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Abstract

Symmetries and topology have been actively introduced currently to characterize the mode structure of waves in various systems
physics, giving rise to the concepts of topological insulators, topological superconductors and topological photonics, to name
a few. Very recently, the equatorial wave systems have been described from a topological point of view by Delplace et. al.
(Science 358, 1075-1077 (2017)). It was shown that the emergence of unidirectional edge waves (Yanai and Kelvin waves)
can be attributed to the topological bound states. An f-plane model is used to connect the topological invariants, the Chern
numbers, to the existence of these modes. We have extended this analysis by incorporating a beta plane model thereby including
the Earth’s sphericity from beginning. Equatorial beta plane model renders the Poincare and Rossby waves also equatorially
trapped. Further, the effect of moisture balance on the topology of the equatorial waveguide is examined. It is shown that the
presence of a new eastward propagating mode within a low-frequency regime is similar to the observed MJO mode. We explained
how moisture localizes these low-frequency unidirectional oscillations. The topological origin of moist waves is emphasized by
relating their topological invariants, or Chern numbers. From this perspective, equatorial moist waves also show the strong
similarities with bulk-edge correspondence encountered in quantum valley Hall effect and its classical analogues. Our study
shows that the topological origin of MJO-like mode and its localization due to low-level moisture encode essential information

of the tropical climatic systems.
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INTRODUCTION

e Topology and symmetries have as compelling guiding principles to predict and
harness the propagaton of waves in various physical systems.

o Be it quantum particle (such as electrons) or classical waves (mechanical waves),
these concepts have so far been mostly explored in idealized systems, in which the
wave dynamics is conservative.

e Very recently, the equatorial wave systems have been described from a topological
point of view by Delplace et. al (2017).

« It was shown that the emergence of unidirectional edge waves (Yanai and Kelvin
waves) can be attributed to the topological bound states.

e An f-plane model is used to connect the topological invariants, the Chern numbers,
to the existence of these modes

o Topology guarantees the existence of equatorial Yanai and Kelvin waves, obviating
the need to carry out the classic but more complex calculation on the equatorial beta-
plane.

 We have extended this analysis by incorporating a beta plane model thereby
including the Earth’s sphericity from beginning.

o Equatorial beta plane model renders the Poincare and Rossby waves also equatorially
trapped. Further, the effect of moisture balance on the topology of the equatorial
waveguide is examined.
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Figure 1 : Observed wavenumber—{requency
spectrum of the equatorial symmetric component

of brightness temperature4

PERIOD (DAYS)

» The flow in the tropical atmosphere is
characterized by a perturbation in rainfall
and cloud distribution.

» These perturbations are the manifestations of
equatorial waves.

» Several authors suggested that these
equatorial waves are the significant
physical processes within the tropics,
which play a crucial role in the large-scale

dynamics.



Motivation of the study

Dispersion Spectrum of Schematic of band dispersion of a
Equatorial waves 2-D Topological Insulator
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Figure 2 : Comparison of Equatorial waves (Classical Waves) with the Band
Structure (Quantum Waves) of the Topological Insulator
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(a) beta-plane geometry on a rotating planet (b) Corresponding Parameter space (k,, k,, f)



Theoretical Description

» We consider the equations of the one-layer Shallow water model in the absence of dissipation
on the equatorial beta-plane (f = f,+ fy), with zonal (x) and meridional (y) directions

(X =y}

OV+(V.V)v+fnXv=—-V0l (1.a
00+ V.(v0) =0 (1.b

» The velocity filed is described by V(X, 1) = (u(x, 1), v(X, t)) , and here V = (d/0x, d/dy), and 7
is the unit vector in the vertical direction, and @ is the potential temperature perturbation.

» We non-dimensionalised and linearised the above equation of motion at ( # = 0 and 0 = 9) and
We look for the solution (Eigen modes) in the form of a wave (Planar wave), with amplitudes

of the fields ({(x, y, 1) = {(y)e @Rk,

Resultant eigenvalue equation

ou 20
—+fv+—=0

ot o0x (é\ (O kx ky\ (é\
3 o0 .
gy =0 — 0 ola|=|k 0 -if]]a
0  ou o NV RN ANV

E+($+a_y)zo Where (f =f,+ Ay)



By rearranging the above linear eigenvalue equation
The dynamical system becomes

0¥ = HY (2)
Where ¥ = (v,0) and H is the Hermitian operator

In a Quantum mechanical context it can be referred as a Hermitian system
and can easily applied to the Conservative systems (idealized physical
systems in which the wave amplitude is neither attenuated nor amplified)

The time reversal symmetry is broken due to non-zero Coriolis parameter
and this broken symmetry generates the gaps in the wave spectrum?

t—> —t,x—->x,0—->0,u— —u

Diagonalization of equation (2) leads to three eigenmodes w, = 0,

Wy = 4/ k* + f% , where k? = k)% + ky2 and corresponding three eigenvectors
(wave bands)

\/ K2+ f?
1 k, ; Tk 1 ‘]]:
‘P-f-(kx’ ky’f) =— % 2. IP k. k — \P —k.—k \Po(kx, k ,,f) = l y
V2 e+ f _(ky Ky f) +(=ky, — ki, f) Y \/m ik




» We now consider an atmospheric component of the model that describes the dynamics of anomaly circulation of
the lower troposphere, represented by the Linear shallow water equations describing the horizontal structure of the
first baroclinic wave motion on an equatorial S-plane, along with vertically integrated moisture equation.

» We non-dimensionalize the governing equations using the spatial, temporal and potential temperature scales

defined by 1 10 do
[LO]:{%}1/2 T = {50 and [00] = H

dz
Resultant eigenvalue equation

ou f et ot 00 0 C g q )

— 4+ e*u+fv — =

ot " ox Ba)  ~ , N

(N |0 rke vk By

ov 00 0 e [ b
—+ec*v—fu+y— =0 (3.b) ol = | i v
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o Cox oy \_ T

os ou ov Again by rearranging the above linear eigenvalue equation
— + Fq[— +—]+Au+Bs=0 (3.d) The dynamical system becomes
ot ox 0y —
i (0w =Av)
where, [, = ——
q dz

Where ¥ = (v, 0, s)and H is the Non-Hermitian operator

The parameters A: the non-dimensional values of evaporation- wind feedback component. I' ) represents the strength of moisture

convergence. B and vy represents, the moisture relaxation timescale and temperature scale respectively.
Rayleigh damping parameter.

*k

€* represents the
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Figure 4 : Dispersion Relation (low frequency modes only)



CONCLUSION

« In conclusion, we continued our calculations towards the latitudinal variation of
coriolis parameter i.e., beta-plane model.

Following the previous work by Delplace et. al. (2017), we have shown that beta-
plane model calculations are complex and all the eigenmodes are equatorially
trapped. However, beta-plane model doesn't affect the topological behaviour of
equatorial waves.

We further incorporated vertically integrated moisture equation along with the
momentum damping into the shallow water system, and we have seen that a new
eastward propgating low-frequency mode, identified to be MJO emerges.

« However, in contrast with the dry shallow water system, incorporation of moisture
and damping makes the system non-Hermitian.

« Understanding the topological properties of non-Hermitian Hamiltonian in
continuum system is still an open area.
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