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Abstract

Focusing on non-destructive and automated acquisition of plant phenotypic parameters,this extended abstract proposed an
end-to-end deep RNN based network structure for single perspective sparse raw point cloud regression task called DRN. It
has been proven to achieve accuracy improvements in PointNet++ and PonitCNN when it comes to regression of lettuce plant
height. We believe DRN structure is suitable for feature extraction from plant point cloud data and regression of spatial distance

related plant phenotypes like plant height.
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Intruduction
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Figure2. Processing flow of plant height estimation




Experimental Data
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Figure3. Images of 4 varieties
of lettuce samples



Preparation Result
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Proposed Methods
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Figure 5. Overview. (a)Data and Data preprocessing, transform the give images into cloud point and downsampling. (b)
Regressing lettuce plant height from single perspective sparse cloud point by our proposed DRN structure model



Feature Extraction Network: PointCNN

Table 2 Network parameter configuration of PointCNN

Layer kernel_size hidden Channels dilation Nclf.‘rgr?ﬁ;fs’f
XConv1 8 32 1 48
XConv2 12 64 2 96
XConv3 16 128 2 192

XConv4 16 128 2 384




Feature Extraction Network: PointNet++

Table 1 Network parameter configuration of PintNet++

Maximum of

Layer Feature Points Ratio R Neighbors
Sampling 512x3 0.5 - -
SA1l Grouping 512x64x3 - 0.2 64
PointConv 512x128 - - -
Sampling 128x128 0.25 - -
SA2 Grouping 128x64x128 - 0.4 64

PointConv 128x56 - - i




RNN Structure
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Figure 6. The structure of LSTM. © represents product, while & denote addition.
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Results analysis
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Figure 7. Predict MSE from DRNPointCNN and PointCNN based model on training data and testing data.




Results analysis
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Figure 8. Predict MSE from DRNPointNet++ and PointNet++ based model on training data and testing data.




Results analysis
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Figure 9. Scatter plot of cross-validation between predicted and measured plant height of DRNPointCNN and
DRNointNet++ .
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Conclusion

Table 3. Performance Analysis of DRN Structure in PointCNN and PointNet++

Methods PointCNN DRNPointCNN  PointNet++ DRNPointNet++

Train MSE (cm) 1.72 1.27 2.06 2.11
Test MSE (cm) 3.74 2.86 3.45 2.16
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