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Abstract

Receiver functions, an important tool in understanding sub-surface interfaces, can be analysed through carefully implemented

neural networks. We demonstrate this approach. Previously, we introduced our receiver function tool set, Pythonic Global

Lithospheric Imaging using Earthquake Recordings (PyGLImER). PyGLImER enables us to: [1] create a database of teleseismic

event displacement records at worldwide seismic stations, [2] compute receiver functions from these records, and [3] compute

volumetric common conversion point (CCP) stacks from the receiver functions and their conversion points. CCP stacking is

a standard tool to image the subsurface using receiver functions. The CCP stacks represent rich but large, three-dimensional

volumes of data that contain information about discontinuities in Earth’s crust and upper mantle. One goal of the interpretation

of CCPs is the identification of such discontinuities. Automated picking routines reduce discontinuities to singular peaks and

troughs, thus discarding the wealth of information available over the whole depth range, such as integrated discontinuity

impedance and regional geometry. However, the obvious alternative, manual picking, is not feasible for large data volumes.

Here, we explore the possibility of fully-automated segmentation of 3D CCP volumes through the application of image processing

routines and machine learning to successive volume cross-sections. With our picking tool, we manually label discontinuities in

CCP slices to serve as training and validation sets.We use these labeled datasets as input to train a convolutional neural network

(CNN) to perform pixel-wise identifications in subsurface images. When applied to all slices of the CCP stack, the CNN outputs

a fully-segmented 3D model, which furnishes quantitative exploration of subsurface discontinuity morphology. Specifically, we

can investigate the thickness/width, intensity, and topography of discontinuities across continents. This information has the

potential to improve our understanding of, e.g., mantle transition zone phase transitions and, therefore, mantle dynamics.
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Introduction 
Converted teleseismic earthquake waves have been used for almost half a 
century to investigate Earth’s sharp compositional discontinuities (Langston 
et al., 1977; Vinnik, 1977). During this time most of the focus rested on 
finding the exact location of the such discontinuities. However, different 
thermal and compositional differences can have a large effect on the 
transition itself. That is, width, intensity, and roughness could tell us more 
about thermal, chemical, and compositional structure of the upper mantle 
phase transitions. To assess this idea, we need to know the width of the 
subsurface discontinuities. Here, we explore the possibility of using a 
convolutional neural network to distinguish between discontinuity and 
surrounding mantle to analyze the discontinuities related to the mantle 
transition zone; i.e. the 410, which is the depth at which olivine transitions to 
wadsleyite, and the 660 which is the depth at which ringwoodite transitions 
to bridgmanite and ferropericlase. We are asking whether the discontinuities 

occupy different ranges in depth, do they have 
different characteristic mean amplitudes and how 
do these values change laterally? Do they vary at 
all? Or is the observed thickness solely controlled 
by filter width?


Dataset 
Using PyGLImER (Makus et al., 2021), we first collected waveforms for a majority of the stations 
available in North America, rotated the waveforms to a P-Sv-Sh coordinate system, and computed 
receiver functions (RFs) using iterative time domain deconvolution with a Gaussian width parameter of 
2.5 (Ligorria & Ammon, 1999). Then, we traced the P and S travel times using backwards ray-shooting 
in a 2-D plane through the GYPSUM 3D global P and S velocity model (Simmons et al., 2010), and 
computed the differential travel times. Using the travel times, we moveout corrected and stacked the 
traced receiver functions in circular bins spaced at 0.58° with radius 0.5° at their conversion points. An 
example slice through the resulting CCP volume is shown in Figure 2 on the left with accompanying 
map on the right.


CNN 
Neural Networks are ubiquitous in our daily lives. They are 
used in, e.g., automated photo tagging on your mobile 
phone or autonomous cars to detect surrounding objects. 
Neural networks are generally modeled after the human 
brain and can be extremely powerful in detecting features 
in images after the user trains the network by giving it 
traced examples (the equivalent of teaching a human child 
to recognize objects with flash cards). The CCP dataset 
we have in our hands is nothing more than a stack of 
images in three dimensions with features (410 and 660) 
that are waiting to be detected. An example of feature 
detection in photos is shown in Figure 3.


Dataset Labeling 
We created a custom labeling software that makes use of ‘super-pixels’ 
that are found using the SLIC algorithm (Achanta et al. 2012) and are 
subsequently selected in a point-click fashion. We choose two labels: 
‘Discontinuity’: 0 and ‘Nothing’: 1. In post-processing, the 410 and 660 
discontinuity are separated using their depth ranges. Note that in Figure 
4, the SLIC segmentation already does an incredible job at finding 
boundaries on a grayscale image — colormap is only for reference.


Training 
We designed a simple two-layer convolutional neural network (CNN) that 
takes in three channel 101x101 pixel images and outputs a single class. 
We trained the CNN by taking 101x101 element x-, y-, and z-slices 

around a pixel in the CCP volume, which serve as the 3 channel inputs (see Figure 5). We use a class-
balanced subset of 100,000 points from CCP volume to train the model. The training of the neural 
network is done on a single NVIDIA Tesla V100 and PyTorch. We used the Adam optimizer for this 
experiment with a weight decay value of 0.1, a learning rate of 0.0001, and cross-entropy loss. The 
training and validation evolutions are shown in Figure 6, left. The final filters of the first layer at the end 
of the training are shown in Figure 6, right.


CNN (cont.) 

Results 
Labeled Slices 
The labeled volume is processed to remove spurious random classifications using common post 
processing routines such as opening, closing, remove small objects etc. The labeled discontinuities are 
also distinguished by their depth resulting in three masks: 410, 660, and ‘nothing’ (s. Figure 7).





Results (cont.) 
Best fitting planar MTZ 
In Figure 7, we fit a plane to the coordinates of the two mantle transition zone discontinuities within the 
masks and compute the vertical residuals and their distributions. According to planar fit, the MTZ, on 
average becomes thicker from south west to north east. The 410 and 660 both deepen northwestward. 
The 660 deepens at a higher rate than the 410 discontinuity leading. It is important to note that 
especially in the central part of the depth slices the plane approximation is not adequate to capture the 
strong relief of the discontinuities; a valley in both phase transitions stretches from north west to south 
within the plane. Both 410 and 660 are deeper in that region and the MTZ appears to be thicker. The 
“valley” in both discontinuities is clearly visibly in the 2D slice in Figure 9. While the ideal plane 
solutions for absolute depths of the 410 and 660 discontinuities look fairly different from trends shown 
in a previous study (Gao, 2014), the trend in transition zone thickness matches. This discrepancy in 
absolute depth is an effect of the updates to the upper mantle velocity structure from the GyPSuM 
model (Simmons et al., 2010). This effect is studied extensively in Burky et al., 2021 (see here: Dec 13 
16-18.00, Board 0005, Poster Hall D-F).


Results (cont.) 
The widths of the discontinuities show small regional trends (Figure 10, second row). The 410 is on 
average thinner in the north east than the south west. A similar trend does not seem to exist for the 660 
discontinuity, which only shows some anomalously thin locations in the north west. The average pulse 
width of the 410 is 23.43±4.42 km and slightly thicker for the 660 at 26.18±4.32 km. Disclaimer: 
These are not the actual thickness of the transitions, but rather the convolution of its width with the 
RF’s low pass filter. This is by no means a direct measure of the transitions thickness but rather a 
first order tool to investigate lateral variations. The average amplitude (Figure 10, third row) in the 
410 discontinuity does not show and significant regional trends, whereas the 660 seems to increase in 
mean amplitude from south west to north east. With the increase in amplitude, however, the standard 
deviation of the amplitude (Figure 10, fourth row) is increasing as well. The transition from low to high 
standard deviation seems to coincide with transition from shallow to deep 660. At this point, we are not 
certain whether this is a results of the mask that is found by the CNN or, indeed, the structural and 
compositional effect — further investigation is required.


Additionally, we find that the mean amplitude correlates positively with the depth of the 660 
discontinuity (R = 0.88). Whether this is a regional effect or related to the path traveled or a result of the 
mask itself remains to be investigated.


Conclusions 
Summary 
• Using a simple convolutional neural network we detected the mantle transition zone discontinuities 

related to olivine phase transitions, and their width.

• We subsequently made measurements within the masks of the of the discontinuities finding


• An average 410-depth of the 412.4±4.4 km

• An average 660-depth of the 654.1±5.5 km

• Both discontinuities show similar mean amplitude although the mean amplitude of the 410 is 

slightly higher with a larger spread: 

• 410 — 0.6052±0.0230 A;  

• 660 — 0.6047±0.0193 A.


• We found a positive correlation between the depth of the 660 and its mean amplitude in the 
found mask correlate. At this point, we are not certain whether this is expected.


• The standard deviation in amplitude measurement increases abruptly from south west to north 
east.


Outlook  
More investigation is needed and a higher accuracy CNN required to make clear deductions. Plans for 
improvement:

• Pre-trained models for cross-learning the features present in the CCP slices

• Explore learning methods (not only 2D CNN, but R-CNN etc., 1D convolutional methods)

• Change RF processing techniques

• Instead of just RF slices additional data can be generated by processing the input RFs slices, say to 

2D Fourier space etc.
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Figure 2: (Left) Vertical slice of through CCP Stack of radial receiver functions (RF). The colorbar indicates RF amplitude; where red corresponds to a downward increase in 
seismic impedance, often an increase in density and/or seismic velocity, and vice versa. The white and black dots at the top axis spine correspond to the dots indicated on 
the map on the right. (Right) Illumination map of P-S conversions at 410 km depth. The colorbar indicates the number of conversions that were collected in bins. Note that 
the map is interpolated and that the bins are not rectangular. The small circles show stations that provided RFs for the stack. The line across the continent indicates the 
path of the vertical slice. The vertical slice is interpolated using bins up to two bin distances away from the path; this buffer is indicated by the dashed line surrounding the 
path. The box indicates the data region of the CCP stack that we are using for the subsequent investigation.

(a)

(b)

Figure 1: Cartoon showing the basic principle of teleseismic wave conversion 
below an array of stations. (a) The green line shows a perturbation in elastic 
properties, also referred to as a contrast in seismic impedance. In solid blue, the 
ray of an incoming, direct P-wave and in dashed blue its down-going reflection 
from the discontinuity in seismic properties. In solid red, the P-to-S converted 
wave and in dashed the downgoing S-wave reflected and converted at the 
discontinuity. (b) The corresponding arrivals recorded at stations of the array. 
Arrows pointing to the corresponding arrivals. Figure from Rondenay et al., 2017.

(a)

(b)

Figure 5: Example of three channel input for the CNN. Slices in each dimension (Lat, Lon, Z -> X, Y, Z). Here a slice around the 410 discontinuity. The black square 
indicates the location that is labeled by the CNN given these three input slices.

Figure 4: SLIC segmented CCP slice. The 
areas within black boundaries are selected for 
discontinuities and the remainder is assumed 
to be ‘nothing’.
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Figure 6: (Left) Model evolution. In black the training loss, and in red the loss associated with the held back data set. In blue the accuracy, i.e., fraction of correctly labeled 
data points. (Right) Final convolutional filters of the first layer in the neural network.

Figure 7: From Raw to labeled CCP slice. (Left column) Raw CCP slices with normalized amplitudes. Slice locations are indicated in the map in the top-right. (Center 
Column) Labeled CCP Slices. Colorbar for Norm RF and label are shown in the bottom right corner of the figure.

Figure 9: A latitude slice through the CCP volume at 40.39°N, with statistics of the masked depth values. (Top) 410 discontinuity, (Center) 660 discontinuity,  (Bottom) 
Thickness of the mantle transition zone. The standard deviation is the combined standard deviation of 410, and 660, assuming that they are distributed independently 
(which is most likely not true). The R value in the thickness plot is the correlation coefficient between 410 and 660 mean depths.

Figure 10: Measurements within the masks. (Left column) Measurement from the 410 mask. (Right column) Measurement from the 660 mask. Rows from top to bottom: 
[1] Mean depth — at location (x,y) the mean of all z values within the mask is computed; [2] width of the mask — at location (x,y) the range of z values in a mask is 
computed; [3] mean amplitude — at location (x,y) the mean of all amplitude values within the mask is computed; [4] standard deviation in the amplitude — at location 
(x,y) the standard deviation  of all amplitude values within the mask is computed.

Figure 8: (Left column) Using the coordinates of the mask we can fit planes to the 410 and 660 discontinuity and compute corresponding MTZ thickness. (Center column)  
We subtract the fitted planes from the masked z coordinates to compute the mean vertical residual. In other words, positive values indicate the actual discontinuity is below 
the plane approximation and the standard deviation as for the horizontal coordinates. For the thickness, a positive value indicates that the actual MTZ is thicker than the 
ideal plane solution. (Right column) Standard deviations of the center columns’ residuals.

Best fitting plane

Figure 11: Effects of water content on the width of 660 discontinuity from Density Functional Theory. A wider transition could have implications on the water content in 
the transition zone. From Muir et al. 2021

Muir et al. 2021
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Abstract

We present a conceptually simple, flexible, and general

framework for object instance segmentation. Our approach

efficiently detects objects in an image while simultaneously

generating a high-quality segmentation mask for each in-

stance. The method, called Mask R-CNN, extends Faster

R-CNN by adding a branch for predicting an object mask in

parallel with the existing branch for bounding box recogni-

tion. Mask R-CNN is simple to train and adds only a small

overhead to Faster R-CNN, running at 5 fps. Moreover,

Mask R-CNN is easy to generalize to other tasks, e.g., al-

lowing us to estimate human poses in the same framework.

We show top results in all three tracks of the COCO suite of

challenges, including instance segmentation, bounding-box

object detection, and person keypoint detection. Without

tricks, Mask R-CNN outperforms all existing, single-model

entries on every task, including the COCO 2016 challenge

winners. We hope our simple and effective approach will

serve as a solid baseline and help ease future research in

instance-level recognition. Code will be made available.

1. Introduction

The vision community has rapidly improved object de-
tection and semantic segmentation results over a short pe-
riod of time. In large part, these advances have been driven
by powerful baseline systems, such as the Fast/Faster R-
CNN [9, 29] and Fully Convolutional Network (FCN) [24]
frameworks for object detection and semantic segmenta-
tion, respectively. These methods are conceptually intuitive
and offer flexibility and robustness, together with fast train-
ing and inference time. Our goal in this work is to develop a
comparably enabling framework for instance segmentation.

Instance segmentation is challenging because it requires
the correct detection of all objects in an image while also
precisely segmenting each instance. It therefore combines
elements from the classical computer vision tasks of ob-

ject detection, where the goal is to classify individual ob-
jects and localize each using a bounding box, and semantic

segmentation, where the goal is to classify each pixel into

RoIAlignRoIAlign

class
box

convconv convconv

Figure 1. The Mask R-CNN framework for instance segmentation.

a fixed set of categories without differentiating object in-
stances.1 Given this, one might expect a complex method
is required to achieve good results. However, we show that
a surprisingly simple, flexible, and fast system can surpass
prior state-of-the-art instance segmentation results.

Our method, called Mask R-CNN, extends Faster R-CNN
[29] by adding a branch for predicting segmentation masks
on each Region of Interest (RoI), in parallel with the ex-
isting branch for classification and bounding box regres-
sion (Figure 1). The mask branch is a small FCN applied
to each RoI, predicting a segmentation mask in a pixel-to-
pixel manner. Mask R-CNN is simple to implement and
train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally,
the mask branch only adds a small computational overhead,
enabling a fast system and rapid experimentation.

In principle Mask R-CNN is an intuitive extension of
Faster R-CNN, yet constructing the mask branch properly
is critical for good results. Most importantly, Faster R-CNN
was not designed for pixel-to-pixel alignment between net-
work inputs and outputs. This is most evident in how
RoIPool [14, 9], the de facto core operation for attending
to instances, performs coarse spatial quantization for fea-
ture extraction. To fix the misalignment, we propose a sim-
ple, quantization-free layer, called RoIAlign, that faithfully
preserves exact spatial locations. Despite being a seem-

1Following common terminology, we use object detection to denote
detection via bounding boxes, not masks, and semantic segmentation to
denote per-pixel classification without differentiating instances. Yet we
note that instance segmentation is both semantic and a form of detection.

12961

Figure 3: Example of a possible input and output of a Neural 
Network. In this case a more sophisticated approach “Mask R-
CNN”. Next to masks, a mask CNN also provides bounding boxes 
of individual features, which can be very powerful for overlapping 
objects. Figure from He et al., 2017.
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