqs. (3) and (4) may change notably within an hour. Therefore, we designed two
- calculation paths (Fig. S1):
- 166 a. O_3 mass change \rightarrow ABL volume change;
- b. ABL volume change \rightarrow O₃ mass change.
- where only O₃ mass or ABL volume changes in one calculation step. The contributions of ABL-
- FT-H are decomposed into two parts: ABL volume change during the ABL development
- 170 (collapse) leads to lower (higher) O₃ concentration, and O₃ transported into the ABL (FT) leads
- to O_3 increase (decrease). These contributions are quantified separately in the ABL volume and
- O_3 mass change step. The contributions of other processes are quantified only in the O_3 mass
- 173 change step. For one process, its contributions to O_3 concentration variations are calculated
- through both paths, and their mean value serves as an estimation close to its real contribution in
- the O_3 concentration budget.
- 176 2.3 Model setup and validation
- 177 The O₃ mass and concentration budgets within the ABL of the PRD were calculated based on the
- WRF-CMAQ modeling results by Qu et al. (2021). Two nested domains with the resolution of
- 36 and 12 km were set (denoted as d01 and d02 hereafter). The finer d02 modeling results were
- used in the O₃ budget calculations. October 2015 (October 11–November 10, 2015) and July
- 2016 (July 1–31, 2016) were selected as the representative months in autumn and summer,
- respectively, for the PRD. Here, O₃ polluted days are defined when the maximum 1-hr O₃
- concentrations exceed 200 μ g/m³, or the maximum 8-hr average O₃ concentrations exceed 160
- 184 μg/m³ (both are the Grade-II O₃ thresholds in the Chinese National Ambient Air Quality
- Standard) in any municipality of the PRD. According to this definition, there were 16 and 12 O₃
- polluted days in two months, respectively (more information is given in Table S1). Further

discussions focus on the mean O₃ budgets of these days. The detailed setup of WRF-CMAQ, the valiadation of modeled meteorological parameters, O₃, NO₂ concentrations and hydrocarbons mixing ratios were introduced by Qu et al. (2021). Here, we also compared modeled ABL height, the vertical profiles of wind speed, direction and O₃ mixing ratio in Hong Kong (located in the south PRD) with corresponding observations from the IAGOS (In-service Aircraft for a Global Observing System; Petzold et al., 2015) dataset. As presented in Text S3, the acceptable modeling performance of these parameters indicates that the model provide reasonable initial data for the O₃ budget calculations.

195 If the calculation methods and assumptions were reasonable, the budget closure, or

$$\frac{\partial m(or\langle c\rangle)}{\partial t} - \left(S_{htrans} + S_{ABL-FT} + S_{chem} + S_{cloud} + S_{ddep}\right) = 0 \tag{5}$$

would be achieved $(S_{htrans}, S_{ABL-FT}, S_{chem}, S_{cloud})$ and S_{ddep} indicate the contributions of horizontal transport, ABL-FT exchange, gas-phase chemistry, cloud process and dry deposition, respectively, in O₃ budgets). Therefore, we used Eq. (5) to examine the validity of our calculations. The total O₃ mass at the start and end of each hour was directly used to calculate the hourly variations of O₃ mass. Besides these, volumes at these two moments (calculated using ABL heights in all PRD grids) were also used to calculate the hourly variations of O₃ concentration. As displayed in Fig. S2, the closure is met for O₃ mass and concentration budgets in both months, allowing for further analysis based on the quantified budgets. 2.4 Identifying source contributions in O₃ fluxes

It is generally believed that transport (gas-phase chemistry) is closely linked to the contributions of non-local (local) emissions for O₃, but quantitative evaluation of the connections between O₃ processes and sources is still lacking. By combining the O₃ budget calculation with the source apportionment method, the Brute Force Method (BFM; Clappier et al., 2017), we identified the regional contributions of O₃ fluxes attributed to transport and gas-phase chemistry. Of interest were the contributions of emissions in the PRD, other regions within d02 (mainly East and Central China, short for EC-China), and regions outside d02 (the boundary conditions (BCON) of d02 modeling). The distributions of these regions are shown in Fig. S3. Besides the base scenario, three sensitivity scenarios were simulated:

• The *PRD zero* scenario: Emissions in the PRD were zeroed out;

- The EC-China zero scenario: Emissions in the EC-China were zeroed out;
- The *All_zero* scenario: All emissions within d02 were shut down.
- For the process i, its O_3 fluxes in the base scenario and three sensitivity scenarios were
- quantified using the same method introduced in Sect. 2.1, denoted as $f_{i,base}$, f_{i,PRD_zero} ,
- $f_{i,EC-China\ zero}$, and $f_{i,all\ zero}$, respectively. Then, the contributions of PRD, EC-China and
- BCON in O₃ fluxes attributed to the process i (separately denoted as $F_{i,PRD}$, $F_{i,EC-China}$, and
- $F_{i,BCON}$) were calculated as follows:

$$F_{i,PRD} = \frac{1}{2} \left[\left(f_{i,base} - f_{i,PRD_zero} \right) + \left(f_{i,EC-China_zero} - f_{i,all_zero} \right) \right] \tag{6}$$

$$F_{i,EC-China} = \frac{1}{2} \left[\left(f_{i,base} - f_{i,EC-China_zero} \right) + \left(f_{i,PRD_zero} - f_{i,all_zero} \right) \right] \tag{7}$$

$$F_{i,BCON} = f_{i,all_zero} \tag{8}$$

- In Eq. (6-7), the contributions of emissions are calculated as the average results of these using
- top-down BFM ($(f_{i,base} f_{i,PRD_zero})$, $(f_{i,base} f_{i,EC-China_zero})$ for the PRD and EC-China
- emissions, respectively) and bottom-up BFM ($(f_{i,EC-China_zero} f_{i,all_zero})$, $(f_{i,PRD_zero} f_{i,all_zero})$
- $f_{i.all\ zero}$) for the PRD and EC-China emissions, respectively). By doing so, the non-additivity
- 226 (the sum of contributions is not equal to the concerned metric) caused by the non-linearity
- between O_3 and precursors can be avoided (Qu et al., 2021).

228 3 Results

- $3.1 O_3$ mass budget
- 230 The diurnal changes of the O₃ mass budget within the ABL of the PRD are shown in the upper
- panels of Fig. 2. In both autumn and summer, total O₃ mass increased after sunrise (~6:00 local
- 232 time (LT) in autumn, ~5:00 LT in summer) until noon (~14:00 LT), then decreased rapidly in the
- afternoon and remained stable at night. The change of total O_3 mass agrees well with the diurnal
- 234 cycle of ABL (Lee, 2015) daytime ABL development (collapse) and notable O₃ mass increase
- (decrease) nearly occur simultaneously, and the negligible changes of O₃ mass at night may be
- related to the small variations of stable ABL.

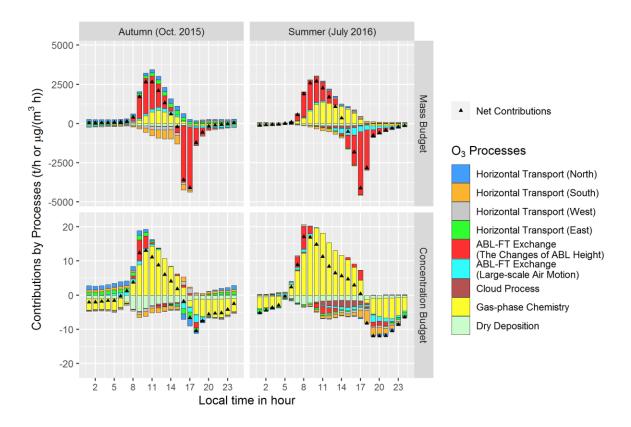


Figure 2. Mean diurnal changes of O_3 mass budget (upper panels) and concentration budget (lower panels) on the polluted days of representative months in autumn (Oct. 2015; left panels) and summer (July 2016; right panels) within the atmospheric boundary layer (ABL) of the Pearl River Delta. FT, free troposphere. The units for the O_3 mass and concentration budgets are t/h and $\mu g/(m^3 h)$, respectively.

The contribution of processes to the variation of O₃ mass highlights the prominent role of transport. On average, it contributed to 78% and 53% of the O₃ mass increase during the O₃-increasing hours in autumn (6:00-14:00 LT) and summer (5:00-14:00 LT), respectively, and over 90% of the O₃ mass decrease during the O₃-reducing hours in both seasons (14:00-19:00 LT in autumn, 14:00-20:00 LT in summer). Most O₃ was transported into or out of the PRD through ABL-FT-H, which explains the consistency between the changes of O₃ mass and ABL. The influences of ABL-FT-M and horizontal transport on O₃ mass were relatively limited (more analyses are given in Text S4). Gas-phase chemistry (photochemistry) also contributed to the increasing O₃ mass during the daytime, especially in summer. However, its mean contribution

252	during the O ₃ -increasing hours (22% in autumn, 47% in summer) was lower than transport.
253	Cloud process and dry deposition acted as O_3 sinks with negligible contributions in the O_3 mass
254	budget. In summary, for the O ₃ mass budget, transport tends to be more important than
255	photochemistry.
256	The O ₃ mass budget in this study agrees well with our common understanding of O ₃ processes.
257	The main role of transport (ABL-FT exchange) in the O ₃ mass budget reflects the influence of
258	the ABL diurnal cycle on regional O ₃ pollution. In particular, massive O ₃ being transported into
259	the ABL during the O ₃ -increasing hours is critical for the characteristics of O ₃ pollution,
260	including O_3 sources, which is further discussed in Sect. 3.3.
261	3.2 O ₃ concentration budget
262	The diurnal changes of mean O ₃ concentration within the ABL of the PRD (Fig. 2, lower panels)
263	differ from these of O_3 mass — O_3 concentration increased during most daytime hours, and its
264	reduction at night was also considerable. We compared the ABL-mean O ₃ concentration with
265	observed and modeled mean near-ground O ₃ concentrations in 18 sites of the Guangdong-Hong
266	Kong-Macao PRD Regional Air Quality Monitoring Network (their distributions are shown in
267	Fig. S4). As presented in Fig S5, three types of O ₃ concentration feature with similar diurnal
268	changes. Thus, the budget of ABL-mean O_3 concentration can illustrate more general causes of
269	near-ground O ₃ pollution in the PRD.
270	Unlike the main role of transport for the O ₃ mass budget, gas-phase chemistry controlled almost
271	exclusively the O ₃ concentration budget. During the O ₃ -increasing hours defined in the last
272	section, gas-phase chemistry (photochemistry) contributed to 74% and 95% of the O_3
273	concentration increase in autumn and summer, respectively, which are notably higher than the
274	contributions of transport (25% in autumn, 5% in summer). It also led to the O ₃ concentration
275	decrease at night, suggesting that O ₃ were titrated by NO. A considerable contribution of
276	transport (mainly ABL-FT-H) to the O ₃ increase is found mainly during 2-3 hours after sunrise
277	(highest hourly contributions are ~40%, ~25% in autumn and summer, respectively), indicating
278	that air masses containing high-level O ₃ were entrained from residual layers. ABL-FT-M and
279	horizontal transport may increase or decrease ABL-mean O_3 concentration, depending on the O_3
280	levels in air parcels transported into and out of the region (more analyses are given in Text S4).
281	But during most hours in the daytime, these two transport processes had only a limited influence

manuscript submitted to Geophysical Research Letters

282	on O ₃ concentration variations. What is also different for the O ₃ concentration budget compared
283	to its mass budget is that dry deposition served as the major sink process for O ₃ in the daytime,
284	contributing to non-negligible O_3 concentration decreases. These results indicate that gas-phase
285	chemistry played a major role in the variations of O ₃ concentrations. In particular,
286	photochemistry led to the rapid formation of O ₃ pollution in the daytime. Our conclusions agree
287	well with those in previous O ₃ concentration budgets publications (Lenschow et al., 1981; Hou et
288	al., 2014; Trousdell et al., 2016; Su et al., 2018; Tan et al., 2018; Tan et al., 2019; Trousdell et
289	al., 2019; Yu et al., 2020; Li et al., 2021; Yan et al., 2021).
290	3.3 The sources of O ₃ fluxes
291	Typically, non-local sources contributed to most O ₃ in the PRD (Li et al., 2012; Li et al., 2013;
292	Yang et al., 2019; Gao et al., 2020). This is also the case for the O ₃ polluted days in the
293	representative months of autumn and summer, when non-local sources contributed on average to
294	89% and 65% of the O_3 in the PRD, respectively, during 9:00-17:00 LT (55% and 32%
295	contributed by BCON, 34% and 33% contributed by EC-China in two months; Qu et al., 2021).
296	To explain why non-local O ₃ sources are dominant for the PRD, we identified the regional
297	sources of O3 fluxes attributed to ABL-FT exchange, horizontal transport and gas-phase
298	chemistry (Fig. 3; the results within $5:00-20:00\ LT$ are shown). Since apparently, O_3 transported
299	out of the PRD does not influence O ₃ sources within the region, we mainly focus on the source
300	of O ₃ transported into the PRD (or O ₃ influxes) in the discussions.

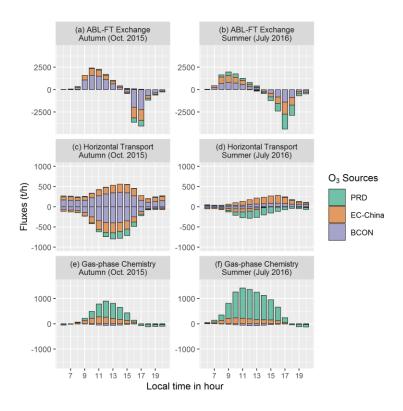


Figure 3. Mean diurnal changes of the sources of O₃ fluxes attributed to (a-b) ABL-FT exchange, (c-d) horizontal transport, and (e-f) gas-phase chemistry on the polluted days of representative months in autumn (Oct. 2015; a,c,e) and summer (July 2016; b,d,f). The results within 5:00-20:00 LT are shown here. ABL, atmospheric boundary layer; FT, free troposphere; PRD, Pearl River Delta; EC-China, East and Central China; BCON, the boundary conditions of d02 modeling, or the contribution of sources outside d02.

ABL-FT exchange, the process with the highest O_3 fluxes, was mainly related to the contributions from non-local emissions. In autumn, the contributions of BCON and EC-China accounted for 65% and 31%, respectively, in O_3 influxes during the O_3 -increasing hours. By contrast, local emissions contributed to only 4% of the O_3 influxes during the same period. Thus, local O_3 recirculation had a limited influence on O_3 pollution. The results in summer were similar to those in autumn, except that the contributions of PRD and EC-China emissions were higher in O_3 influxes. Especially, local contributions accounted for 20% of the O_3 influxes during the O_3 -increasing hours, but still lower than non-local contributions (38%, 42% for EC-China and BCON, respectively).

O₃ fluxes attributed to horizontal transport were connected to the contribution of non-local 317 sources as well. In both seasons, O₃ transported into the PRD originated nearly all from non-318 local sources. 319 320 It is not surprising that most O₃ produced through gas-phase chemistry (photochemistry) was related to local contributions (accounting for 66% and 82% during the daytime of autumn (6:00-321 19:00 LT) and summer (5:00-20:00 LT), respectively). However, the contributions of EC-China 322 reached 34% and 18% in two seasons, respectively, indicating the considerable influence of 323 324 precursor transport. O₃ source has close connections with the O₃ mass budget. Accumulated net O₃ flux during the 325 326 O₃-increasing hours exceeded 10000 t in the PRD, which is 6-9 times of the original O₃ mass before sunrise (< 1500 t). Thus, daytime O₃ sources within the region were nearly determined by 327 the sources of these newly transported or produced O₃. High O₃ fluxes attributed to transport 328 (ABL-FT exchange) and the dominance of non-local sources in these fluxes ensured that most O₃ 329 in the PRD was contributed by non-local sources. The reduced non-local contributions to O₃ in 330 summer than autumn can be explained as the combined effects of higher O₃ photochemical 331 332 fluxes, lower non-local contributions in O₃ photochemical fluxes and higher local contributions 333 in O₃ transport fluxes. In the O₃ concentration budget, transport had relatively limited effects on O_3 concentration increase compared to photochemistry, making it less important for O_3 . 334 Therefore, the difference between O₃ mass and concentration budgets potentially results in 335 diverse understandings about the role of transport and photochemistry in regional O_3 pollution. 336 337 4 Discussion and conclusion 338 Reported O₃ budget studies often concluded with a conflicting role of transport and photochemistry in O₃ pollution. To explore its causes, we used the modeling results of WRF-339 CMAQ to quantify their contributions in the O_3 mass and concentration budgets. Results in the 340 PRD revealed that transport, especially ABL-FT exchange, is the main process contributing to 341 342 O₃ mass increase in the morning (78%, 53% in autumn and summer, respectively) and its decrease in the afternoon (> 90%). Gas-phase chemistry, including daytime photochemistry and 343 nighttime O₃ titration, drives the variations of O₃ concentration. Although massive O₃ 344 transported into the ABL in the morning has a limited influence on O₃ concentration increase 345 (25%, 5% in autumn and summer, respectively), it determines the dominance of non-local 346

347	sources for O ₃ in the PRD. The difference between two O ₃ budgets could lead to different
348	understandings about the role of transport and photochemistry in regional O ₃ pollution.
349	Different results from two O ₃ budgets are attributed to two reasons. Firstly, transport has distinct
350	effects on the variation of O_3 mass and concentration — O_3 transported into (out of) the studied
351	region has a positive (negative) contribution to O ₃ mass, but its contribution to the variation of
352	O ₃ concentration also depends on the O ₃ levels in the transported air parcels. This has been
353	considered in the budget calculations introduced in Sect. 2. The second reason is that ABL
354	undergoes rapid diurnal changes, especially in the daytime. In different hours, similar
355	contributions to O ₃ mass within different ABL volumes can easily correspond to distinct
356	contributions to O_3 concentration. The conclusions of this study are also applicable to other
357	pollutants with moderately long atmospheric lifetimes, such as $PM_{2.5}$. Transport and chemical
358	processes are both important for these pollutants but with different influences on their mass and
359	concentration, which should be considered in the analyses.
360	Uncertainty remains in the calculated O ₃ budgets, which is likely related to the biases in the
361	modeling results. Therefore, supporting observations are essential for future research. Recent
362	progress in observational techniques (Zhao et al., 2021; Zhou et al., 2021) has enabled three-
363	dimensional measurements of meteorological parameters and O ₃ concentrations with high
364	spatiotemporal resolution and coverage. These data can be used not only in the model validation
365	of key parameters in budget calculations, but also in the comparisons between observation- and
366	modeling-based contributions by various processes in O ₃ budgets. By doing so, more accurate O ₃
367	budgets will be obtained.
368	This study concluded that transport and gas-phase chemistry separately play the main role in O_3
369	mass and concentration budgets. Therefore, attention should be paid to selecting a proper budget
370	type and using correct calculation methods in related research. Based on two O ₃ budgets, we
371	suggest that emission reduction in the upwind regions can effectively lower daily-mean O_3 levels
372	due to its high contributions to regional O_3 , but a longer time is needed due to the slow response
373	of O_3 concentration to transport. By contrast, reducing local emissions hinders rapid daytime O_3
374	concentration increase and lowers O ₃ peak levels efficiently in the short term. The choice of
375	which strategy to apply depends on the specific goals of O_3 control (mean levels vs. peak levels;

376 377	long-term vs. short-term), which are set based on more in-depth understanding of the O ₃ effect on human health, crop yields and ecosystem.
378	Acknowledgments
379	This study was supported by the National Key Research and Development Program of China
380	(grant No. 2018YFC0213204), the National Science and Technology Pillar Program of China
381	(grant No. 2014BAC21B01) and the co-funded DFG-NSFC Sino-German AirChanges project
382	(grant No. 448720203).
383	
384	Open Research
385	The source codes of WRF and CMAQ are available at the site
386	https://www2.mmm.ucar.edu/wrf/users/download/get_sources.html and
387	https://www.cmascenter.org/cmaq/, respectively. FNL meteorological input files were
388	downloaded from the site https://rda.ucar.edu/datasets/ds083.2/ . MEIC v1.3 anthropogenic
389	emission inventory is available at http://meicmodel.org/ . The source codes of MEGAN can be
390	found at https://bai.ess.uci.edu/megan/data-and-code . IAGOS dataset used in model validation
391	was downloaded from http://iagos-data.fr/ . We also provided the initial Fortran code used in
392	ozone budget calculations and hourly O ₃ mass and concentration budget results in two
393	representative months (the initial data of Fig. 2) at https://doi.org/10.5281/zenodo.6259253 .
394	
395	References
396	Ainsworth, E. A. (2017). Understanding and improving global crop response to ozone pollution.
397	The Plant Journal, 90(5), 886-897. doi: https://doi.org/10.1111/tpj.13298

398	Chang, X., Wang, S., Zhao, B., Cai, S., & Hao, J. (2018). Assessment of inter-city transport of
399	particulate matter in the Beijing-Tianjin-Hebei region. Atmospheric Chemistry and
400	Physics, 18(7), 4843-4858. doi: https://doi.org/10.5194/acp-18-4843-2018
401	Clappier, A., Belis, C. A., Pernigotti, D., & Thunis, P. (2017). Source apportionment and
402	sensitivity analysis: two methodologies with two different purposes. Geoscientific Model
403	Development, 10(11), 4245-4256. doi: https://doi.org/10.5194/gmd-10-4245-2017
404	Gao, M., Gao, J., Zhu, B., Kumar, R., Lu, X., Song, S., Zhang, Y., Jia, B., Wang, P., Beig, G.,
405	Hu, J., Ying, Q., Zhang, H., Sherman, P., & McElroy, M. B. (2020). Ozone pollution
406	over China and India: seasonality and sources. Atmospheric Chemistry and Physics,
407	20(7), 4399-4414. doi: https://doi.org/10.5194/acp-20-4399-2020
408	Gao, X., Deng, X., Tan, H., Wang, C., Wang, N., & Yue, D. (2018). Characteristics and analysis
409	on regional pollution process and circulation weather types over Guangdong Province (ir
410	Chinese). Acta Scientiae Circumstantiae, 38, 1708–1716. doi:
411	https://doi.org/10.13671/j.hjkxxb.2017.0473
412	Guo, J. J., Fiore, A. M., Murray, L. T., Jaffe, D. A., Schnell, J. L., Moore, C. T., & Milly, G. P.
413	(2018). Average versus high surface ozone levels over the continental USA: model bias,
414	background influences, and interannual variability. Atmospheric Chemistry and Physics,
415	18(16), 12123-12140. doi: https://doi.org/10.5194/acp-18-12123-2018
416	Hou, X., Zhu, B., Kang, H., & Gao, J. (2014). Analysis of seasonal ozone budget and spring
417	ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region.
418	Atmospheric Environment, 94, 734-741. doi:
419	https://doi.org/10.1016/j.atmosenv.2014.06.006

420	Janssen, R. H. H., & Pozzer, A. (2015). Description and implementation of a Mixed Layer
421	model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular
422	Earth Submodel System (MESSy). Geoscientific Model Development, 8(3), 453-471. doi
423	https://doi.org/10.5194/gmd-8-453-2015
424	Jin, X., Cai, X., Huang, Q., Wang, X., Song, Y., & Zhu, T. (2021). Atmospheric Boundary
425	Layer-Free Troposphere Air Exchange in the North China Plain and its Impact on $PM_{2.5}$
426	Pollution. Journal of Geophysical Research: Atmospheres, 126(9), e2021JD034641. doi:
427	https://doi.org/10.1029/2021JD034641
428	Kaser, L., Patton, E. G., Pfister, G. G., Weinheimer, A. J., Montzka, D. D., Flocke, F.,
429	Thompson, A. M., Stauffer, H. S., & Halliday, H. S. (2017). The effect of entrainment
430	through atmospheric boundary layer growth on observed and modeled surface ozone in
431	the Colorado Front Range. Journal of Geophysical Research: Atmospheres, 122(11),
432	6075-6093. doi: https://doi.org/10.1002/2016JD026245
433	Lee, X. (2018). Fundamentals of Boundary-Layer Meteorology. (Vol. 256). Springer
434	International Publishing.
435	Lehning, M., Richner, H., Kok, G. L., & Neininger, B. (1998). Vertical exchange and regional
436	budgets of air pollutants over densely populated areas. Atmospheric Environment, 32(8),
437	1353-1363. doi: https://doi.org/10.1016/S1352-2310(97)00249-5
438	Lenschow, D. H., Pearson Jr, R., & Stankov, B. B. (1981). Estimating the ozone budget in the
439	boundary layer by use of aircraft measurements of ozone eddy flux and mean
440	concentration. Journal of Geophysical Research: Oceans, 86(C8), 7291-7297. doi:
441	https://doi.org/10.1029/JC086iC08p07291

Li, L., Xie, F., Li, J., Gong, K., Xie, X., Qin, Y., Qin, M., & Hu, J. (2021). Diagnostic analysis of 442 regional ozone pollution in Yangtze River Delta, China: A case study in summer 2020. 443 Science of The Total Environment, 151511. doi: 444 https://doi.org/10.1016/j.scitotenv.2021.151511 445 Li, Y., Lau, A. K., Fung, J. C., Ma, H., & Tse, Y. (2013). Systematic evaluation of ozone control 446 policies using an Ozone Source Apportionment method. Atmospheric Environment, 76, 447 136-146. doi: https://doi.org/10.1016/j.atmosenv.2013.02.033 448 Li, Y., Lau, A. H., Fung, J. H., Zheng, J. Y., Zhong, L. J., & Louie, P. K. K. (2012). Ozone 449 source apportionment (OSAT) to differentiate local regional and super-regional source 450 contributions in the Pearl River Delta region, China. *Journal of Geophysical Research*: 451 Atmospheres, 117(D15). doi: https://doi.org/10.1029/2011JD017340 452 Liu, H., Zhang, M., & Han, X. (2020). A review of surface ozone source apportionment in 453 China. Atmospheric and Oceanic Science Letters, 13(5), 470-484. doi: 454 https://doi.org/10.1080/16742834.2020.1768025 455 Liu, P., Zhang, Y., Yu, S., & Schere, K. L. (2011). Use of a process analysis tool for diagnostic 456 study on fine particulate matter predictions in the US-Part II: Analyses and sensitivity 457 458 simulations. *Atmospheric Pollution Research*, 2(1), 61-71. doi: https://doi.org/10.5094/APR.2011.008 459 Memmesheimer, M., Ebel, A., & Roemer, M. (1997). Budget calculations for ozone and its 460 precursors: Seasonal and episodic features based on model simulations. Journal of 461 Atmospheric Chemistry, 28(1), 283-317. doi: https://doi.org/10.1023/A:1005815212628 462

163	Mills, G., Wagg, S., & Harmens, H. (Eds.). (2013). Ozone Pollution: impacts on ecosystem
164	services and biodiversity. Bangor, UK, NERC/Centre for Ecology & Hydrology, 104pp.
65	(CEH Project no. C04062, C04325)
66	Myriokefalitakis, S., Daskalakis, N., Fanourgakis, G. S., Voulgarakis, A., Krol, M. C., de Brugh
67	J. A., & Kanakidou, M. (2016). Ozone and carbon monoxide budgets over the Eastern
68	Mediterranean. Science of the Total Environment, 563, 40-52. doi:
69	https://doi.org/10.1016/j.scitotenv.2016.04.061
170	Pay, M. T., Gangoiti, G., Guevara, M., Napelenok, S., Querol, X., Jorba, O., & Pérez García-
71	Pando, C. (2019). Ozone source apportionment during peak summer events over
172	southwestern Europe. Atmospheric Chemistry and Physics, 19(8), 5467-5494. doi:
73	https://doi.org/10.5194/acp-19-5467-2019
74	Petzold, A., Thouret, V., Gerbig, C., Zahn, A., Brenninkmeijer, C. A., Gallagher, M., Hermann,
75	M., Pontaud M., Ziereis, H., Boulanger, D., Marshall, J., Nédélec, P., Smit, H. G. J.,
76	Friess, U., Flaud, JM., Wahner, A., Cammas, JP., Volz-Thomas, A., & IAGOS
77	TEAM. (2015). Global-scale atmosphere monitoring by in-service aircraft-current
78	achievements and future prospects of the European Research Infrastructure IAGOS.
79	Tellus B: Chemical and Physical Meteorology, 67(1), 28452. doi:
80	https://doi.org/10.3402/tellusb.v67.28452
181	Qu, K., Wang, X., Yan, Y., Shen, J., Xiao, T., Dong, H., Zeng, L., & Zhang, Y. (2021). A
82	comparative study to reveal the influence of typhoons on the transport, production and
183	accumulation of O ₃ in the Pearl River Delta, China. Atmospheric Chemistry and Physics
84	21(15), 11593-11612. doi: https://doi.org/10.5194/acp-21-11593-2021

Schultz, M. G., Schröder, S., Lyapina, O., Cooper, O., Galbally, I., Petropavlovskikh, I., Von 485 Schneidemesser, E., Tanimoto, H., Elshorbany, Y., Naja, M., Seguel, R., Dauert, U., 486 Eckhardt, P., Feigenspahn, S., Fiebig, M., Hjellbrekke, A.-G., Hong, Y.-D., Kjeld, P. C., 487 Koide, H., Lear, G., Tarasick, D., Ueno, M., Wallasch, M., Baumgardner, D., Chuang, 488 M.-T., Gillett, R., Lee, M., Molloy, S., Moolla, R., Wang, T., Sharps, K., Adame, J. A., 489 490 Ancellet, G., Apadula, F., Artaxo, P., Barlasina, M., Bogucka, M., Bonasoni, P., Chang, L., Colomb, A., Cuevas, E., Cupeiro, M., Degorska, A., Ding, A., Fröhlich, M., Frolova, 491 M., Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M. Y., Gros, V., Hamad, S. H., Helmig, 492 D., Henriques, D., Hermansen, O., Holla, R., Huber, J., Im, U., Jaffe, D. A., Komala, N., 493 Kubistin, D., Lam, K.-S., Laurila, T., Lee, H., Levy, I., Mazzoleni, C., Mazzoleni, L., 494 McClure-Begley, A., Mohamad, M., Murovic, M., Navarro-Comas, M., Nicodim, F., 495 Parrish, D., Read, K. A., Reid, N., Ries, L., Saxena, P., Schwab, J. J., Scorgie, Y., Senik, 496 I., Simmonds, P., Sinha, V., Skorokhod, A., Spain, G., Spangl, W., Spoor, R., Springston, 497 S. R., Steer, K., Steinbacher, M., Suharguniyawan, E., Torre, P., Trickl, T., Weili, L., 498 Weller, R., Xu, X., Xue, L., & Zhiqiang, M. (2017). Tropospheric ozone assessment 499 report: Database and metrics data of global surface ozone observations. Elementa Science 500 501 of the Anthropocene, 5, 58. doi: https://doi.org/10.1525/elementa.244 Sinclair, V. A., Belcher, S. E., & Gray, S. L. (2010). Synoptic controls on boundary-layer 502 characteristics. Boundary-layer meteorology, 134(3), 387-409. doi: 503 504 https://doi.org/10.1007/s10546-009-9455-6 Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije, T. P. C., Wild, O., 505 506 Zeng, G., Amann, M., therton, C. S., Bell, N., Bergmann, D. J., Bey, I., Butler, T., 507 Cofala, J., Collins, W. J., Derwent, R. G., Doherty, R. M., Drevet, J., Eskes, H. J., Fiore,

A. M., Gauss, M., Hauglustaine, D. A., Horowitz, L. W., Isaksen, I. S. A., Krol, M. C., 508 Lamarque, J.-F., Lawrence, M. G., Montanaro, V., Müller, J.-F., Pitari, G., Prather, M. J., 509 Pyle, J. A., Rast, S., Rodriguez, J. M., Sanderson, M. G., Savage, N. H., Shindell, D. T., 510 Strahan, S. E., Sudo, K., & Szopa, S. (2006). Multimodel ensemble simulations of 511 present-day and near-future tropospheric ozone. Journal of Geophysical Research, 111, 512 513 D08301. doi: https://doi.org/10.1029/2005JD006338 Su, R., Lu, K., Yu, J., Tan, Z., Jiang, M., Li, J., Xie, S., Wu, Y., Zeng, L., Zhai, C., & Zhang, Y. 514 (2018). Exploration of the formation mechanism and source attribution of ambient ozone 515 in Chongging with an observation-based model. Science China Earth Sciences, 61(1), 23-516 32. doi: https://doi.org/10.1007/s11430-017-9104-9 517 Tan, Z., Lu, K., Jiang, M., Su, R., Dong, H., Zeng, L., Xie, S., Tan, Q., & Zhang, Y. (2018). 518 Exploring ozone pollution in Chengdu, southwestern China: A case study from radical 519 chemistry to O₃-VOC-NO_x sensitivity. Science of the Total Environment, 636, 775-786. 520 doi: https://doi.org/10.1016/j.scitotenv.2018.04.286 521 Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., Yue, D., Chen, 522 D., Wang, Z., Xie, S., Zeng, L., & Zhang, Y. (2019). Daytime atmospheric oxidation 523 524 capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation. Atmospheric Chemistry and Physics, 19(6), 3493-525 3513. doi: https://doi.org/10.5194/acp-19-3493-2019 526 527 Tang, G., Liu, Y., Huang, X., Wang, Y., Hu, B., Zhang, Y., Hu, B., Zhang, Y., Song, T., Li, X., Wu, S., Li, Q., Kang, Y., Zhu, Z., Wang, M., Wang, Y., Li, T., Li, X., & Wang, Y. 528 (2021). Aggravated ozone pollution in the strong free convection boundary layer. Science 529

530	of The Total Environment, 788, 147740. doi:
531	https://doi.org/10.1016/j.scitotenv.2021.147740
532	Trousdell, J. F., Caputi, D., Smoot, J., Conley, S. A., & Faloona, I. C. (2019). Photochemical
533	production of ozone and emissions of NO _x and CH ₄ in the San Joaquin Valley.
534	Atmospheric Chemistry and Physics, 19(16), 10697-10716. doi:
535	https://doi.org/10.5194/acp-19-10697-2019
536	Trousdell, J. F., Conley, S. A., Post, A., & Faloona, I. C. (2016). Observing entrainment mixing,
537	photochemical ozone production, and regional methane emissions by aircraft using a
538	simple mixed-layer framework. Atmospheric Chemistry and Physics, 16(24), 15433-
539	15450. doi: https://doi.org/10.5194/acp-16-15433-2016
540	Vilà-Guerau de Arellano, J., Van Heerwaarden, C. C., Van Stratum, B. J., & Van den Dries, K.
541	(2015). Atmospheric boundary layer: Integrating air chemistry and land interactions.
542	Cambridge University Press.
543	Yan, F., Gao, Y., Ma, M., Liu, C., Ji, X., Zhao, F., Yao, X., & Gao, H. (2021). Revealing the
544	modulation of boundary conditions and governing processes on ozone formation over
545	northern China in June 2017. Environmental Pollution, 272, 115999. doi:
546	https://doi.org/10.1016/j.envpol.2020.115999
547	Yang, L., Wang, X., & Chen, Q. (2012). New method for investigating regional interactions of
548	air pollutants (in Chinese). Acta Scientiae Circumstantiae, 32(3), 528-536. doi:
549	https://doi.org/10.13671/j.hjkxxb.2012.03.012
550	Yang, W., Chen, H., Wang, W., Wu, J., Li, J., Wang, Z., Zheng, J., & Chen, D. (2019). Modeling
551	study of ozone source apportionment over the Pearl River Delta in 2015. Environmental
552	Pollution, 253, 393-402. doi: https://doi.org/10.1016/j.envpol.2019.06.091

553	Yu, D., Tan, Z., Lu, K., Ma, X., Li, X., Chen, S., Zhu, B., Lin, L., Li, Y., Qiu, P., Yang, X., Liu,
554	Y., Wang, H., He, L., Huang, X., & Zhang, Y. (2020). An explicit study of local ozone
555	budget and NO _x -VOCs sensitivity in Shenzhen China. Atmospheric Environment, 224,
556	117304. doi: https://doi.org/10.1016/j.atmosenv.2020.117304
557	Zhang, H., Zhou, X., Zou, J., Wang, W., Xue, L., Ding, Q., Wang, X., Zhang, N., Ding, A., Sun,
558	J., & Wang, W. (2018). A review on the methods for observing the substance and energy
559	exchange between atmosphere boundary layer and free troposphere. Atmosphere, 9(12),
560	460. doi: https://doi.org/10.3390/atmos9120460
561	Zhang, J. J., Wei, Y., & Fang, Z. (2019). Ozone pollution: a major health hazard worldwide.
562	Frontiers in immunology, 10, 2518. doi: https://doi.org/10.3389/fimmu.2019.02518
563	Zhao, R., Hu, Q., Sun, Z., Wu, Y., Xing, C., Liu, H., & Liu, C. (2021). Review of Space and
564	Ground Integrated Remote Sensing for Air Pollutants (in Chinese). Research of
565	Environmental Sciences, 34(1), 28-40. doi: https://doi.org/10.13198/j.issn.1001-
566	6929.2020.11.25
567	Zhou, B., Zhang, S., Xue, R., Li, J., & Wang, S. (2021). A review of Space-Air-Ground
568	integrated remote sensing techniques for atmospheric monitoring. Journal of
569	Environmental Sciences. doi: https://doi.org/10.1016/j.jes.2021.12.008
570	
571	References From the Supporting Infomation
572	Chan, R. L. M., Lee, O. S. M., & Cheng, A. Y. S. (2006). Diurnal variation of mixing height in
573	Hong Kong. In Reviewed and revised papers presented at the 23rd International Laser
574	Radar Conference (pp. 737-740).

575	Dai, C., Wang, Q., Kalogiros, J. A., Lenschow, D. H., Gao, Z., & Zhou, M. (2014). Determining
576	boundary-layer height from aircraft measurements. Boundary-layer meteorology, 152(3),
577	277-302. doi: https://doi.org/10.1007/s10546-014-9929-z
578	Ding, A., Wang, T., Zhao, M., Wang, T., & Li, Z. (2004). Simulation of sea-land breezes and a
579	discussion of their implications on the transport of air pollution during a multi-day ozone
580	episode in the Pearl River Delta of China. Atmospheric Environment, 38(39), 6737-6750.
581	doi: https://doi.org/10.1016/j.atmosenv.2004.09.017
582	Fan, S. J., Fan, Q., Yu, W., Luo, X. Y., Wang, B. M., Song, L. L., & Leong, K. L. (2011).
583	Atmospheric boundary layer characteristics over the Pearl River Delta, China, during the
584	summer of 2006: measurement and model results. Atmospheric Chemistry and Physics,
585	11(13), 6297-6310. doi: https://doi.org/10.5194/acp-11-6297-2011
586	He, G., Deng, T., Wu, D., Wu, C., Huang, X., Li, Z., Yin, C., Zou, Y., Song, L., Ouyang, S.,
587	Tao, L., & Zhang, X. (2021). Characteristics of boundary layer ozone and its effect on
588	surface ozone concentration in Shenzhen, China: A case study. Science of The Total
589	Environment, 148044. doi: https://doi.org/10.1016/j.scitotenv.2021.148044
590	Janssen, R. H. H., & Pozzer, A. (2015). Description and implementation of a MiXed Layer
591	model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular
592	Earth Submodel System (MESSy). Geoscientific Model Development, 8(3), 453-471. doi
593	https://doi.org/10.5194/gmd-8-453-2015
594	Petzold, A., Thouret, V., Gerbig, C., Zahn, A., Brenninkmeijer, C. A., Gallagher, M., Hermann,
595	M., Pontaud M., Ziereis, H., Boulanger, D., Marshall, J., Nédélec, P., Smit, H. G. J.,
596	Friess, U., Flaud, JM., Wahner, A., Cammas, JP., Volz-Thomas, A., & IAGOS
597	TEAM. (2015). Global-scale atmosphere monitoring by in-service aircraft-current

598	achievements and future prospects of the European Research Infrastructure IAGOS.
599	Tellus B: Chemical and Physical Meteorology, 67(1), 28452. doi:
600	https://doi.org/10.3402/tellusb.v67.28452
601	Qu, K., Wang, X., Yan, Y., Shen, J., Xiao, T., Dong, H., Zeng, L., & Zhang, Y. (2021). A
602	comparative study to reveal the influence of typhoons on the transport, production and
603	accumulation of O ₃ in the Pearl River Delta, China. Atmospheric Chemistry and Physics,
604	21(15), 11593-11612. doi: https://doi.org/10.5194/acp-21-11593-2021
605	Song, L., Deng, T., Li, Z. N., Wu, C., He, G. W., Li, F., Wu, M., & Wu, D. (2021). Retrieval of
606	Boundary Layer Height and Its Influence on PM2.5 Concentration Based on Lidar
607	Observation over Guangzhou. Journal of Tropical Meteorology, 27(3), 303-318. doi:
608	https://doi.org/10.46267/j.1006-8775.2021.027
609	Vilà-Guerau de Arellano, J., Van Heerwaarden, C. C., Van Stratum, B. J., & Van den Dries, K.
610	(2015). Atmospheric boundary layer: Integrating air chemistry and land interactions.
611	Cambridge University Press.
612	You, C., & Chi-Hung Fung, J. (2019). Characteristics of the sea-breeze circulation in the Pearl
613	River Delta region and its dynamical diagnosis. Journal of Applied Meteorology and
614	Climatology, 58(4), 741-755. doi: https://doi.org/10.1175/JAMC-D-18-0153.1
615	

@AGU PUBLICATIONS

1	
2	Geophysical Research Letters
3	Supporting Information for
4 5	Rethinking the role of transport and photochemistry in regional ozone pollution: Insights from ozone mass and concentration budgets
6 7	$K. \ Qu^{1,2,3}, \ X. \ Wang^{1,2,*}, \ X. \ Cai^{1,2}, \ Y. \ Yan^{1,2}, \ X. \ Jin^{1,2}, \ M. \ Vrekoussis^{3,4,5}, \ J. \ Shen^6, \ T. \ Xiao^{1,2}, \ L. \ Zeng^{1,2} \ and \ Y. \ Zhang^{1,2,7,8,*}$
8	¹ State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
10	² International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100816, China.
11 12	³ Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany.
13	⁴ Center of Marine Environmental Sciences (MARUM), University of Bremen, Germany.
14	⁵ Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Cyprus.
15 16	⁶ State Key Laboratory of Regional Air Quality Monitoring, Guangdong Key Laboratory of Secondary Air Pollution Research, Guangdong Environmental Monitoring Center, Guangzhou 510308, China.
17 18	⁷ Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China.
19 20	⁸ CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China.
21	Corresponding author: X. Wang (xswang@pku.edu.cn) and Y. Zhang (yhzhang@pku.edu.cn)
22	
23	Contents of this file
24	Text S1 to S4
25	Figures S1 to S12
26	Tables S1 to S2
27	
28	Introductions
29 30 31	Four texts, 12 figures and two tables are included in this Supporting Information for the paper entitled "Rethinking the role of transport and photochemistry in regional ozone pollution: Insights from ozone mass and concentration budgets".

32 For text:

- Text S1 describes the detailed process of O₃ budget calculations in this study.
 - Text S2 is the comparison between the equations of O₃ budget calculations used in this study with these in 1-D models.
 - Text S3 presents the results of model validation of atmospheric boundary layer (ABL) height, wind and O₃ mixing profiles based on the IAGOS dataset.
 - Text S4 gives further analyses on the contributions of horizontal transport and ABL-free troposphere (FT) exchange due to the large-scale air motions (ABL-FT-M; advection through the ABL top) in O₃ mass and concentration budgets.

42 For f

For figures:

- Figure S1 indicates two calculation paths in the calculation of regional O₃ concentration budget within an hour.
- Figure S2 shows the results of O₃ budget closure examinations for O₃ mass and concentration budgets in the two representative months.
- Figure S3 displays the spatial distributions of the second modeling domain (d02) and source regions.
- Figure S4 presents the spatial distributions of 18 sites of the Guangdong-Hong Kong-Macao Pearl River Delta Regional Air Quality Monitoring Network.
- Figure S5 compared the mean diurnal changes of O₃ concentrations in the Pearl River Delta from three sources: observational near-ground O₃ concentrations, modeling near-ground O₃ concentrations and modeling ABL-mean O₃ concentrations.
- Figure S6 is the flow diagram of the O₃ budget calculation processes.
- Figure S7 is the flow diagram of the O_3 budget calculation in the Step I (or the tool $flux_4d_cal$).
- Figure S8 shows the comparison results between IAGOS and modeling atmospheric boundary layer height in Hong Kong in Oct. 2015.
- Figure S9 shows the comparisons between IAGOS and modeling wind roses in Hong Kong in the two representative months.
- Figure S10 shows the comparisons between IAGOS and CMAQ modeling vertical profiles of O₃ mixing ratios in Hong Kong in the two representative months.
- Figure S11 displays the wind roses at 14:00, 16:00, and 18:00 local time of O₃ polluted days in July 2016 in the Pearl River Delta.
- Figure S12 displays the cross-section of O₃ concentrations and wind fields at 16:00 local time on a representative polluted day of July 2016.

For tables:

- Table 1 gives more detailed information on the O₃ polluted days of the Pearl River Delta in the two representative months.
- Table 2 lists the formulas in the O_3 flux calculations, parameters used and their source files in the *flux_4d_cal* tool.

Text S1. Detailed process of O₃ budget calculations

As the flow diagram shown in Fig. S6, there are two steps in the calculations of O₃ budget based on the WRF-CMAQ modeling results:

77 78

84

85

89

90

91

98

99

100

101

104

105

106

- 1) Step I: Quantifications of transport fluxes and volume
- 79 The post-processing tool *flux_4d_cal* was developed using FORTRAN90 for this step. For all grids except for those next to the boundaries of the modeling domain, the calculation contents in the tool include:
- Hourly horizontal transport fluxes of O₃ within the ABL, including these in the x- and y-directions;
 - Hourly fluxes of O₃ attributed to ABL-FT exchange due to the changes of ABL heights (ABL-FT-H);
- Hourly fluxes of O₃ attributed to ABL-FT exchange due to the large-scale air motion (advection through the ABL top; ABL-FT-M), including these in the x-, y- and z-directions;
 - Hourly contributions of other processes (gas-phase chemistry, cloud process and dry deposition) to O₃ mass variations within the ABL;
 - Hourly transported air volumes by each transport process;
- Total O₃ masses within the ABL at both the start and end of each hour;
- ABL heights at the starting and end hours.
- 94 (Note: ABL, atmospheric boundary layer; FT, free troposphere.)
- All of the above values can be found in the netcdf (nc) output files, and they are used in the Step II calculations.
- 97 To finish the calculations of Step I, several input files are needed:
 - Meteorological files processed by the MCIP module in CMAQ from the WRF outputs, which include the METCRO2D (meteorological parameters in the 2-D space), METCRO3D (meteorological parameters in the 3-D space) and MERDOT3D (wind speeds in the 3-D space) files;
- Pollutant concentration output files (CONC files) modeled by CMAQ, where hourly O₃ concentrations are stored;
 - Process Analysis (PA) output files modeled by CMAQ, where the hourly, nested contributions of gas-phase chemistry, cloud process and dry deposition to O₃ concentration are stored.
- For most of the files used here, the setting of spatial domains and times should be consistent; otherwise, the calculations would not be performed or generate wrong results. Additionally, users should provide the resolution of the modeling domain and the orders of contributions by three non-transport O₃ processes in the PA files for further calculations.
- The flow chart of the calculation in *flux_4d_cal* is shown in Fig. S7. The calculation formulas for
- the grid cell (i, i), parameters used and their source files are summarized in Table S2. There are
- four loops in the calculations, which are the loops of x-, y-grids, time steps and vertical layers.
- We assume that there are 60 time-steps within an hour, and parameters at each time step can be

- interpolated linearly by their values at the starting and end hours. The hourly contribution of non-
- transport processes to O₃ in a grid cell is divided equally to these within each time step. For every
- layer within the ABL, fluxes and volumes related to horizontal transport and non-transport
- processes are calculated and summed up. For layers where the ABL top is located, besides these
- aforementioned parameters, fluxes and volumes related to ABL-FT exchange (ABL-FT-H and
- 120 ABL-FT-M) are also calculated. Total O₃ masses within the ABL at the start and end of each hour
- are directly calculated, and ABL heights at the starting and end hours can be read from the
- 122 METCRO2D files.
- The height of night-time stable ABL can be severely underestimated by normally used ABL
- parameterization, especially when the Richardson number is used (Dai et al., 2014). To reduce the
- influence of imprecise ABL heights in the O₃ budget calculations, here, we set the lowest ABL
- height limit as 350 m for all hours, which is an approximate value close to the values reported by
- night-time observations in summer or autumn in the Pearl River Delta (Chan et al., 2006; Fan et
- al., 2011; He et al., 2021; Song et al., 2021). The results of budget closure examination (Fig. S2)
- also suggest that the choice of this value is acceptable. Further studies are surely needed to better
- determine this value. However, we focus on the causes of daytime ozone pollution; thus, night-
- time budgets do not notably influence the conclusions of this study.

142

143

144

145

146

147

148

- 2) Step II: Regional O₃ budget calculations and closure examinations
- 134 This step aims to: 1) calculate the hourly O₃ mass and concentration budgets within the ABL of
- the user-defined regions, and 2) check whether the closure between the changes of O₃
- masses/concentrations modelled by CMAQ and the net contributions of processes calculated
- above can be achieved. Besides the nc file generated in Step I, the definition of targeted region
- grids and borders (the grids within the targeted region and adjacent to the outside regions) should
- also be provided by users. Any software with basic data analysis and nc-file processing (Python,
- 140 MATLAB, R, etc.) can be applied for this step.
- 141 The calculation processes in this step include:
 - Calculation of the hourly horizontal transport fluxes of O₃ through each user-defined border (O₃ fluxes in every interface between the border grids and the outside regions, in both x- and y-directions, are taken into the calculations).
 - Calculation of the hourly ABL-FT exchange fluxes of O₃ and the contributions of other processes to O₃ mass within user-defined targeted region grids.
 - Calculation of the hourly O₃ concentration budget (the contributions of processes to the hourly variations of O₃ concentrations) based on O₃ transport fluxes and the corresponding volumes of transported air parcels.
- More details on the calculation of the O₃ concentration budget are introduced as follows. As
- displayed in Fig. S1, within an hour, the mean O₃ concentration within the ABL of the targeted
- region changes from c₀ to c₁. Normally, O₃ mass and ABL volume both change notably, making it
- difficult to quantify the contributions to O₃ concentration variations by various processes. It
- should be noted that this is one of the main reasons why regional O₃ mass and concentration
- budgets are different. To simplify the calculation, two calculation paths (shown as the red
- arrowlines in Fig. S1; c_{r1} and c_{r2} are the reference O_3 concentrations separately for two calculation
- paths) are used in the calculations, assuming that only O₃ mass or ABL volume change in each
- step of two paths. For the path " $c_0 \Rightarrow c_{r_1} \Rightarrow c_1$ ", the first step is the ABL volume change step,
- with O₃ concentration change described as:

$$c_{r1} - c_0 = c_0 \times \left(\frac{\sum H_0}{\sum H_1} - 1\right)$$
 (S1)

- where H₀ and H₁ are the ABL heights at the starting and end hours. It is counted as part of the
- 161 contributions by ABL-FT-H. The second step is the O₃ mass change step, with O₃ concentration
- change described as:

$$\begin{split} c_{1} - c_{r1} &= \frac{\sum (F_{htrans} - c_{r1} \times \Delta V_{htrans})}{L^{2} \times \sum H_{1}} \\ &+ \frac{\sum (F_{ABL-FT-M} - c_{r1} \times \Delta V_{ABL-FT-M})}{L^{2} \times \sum H_{1}} + \frac{F_{ABL-FT-H}}{L^{2} \times \sum H_{1}} \\ &+ \frac{F_{chem}}{L^{2} \times \sum H_{1}} + \frac{F_{cloud}}{L^{2} \times \sum H_{1}} + \frac{F_{ddep}}{L^{2} \times \sum H_{1}} \end{split} \tag{S2}$$

- where F_{htrans} , $F_{ABL-FT-M}$, $F_{ABL-FT-H}$, F_{chem} , F_{cloud} and F_{ddep} indicate the contributions of
- horizontal transport, ABL-FT-M, ABL-FT-H, gas-phase chemistry, cloud process and dry
- deposition, respectively, to O_3 mass change. ΔV_{htrans} and $\Delta V_{ABL-FT-M}$ are the volumes of
- transported air parcel attributed to horizontal transport and ABL-FT-M, respectively, within an
- hour. L denotes the length of the grid cell, or the horizontal resolution of the model. The six terms
- on the right-hand sides of the above formula are separately classified as the individual
- 169 contribution of horizontal transport, ABL-FT-M, ABL-FT-H, gas-phase chemistry, cloud process
- and dry deposition in the O₃ concentration budgets. Note that the contributions of ABL-FT-H are
- separately calculated in two steps. Similarly, for the path " $c_0 => c_{r2} => c_1$ ", the changes of O_3
- 172 concentration in two steps can be described as:

$$\begin{split} c_{r2} - c_{0} &= \frac{\sum (F_{htrans} - c_{0} \times \Delta V_{htrans})}{L^{2} \times \sum H_{0}} \\ &+ \frac{\sum (F_{ABL-FT-M} - c_{0} \times \Delta V_{ABL-FT-M})}{L^{2} \times \sum H_{0}} + \frac{F_{ABL-FT-H}}{L^{2} \times \sum H_{0}} \\ &+ \frac{F_{chem}}{L^{2} \times \sum H_{0}} + \frac{F_{cloud}}{L^{2} \times \sum H_{0}} + \frac{F_{ddep}}{L^{2} \times \sum H_{0}} \\ &c_{1} - c_{r2} = c_{r2} \times \left(\frac{\sum H_{0}}{\sum H_{c}} - 1\right) \end{split} \tag{S3}$$

- 173 The contributions of various processes can be classified correspondingly. The final results of
- 174 contributions by processes are the average values of these calculated based on two calculation
- paths.

- 177 Text S2. Comparisons of O₃ concentration budget calculations between this study
- 178 and 1-D models
- When the region column in the Chemical Transport Models (CTMs) is thin enough to resemble a
- line, the O₃ concentration budget calculations using the CTMs results are expected to be the same
- as those in 1-D models. Thus, we can use it to check the validity of O₃ concentration budget
- calculations in this study.
- Here the contributions of horizontal transport to the variations of O₃ concentration over the
- studied space ($\langle c \rangle$) can be described as (Eq. (3) in the manuscript):

$$\left[\frac{\partial \langle c \rangle}{\partial t}\right]_{htrans} = \frac{F_{htrans} + \langle c \rangle(V - dV)}{V} - \langle c \rangle = \frac{F_{htrans} - \langle c \rangle dV}{V}$$
 (S5)

- where F_{htrans} is the O₃ flux of horizontal transport; V is the original volume of the PRD grids
- below the ABL; dV is the volume of transported parcels. Assume that the length of the region in
- 187 the x-directions is dx, thus,

$$V = S dx (S6)$$

where S is the area of the interface. As calculated in the O_3 mass budget, in the unit time,

$$F_{htrans} = cuS \tag{S7}$$

$$dV = uS (S8)$$

- where c is O_3 concentration in the transported air parcels, and u is the mean horizontal wind
- speed in the interface. Therefore, from Eqs. (S5)-(S8), we can get:

$$\left[\frac{\partial \langle c \rangle}{\partial t}\right]_{htrans} = u \frac{c - \langle c \rangle}{dx} = u \frac{dc}{dx}$$
 (S9)

- For ABL-FT-H, its contributions when V is much higher than dV (this assumption can be
- normally met when the period is short) are:

$$\left[\frac{\partial \langle c \rangle}{\partial t}\right]_{ABL-FT-H} = \frac{F_{ABL-FT-H} + \langle c \rangle V}{V + dV} - \langle c \rangle \approx \frac{F_{ABL-FT-H} - \langle c \rangle dV}{V} \tag{S10}$$

where $F_{ABL-FT-H}$ is the O₃ flux contributed by ABL-FT-H. In the unit time,

$$F_{ABL-FT-H} = c_h \frac{\partial H}{\partial t} L^2 \tag{S11}$$

$$dV = \frac{\partial H}{\partial t} L^2 \tag{S12}$$

$$V = HL^2 \tag{S13}$$

- where c_h is the O₃ concentration in the ABL top; L is the width of the grid cell (equal to the
- horizontal resolution of the model); H is the ABL height. Therefore, from Eqs. (S10)-(S13),

$$\left[\frac{\partial \langle c \rangle}{\partial t}\right]_{ABL-FT-H} = \frac{c_h - \langle c \rangle}{H} \frac{\partial H}{\partial t}$$
 (S14)

196

197 For ABL-FT-M,

$$\left[\frac{\partial\langle c\rangle}{\partial t}\right]_{ABL-FT-M} = \frac{F_{ABL-FT-M} + \langle c\rangle(V - dV)}{V} - \langle c\rangle$$

$$= \frac{F_{ABL-FT-M} - \langle c\rangle dV}{V}$$
(S15)

198 $F_{ABL-FT-M}$ is the O₃ flux attributed to ABL-FT-M. In the unit time,

$$F_{ABL-FT-M} = c_h \left(u_h \frac{\partial H}{\partial x} + v_h \frac{\partial H}{\partial y} - w_h \right) L^2$$
 (S16)

$$dV = \left(u_h \frac{\partial H}{\partial x} + v_h \frac{\partial H}{\partial y} - w_h\right) L^2 \tag{S17}$$

$$V = HL^2 \tag{S18}$$

where u_h , v_h and w_h are the ABL-top wind speeds in the x, y and z-direction, respectively. Therefore, from Eq. (S15-18),

$$\left[\frac{\partial \langle c \rangle}{\partial t}\right]_{ABL-FT-M} = \frac{c_h - \langle c \rangle}{H} \left(u_h \frac{\partial H}{\partial x} + v_h \frac{\partial H}{\partial y} - w_h\right) \tag{S19}$$

$$\left[\frac{\partial \langle c \rangle}{\partial t}\right]_{ABL-FT} = \left[\frac{\partial \langle c \rangle}{\partial t}\right]_{ABL-FT-H} + \left[\frac{\partial \langle c \rangle}{\partial t}\right]_{ABL-FT-M} \\
= \frac{c_h - \langle c \rangle}{H} \left(\frac{\partial H}{\partial t} + u_h \frac{\partial H}{\partial x} + v_h \frac{\partial H}{\partial y} - w_h\right) = \frac{w_e \Delta c}{H}$$
(S20)

where w_e is the entrainment rate of the ABL; Δc is equal to the difference between O_3 concentrations in the FT and ABL. Therefore, for these transport processes, the above formulas (Eqs. (S9), (S14), (S19), and (S20)) are the same as those used in 1-D models (Janssen and Pozzer, 2015; Vilà-Guerau de Arellano et al., 2015), suggesting their applicability in the quantification of the O_3 concentration budget using CTMs modeling results.

Text S3. Model validation of ABL height, wind and O₃ mixing ratio profiles based on the IAGOS dataset

IAGOS (In-service Aircraft of a Global Observing System; https://www.iagos.org) is a global aircraft-based observing system, where state-of-the-art instruments deployed in aircrafts are used to measure reactive gases, greenhouse gases, aerosol and clouds in the troposphere and lower stratosphere (Petzold et al., 2016). Meteorological parameters, including air temperature, wind speed and direction, are also provided by IAGOS. When the aircrafts climb up or descent, these measurements are suitable for obtaining the vertical profiles of parameters with high resolutions, which provides valuable observational datasets for the model validation in the vertical direction.

To ensure reasonable quantifications of the O_3 budgets, the IAGOS dataset in two representative months in Hong Kong (located in the south PRD) was used to evaluate the modeling performance of WRF-CMAQ in this study. We focused on comparing parameters within the height range of 0-5 km. Since observational data is often missing in some height ranges and the vertical resolution of modeling results is relatively low, we calculated the mean observational and modeling values within every 500 m height range (i.e., 0-500 m, 500-1000 m, etc.) for the comparisons. The detailed evaluations are introduced as follows:

(1) Atmospheric boundary layer (ABL) heights:

ABL heights are used to quantify the contribution of ABL-FT exchange in the O_3 budgets. Therefore, the evaluation of modeled ABL heights is important. In this study, the observational ABL heights were determined using the profiles of potential temperature (θ) in IAGOS, defined as the heights where the lapse rate of θ ($\partial\theta/\partial z$, the rate of θ changing over height change) reaches its maximum values (Dai et al., 2014). Since there are limited profiles available in July 2016 and night-time ABL heights are hard to be accurately determined, we only evaluated the modeling performance of ABL heights during the daytime (6:00-18:00 Local Time (LT)) of Oct. 2015. As shown in Fig. S8, the mean bias (MB) between modeling and observational ABL heights in Hong Kong is only -1.1 m, and a good correlation between ABL heights from two datasets (R = 0.76) suggests that the mean diurnal cycles of ABL can be modeled well. Though the modeling performance of ABL heights is satisfying based on the IAGOS dataset in Hong Kong, more comprehensive comparisons based on three-dimensional observations with higher spatiotemporal resolutions and coverages are required for more accurate O_3 budget estimates in future studies.

(2) Wind profiles:

Figure S9 shows the IAGOS and modeling wind roses within the height ranges of 0-1000 m, 1000-2000 m and 2000-5000 m. Both datasets indicate that higher wind speed can be generally found at higher altitudes. In autumn, WRF overestimates wind speed below 1000 m by 0.6 m/s (16%), but underestimates it above 1000 m. In summer, the biases between wind speeds in the two datasets are relatively smaller, especially at lower heights (< 2000 m). Both datasets show similar prevailing wind directions at different height ranges and in different seasons. Thus, the modeling performance of wind speeds and directions in the vertical direction is acceptable.

(3) O₃ mixing ratio profiles:

The comparisons between observational and modeling profiles of O_3 mixing ratio are displayed in Fig. S10. Not many O_3 profiles were available in July 2016, and the useable ones were mostly measured during clean periods. Thus, the comparison was mainly based on the results in Oct. 2015 (the number of IAGOS O_3 profiles available for the comparisons is 41). Both datasets show that O_3 mixing ratio decreases with height in Hong Kong. Below the height of 1000 m, the observational and modeling O_3 mixing ratios are 71.4 ppbv and 75.8 ppbv, respectively. Within the height range of 1000-2000 m, the O_3 mixing ratio is overestimated by 26%. High O_3 levels during Oct. 13-24 and relatively low O_3 levels in other periods can be found in both datasets, suggesting that the developments of O_3 pollution in the month were modeled well. Therefore, the performance of O_3 profiles modeling can also meet the requirement of O_3 budget calculations.

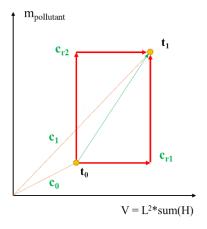
Text S4. Further analyses on the contributions of horizontal transport and ABL-FT-M in O₃ mass and concentration budgets

(Note: ABL-FT-M, the exchange between ABL and FT due to large-scale air motions (advection through the ABL top).)

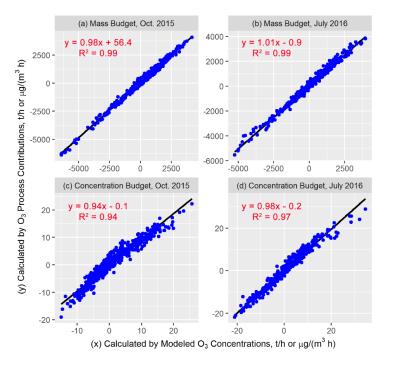
As shown in Fig. 3 in the manuscript of this paper, the contributions of both horizontal transport and ABL-FT-M in both O_3 budgets were less notable than those of ABL-FT-H and gas-phase chemistry. However, they reflect the characteristics of regional wind fields, thus are still worthy of further analyses. Two main findings are described as follows:

(1) The contribution of horizontal transport and ABL-FT-M in autumn is connected to the characteristics of horizontal wind fields in the PRD.

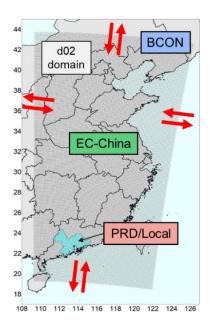
Northerly and easterly winds prevail in autumn (Fig. S9), thus O_3 is transported into the PRD through its north and east borders, out of the PRD through the south and west borders, which has been shown in the results of the O_3 mass budget. O_3 outfluxes were generally higher than influxes in the daytime, which is attributed to higher O_3 levels in the air parcels transported out of the PRD than these in parcels into the region. This is also why horizontal transport leads to the decrease of O_3 concentration in the daytime. Though horizontal transport contributed to lower O_3 fluxes at night, it became the main nighttime source for O_3 . This is to say, the transport of air parcels with high O_3 levels from the outskirts helped maintain O_3 pollution in the PRD to some extent at night.

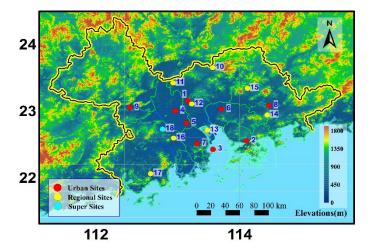

The contributions of ABL-FT-M are related to the prevailing of northerly winds in the PRD. The PRD has mountainous regions in the northern, western and eastern outskirts, as well as urban regions with lower altitudes in the central plain. Thus, north winds resulted in the downward transport of O_3 along the terrain. Daytime ABL heights in urban regions were, in general, higher than those in mountainous regions, which is the other reason why O_3 can be easily transported

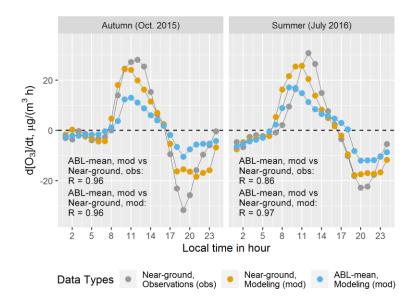
through the ABL top in the urban-rural interfaces when north wind prevailed. ABL-FT-M contributed to the increase of O_3 concentration during several hours after sunrise and the decrease of O_3 concentration in the afternoon, which is attributed to different comparison results between ABL and FT O_3 levels in two periods (ABL < FT in the morning; ABL > FT in the afternoon).

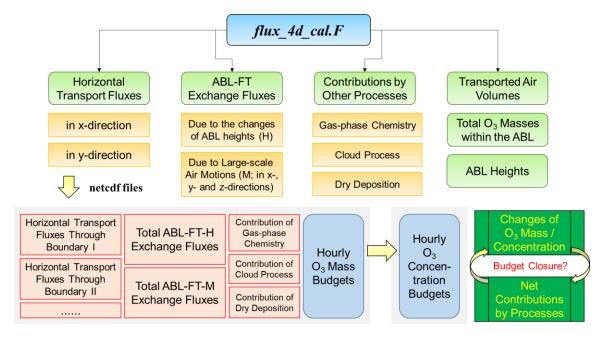

(2) <u>The contribution of horizontal transport and ABL-FT-M in summer indicates the influence of</u> sea breezes in the PRD.

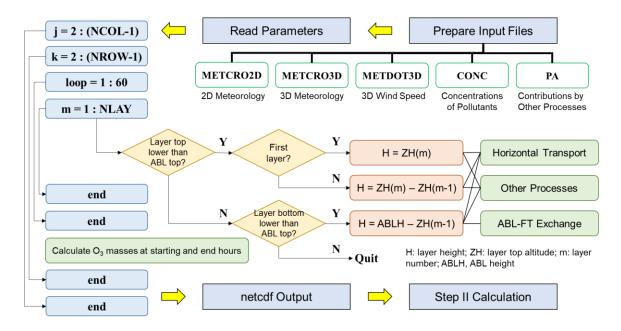
Although southerly winds normally prevail in summer in the PRD (Fig. S9), on O_3 polluted days, air parcels from other directions could potentially influence the region as well (Qu et al., 2021), resulting in relatively lower horizontal transport fluxes of O_3 in comparison to these in autumn. What interests us is the different contributions of horizontal transport through the southern border of the PRD before and after ~14:00 LT. Besides, we also found high O_3 fluxes contributed by ABL-FT-M in the afternoon. These phenomena are both related to the influence of sea breezes in the PRD.

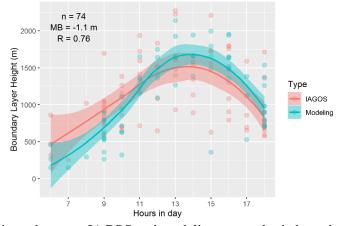

Figure S11 shows the near-ground wind roses at 14:00, 16:00 and 18:00 LT of O₃ polluted days in July 2016 based on the observational and modeling results in national meteorological sites within the PRD. At 14:00 LT, the main wind directions were W, SW and NW in both datasets. More S and SE winds occurred in later hours, and they became the prevailing winds at 18:00 LT — it suggests the gradual development of sea breezes in the PRD. Thus, O₃ was originally transported out of the PRD through its south border (O_3 fluxes < 0), but sea breezes gradually reversed the directions of O₃ transport, finally resulting in positive O₃ fluxes through the south border in the late afternoon. Sea breezes resulted in the changes of not only horizontal wind fields, but also vertical wind fields. Take the O₃ polluted day July 24th for example, and the crosssection of O₃ concentrations and wind fields in the PRD at 16:00 LT is shown in Fig. S12 (crosssections were made along the 113.2° E latitude line, from 26.0 to 20.0° N). Sea breezes can be found in this plot, characterized by strong southerly wind and lower O₃ concentrations in the south part of the PRD. In regions where sea breezes and local air parcels encountered (characterized by the interface between low and high O₃ levels), updrafts occurred, suggesting the formation of sea breeze front (Ding et al., 2004; You and Fung, 2019). It promoted the upward transport of O₃ from the ABL to the FT, or considerable O₃ outfluxes attributed to ABL-FT-M.

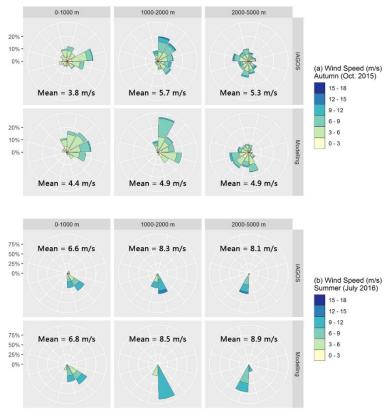

Figure S1. Two calculation paths in the calculation of regional O_3 concentration budget within an hour. $m_{pollutant}$ indicates the total mass of pollutants in the atmospheric boundary layer (ABL) of the studied region; V is the volume of the ABL of the region; L is the length of the grids (equal to the horizontal resolution of the model); H is the ABL heights; t_0 and t_1 are the starting and end hours; c_0 and c_1 are the concentrations of pollutants in t_0 and t_1 , respectively; c_{r1} and c_{r2} are the reference concentrations of pollutants for two calculation paths.

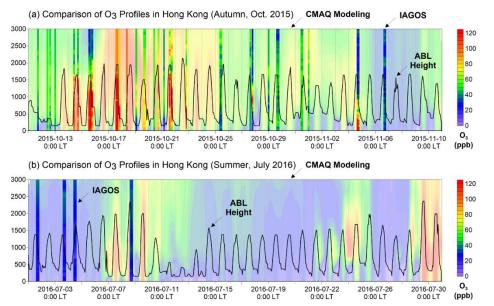

Figure S2. O_3 budget closure examinations in Oct. 2015 (a,c) and July 2016 (b,d), for the O_3 mass budget (a-b) and concentration budget (c-d). The units for the O_3 mass and concentration budgets are t/h and $\mu g/(m^3 h)$, respectively.

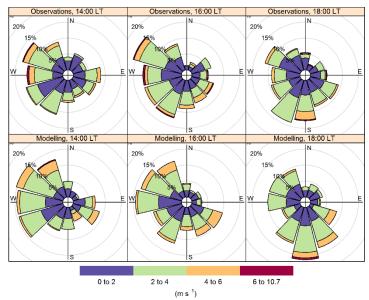

Figure S3. The spatial distributions of the d02 modeling domain and source regions. PRD, Pearl River Delta; EC-China, East and Central China; BCON, the boundary conditions of d02 modeling, or the contributions of sources outside d02.


Figure S4. Spatial distributions of 18 sites of the Guangdong-Hong Kong-Macao Pearl River Delta Regional Air Quality Monitoring Network. The names of all sites and their located municipalities are: 1. Luhu, Guangzhou; 2. Liyuan, Shenzhen; 3. Tangjia, Zhuhai; 4. Huijingcheng, Foshan; 5. Jinjuju, Foshan; 6. Nanchengyuanling, Dongguan; 7. Zimaling, Zhongshan; 8. Xiapu, Huizhou; 9. Chengzhongzizhan, Zhaoqing; 10. Tianhu, Guangzhou; 11. Zhudong, Guangzhou; 12. Modiesha, Guangzhou; 13. Wanqingsha, Guangzhou; 14. Jinguowan, Huizhou; 15. Xijiao, Huizhou; 16. Donghu, Jiangmen; 17. Duanfen, Jiangmen; 18. Heshan Supersite, Jiangmen.


Figure S5. Mean diurnal change of the hourly variations of observational, modeling mean nearground O₃ concentrations in 18 sites of the Guangdong-Hong Kong-Macao regional monitoring network and modeling mean O₃ concentration over the atmospheric boundary layer (ABL) of the Pearl River Delta on the polluted days of autumn (Oct. 2015) and summer (July 2016).


Figure S6. Flow diagram of the O_3 budget calculation processes. ABL, atmospheric boundary layer; FT, free troposphere; ABL-FT-H, ABL-FT exchange due to the changes of ABL height; ABL-FT-M, ABL-FT exchange due to the large-scale air motions (advection through the ABL top).


Figure S7. Flow diagram of the O₃ budget calculation in the Step I (or the tool *flux_4d_cal*). NCOL, NROW and NLAY indicate the number of columns, rows and vertical layers in the modeling domain. ABL, atmospheric boundary layer; FT, free troposphere. METCRO2D, 2-dimensional meteorological outputs from the MCIP module in CMAQ; METCRO3D, 3-dimensional meteorological outputs from the MCIP module in CMAQ; METDOT3D, 3-dimensional wind fields outputs from the MCIP module in CMAQ; CONC, 3-dimensional outputs of pollutant concentrations from CMAQ; PA, 3-dimensional outputs of hourly contributions by three non-transport processes to O₃ from CMAQ.


Figure S8. Comparisons between IAGOS and modeling atmospheric boundary layer height in Hong Kong in Oct. 2015. n, the number of available dataset for the comparison; MB, mean bias; R, correlation factor.

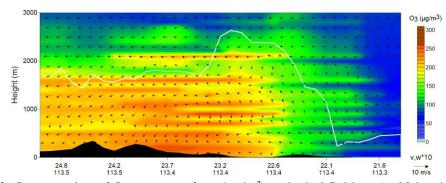

Figure S9. Comparisons between IAGOS and modeling wind roses in Hong Kong in (a) Oct. 2015 and (b) July 2016. Results within the height range of 0-1000 m, 1000-2000 m, and 2000-5000 m were separately displayed.

Figure S10. Comparisons between IAGOS and CMAQ modeling vertical profiles of O₃ mixing ratios (ppb) in Hong Kong in (a) Oct. 2015 and (b) July 2016. The heights of atmospheric boundary layer (ABL) modeled by WRF in two months are also shown as solid black lines.

Figure S11. Wind roses at 14:00, 16:00, and 18:00 local time (LT) of O₃ polluted days in July 2016 in the Pearl River Delta (PRD). Observational and modeling wind speeds and directions in 29 national meteorological sites within the PRD were used for this figure.

Figure S12. Cross-section of O_3 concentrations ($\mu g/m^3$) and wind fields at 16:00 local time on July 24th, 2016. The solid white line indicates the top of the atmospheric boundary layer.

Table S1. Information on the O_3 polluted days of the Pearl River Delta (PRD) in Oct. 2015 and July 2016. MDA1, the maximum 1-hr O_3 concentrations; MDA8, the maximum 8-hr average O_3 concentrations.

Dates	Influencing Weather Systems	O ₃ concentrations in the PRD (the maximum values in nine municipals of the PRD, released by the China National Environmental Monitoring Centre; µg/m³)	
0 + 12 2015		MDA1	MDA8
Oct.13, 2015	_	201	164
Oct.14, 2015	_	301	244
Oct.15, 2015	Typhoon Koppu and Champi	271	227
Oct.16, 2015		260	219
Oct.17, 2015		233	211
Oct.18, 2015		205	187
Oct.19, 2015		214	174
Oct.20, 2015		200	158
Oct.21, 2015		214	195
Oct.22, 2015		209	182
Oct.23, 2015		249	199
Oct.24, 2015		225	193
Oct.28, 2015	Subtropical High	238	186
Nov.3, 2015	Sea High	207	162
Nov.4, 2015		182	168
Nov.5, 2015		255	187
July 7, 2016		297	256
July 8, 2016	T1 N1-	260	198
July 9, 2016	Typhoon Nepartak	263	231
July 10, 2016		211	150
July 22, 2016		211	176
July 23, 2016		223	197
July 24, 2016	Cliterania -1 III. 1	265	226
July 25, 2016	Subtropical High	334	269
July 26, 2016		235	164
July 29, 2016		271	204
July 30, 2016	TD 1 N. 1	268	187
July 31, 2016	Typhoon Nida	385	344

Table S2. Formulas in the O_3 flux calculations for the grid cell (i, j) in the unit time dt, parameters used and their source files in the flux_4d_cal tool.

Processes	Formulas of O_3 fluxes	Parameters used	Sources of parameters
	$F_{u-trans} = \sum_{k=1}^{h} c_{i-1,j} u_{i,j+\frac{1}{2}} L \Delta z dt$	$c_{i-1,j}$: O ₃ concentrations in the grid cell $(i-1,j)$	CONC files
		$u_{i,j+\frac{1}{2}}$: wind speeds in the west interface	METDOT3D files
		L: the length of grid cells (= model resolution)	User defined
		Δz : layer heights (H - z_{h-1} for the ABL top layer, z_k - z_{k-1} for other layers within the ABL; H, ABL height)	METCRO3D files
		h: the layer of ABL top	Determined by ABL height
		$c_{i,j-1}$: O ₃ concentrations in the grid cell $(i, j-1)$	CONC files
Horizontal transport (in the y-direction)	$F_{v-trans} = \sum_{k=1}^{h} c_{i,j-1} v_{i+\frac{1}{2},j} L \Delta z dt$	$v_{i+\frac{1}{2},j}$: wind speeds in the south interface	METDOT3D files
		L: the length of grid cells (= model resolution)	User defined
		Δz : layer heights (H - z_{h-1} for the ABL top layer, z_k - z_{k-1} for other layers within the ABL; H, ABL height)	METCRO3D files
		h: the layer of ABL top	Determined by ABL height
157 557	ан	c_h : O ₃ concentrations in the ABL top layer	CONC files
ABL-FT exchange due to the changes of ABL heights	$F_{ABL-FT-H} = c_h \frac{\partial H}{\partial t} L^2 dt$	$\frac{\partial H}{\partial t}$: the change rates of ABL height	METCRO2D files
		L: the length of grid cells (= model resolution)	User defined
	exchange due to ale air motions $F_{ABL-FT-Cu} = c_{i-1,j(h)} u_{i,j+\frac{1}{2}(h)} \frac{\partial H}{\partial x} L^2 dt$ $u_{i,j+\frac{1}{2}(h)}$: wind speeds in the ABL top layer of the we are the length of grid cells (= model resolution)	$c_{i-1,j(h)}$: O ₃ concentrations in the ABL top layer of the grid cell $(i-1,j)$	CONC files
ABL-FT exchange due to large-scale air motions		$u_{i,j+\frac{1}{2}(h)}$: wind speeds in the ABL top layer of the west interface	METDOT3D files
		L: the length of grid cells (= model resolution)	User defined
(in the x-direction)	3 2 7 6 2	$\frac{\partial H}{\partial x}$: the difference of ABL heights in x-direction, or between the grid cells (i, j) and $(i-1, j)$	METCRO2D files
		$c_{i,j-1(h)}$: O ₃ concentrations in the ABL top layer of the grid cell $(i,j-1)$	CONC files
ABL-FT exchange due to	ан	$v_{i+\frac{1}{2},j(h)}$: wind speeds in the ABL top layer of the south interface	METDOT3D files
large-scale air motions	$F_{ABL-FT-Cv} = c_{i,j-1(h)} v_{i+\frac{1}{2},j(h)} \frac{\partial H}{\partial y} L^2 dt$	L: the length of grid cells (= model resolution)	User defined
(in the y-direction)		$\frac{\partial H}{\partial y}$: the difference of ABL heights in y-direction, or between the grid cells (i, j) and $(i, j-1)$	METCRO2D files
ABL-FT exchange due to	$F_{ABL-FT-Cw} = -c_h w_h L^2 dt$	c_h : O ₃ concentrations in the ABL top layer	CONC files
large-scale air motions (in the z-direction)		w_h : vertical wind speeds in the ABL top layer	METCRO3D files
		L: the length of grid cells (= model resolution)	User defined
Other processes (gas-phase chemistry, cloud	$F_{others} = \sum_{k=1}^{h} IPR\Delta z dt$	IPR: integrated process rates of pre-set processes	PA files
		Δz : layer heights (H – z_{h-1} for the ABL top layer, $z_k - z_{k-1}$ for other layers within the ABL; H, ABL height)	METCRO3D files
process, dry deposition)	κ-1	h: the layer of ABL top	Determined by ABL height