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Abstract

While machine learning (ML) techniques have proven to have exceptional performance in prediction of variables that have

long and varied observational records, it is not clear how to use such techniques to learn about intermediate processes which

may not be readily observable. We build on previous work that found that encoding either known, or approximated, physical

relationships into the machine learning framework can allow the learned model to implicitly represent processes that are not

directly observed, but can be related to an observable quantity. Zhao et al. (2019) found that encoding a Penman-Monteith-

like equation of latent heat in an artificial neural network could reliably predict the latent heat while providing an estimate

of the resistance term, which is not readily observable at the landscape scale. Specifically, we advance this framework in

two ways. First, we expand the physics-based layer to include the partitioning of both the latent and sensible heat fluxes

among the vegetation and soil domains, each with their own resistance terms. Second, we couple a land-surface model (LSM),

which provides information from simulated processes to the ML model. We thus effectively provide the ML model with both

physics-informed inputs as well as maintain constraints such as mass and energy balance on outputs of the coupled ML-LSM

simulations. Previously we found that coupling a LSM to the ML model could provide good predictions of bulk turbulent heat

fluxes, and in this work we explore how incorporating the additional physics-based partitioning allows the model to learn more

ecohydrologically-relevant dynamics in diverse biomes. Further, we explore what the model learned in predicting the unobserved

resistance terms and what we can learn from the model itself. Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S.,

Wen, Y., et al. (2019). Physics-Constrained Machine Learning of Evapotranspiration. Geophysical Research Letters, 46(24),

14496–14507. https://doi.org/10.1029/2019GL085291
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We previously 
showed that a 
coupled DL-PBHM 
approach can make 
better predictions 
of turbulent heat 
fluxes than a 
PBHM alone

Meteorological 
forcing data 

and 
parameters

Turbulent 
heat fluxes

Updated soil 
states

Process based hydrologic 
model (PBHM)

2
Link to our previous work:
https://doi.org/10.1002/essoar.10505081.2

https://doi.org/10.1002/essoar.10505081.2
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Link to our previous work:
https://doi.org/10.1002/essoar.10505081.2

One of the major 
shortcomings is a 
mismatch between 
process fidelity and 
the observed data 
for training PBHM

ML

Parameters

Met. Forcings

PBHM Fluxes

PBHM States

Parameters

Met. Forcings

PBHM Fluxes

PBHM States

Transpiration LE

Canopy LE

Ground LE

Canopy H

Ground H

Bulk H

Bulk LE

Turbulent heat fluxes 
parameterization

https://doi.org/10.1002/essoar.10505081.2
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Bare soils
Canopy

Flux tower

A reminder: 
The land surface 
is heterogeneous!
Flux towers measure bulk fluxes

But we want to model the various 
components

Without fancy techniques supervised 
machine learning can only learn bulk 
fluxes from observations then

This presentation is about one of 
these “fancy techniques”
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So, we’ve got 
tradeoffs Machine 

learned 
model

Process 
based 
model

Superior 
performance

Process 
fidelity
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Sensible 
heat 
fluxes

Latent 
heat 
fluxes

Why don’t “physics” 
based models 
perform well?

These bulk transfer equations are 
very common in hydrologic and 
land surface modeling:
● Andreadis et al., 2009
● Bonan, 1991
● Inclan and Forkel, 1995 
● Sellers et al., 1986
● Mahat et al., 2013
● Clark et al., 2015
● …
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Sensible 
heat 
fluxes

Latent 
heat 
fluxes

Why don’t “physics” 
based models 
perform well?

These consist of three main parts

1. Constants & parameters

2. Temperature or moisture 
gradients

3. Conductance terms
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Why don’t “physics” 
based models 
perform well?

These consist of three main parts

1. Constants & parameters

2. Temperature or moisture 
gradients

3. Conductance terms
𝜃·C·𝚫



These consist of three main parts

1. Constants & parameters
2. Temperature or moisture 

gradients
3. Conductance terms
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Why don’t “physics” 
based models 
perform well? I’m going to argue these 

are either:
1. Pretty well known
2. Parts of other 

processes



These consist of three main parts

1. Constants & parameters

2. Temperature or moisture gradients

3. Conductance terms
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Why don’t “physics” 
based models 
perform well? And likewise, this is 

where the model 
uncertainty really is…
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Conductance
Network

PBHM 
Calculated 

features for 
bulk transfer 

equations

The hybrid neural 
network architecture

Other 
Input 

features 
Bulk transfer 

equation layer Partitioned 
heat fluxes!𝜃·C·𝚫

This work is heavily inspired by:
Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen, Y., et al. (2019). Physics-constrained machine learning 
of evapotranspiration. Geophysical Research Letters, 46, 14496– 14507. https://doi.org/10.1029/2019GL085291

https://doi.org/10.1029/2019GL085291
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Conductance
Network

PBHM 
Calculated 

features for 
bulk transfer 

equations

The hybrid neural 
network architecture

Other 
Input 

features 
Bulk transfer 

equation layer Partitioned 
heat fluxes!𝜃·C·𝚫

Technical note: This “layer” 
has no trainable weights - it 
just encodes the equations 
in a differentiable form

This work is heavily inspired by:
Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen, Y., et al. (2019). Physics-constrained machine learning 
of evapotranspiration. Geophysical Research Letters, 46, 14496– 14507. https://doi.org/10.1029/2019GL085291

https://doi.org/10.1029/2019GL085291


We gathered data from 60 FluxNet sites, 
totalling over 500 site-years of half-hourly data

15Pastorello, G., Trotta, C., Canfora, E. et al. The FLUXNET2015 dataset and the 
ONEFlux processing pipeline for eddy covariance data. Sci Data 7, 225 (2020). 
https://doi.org/10.1038/s41597-020-0534-3

https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.1038/s41597-020-0534-3


We’re still able to 
outperform a 
calibrated PBHM 
using the same bulk 
transfer equations*
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*other pure ML based approaches 
outperform this but that’s asking a 
different question



Perhaps a rough 
upper bound on 
the performance 
of the “physics” 
based equations?
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*more work remains to be done to 
ensure that these performance 
results are optimal (notably fixing 
outliers)
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Walnut Gulch near Tombstone, AZ (US-Whs)
shows ground component is largest
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Blodgett Forest near Sacramento, CA (US-Blo)
shows vegetation components are largest
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Mixed forest near Vielsalm, Belgium shows a 
larger mixture between components



The overall 
partitioning 
matches 
physical 
intuition to a 
first order

21

Fr
ac

tio
n 

of
 to

ta
l l

at
en

t h
ea

t f
lu

x

Note: values can be <0 and >1 because 
condensation exists



The overall 
partitioning 
matches 
physical 
intuition to a 
first order, 
mostly
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We can also truncate the 
network to analyze the 
conductances!
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Conductance
Network

 Input 
features 

Conductance 
terms

C
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Conductances at Walnut Gulch
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Conductances are not 1-1 with heat fluxes
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Conductances at Blodgett Forest
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Conductances are not 1-1 with heat fluxes
still



Wrapup, future work, and 
some conceptual takeaways

We’ve quantified that a large amount of predictive 
performance is due to conductance terms
Need methods/data to better constrain the 
partitioning, particularly at sites with human 
interventions, like croplands
Coupling to the PBHM is still incomplete, but needed 
to analyze the effects on the full water cycle
My big takeaway: Process-based vs data-driven 
modeling should be a spectrum rather than a binary 
choice
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