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Abstract

Nutrient enrichment is a major issue to many inland and coastal waterbodies worldwide, including Chesapeake Bay. River
water quality integrates the spatial and temporal changes of watersheds and forms the foundation for disentangling the effects
of anthropogenic inputs. However, many water-quality studies are focused on limited portions of the watershed or a subset
of potential drivers. We demonstrate with the Chesapeake Bay Nontidal Monitoring Network (84 stations) that advanced
machine learning approaches — i.e., hierarchical clustering and random forest — can be combined to better understand the
regional patterns and drivers of total nitrogen (TN) trends in large monitoring networks. Cluster analysis revealed the regional
patterns of short-term TN trends (2007-2018) and categorized the stations to three distinct clusters, namely, V-shape (n = 25),
monotonic decline (n = 35), and monotonic increase (n = 26). Random forest models were developed to predict the clusters
using watershed characteristics and major N sources, which provided information on regional drivers of TN trends. We show
encouraging evidence that improved nutrient management has resulted in declines in agricultural nonpoint sources, which in turn
contributed to water quality improvement. Additionally, water-quality improvements are more likely in watersheds underlain
by carbonate rocks, reflecting the relatively quick groundwater transport of this terrain. However, TN trends are degrading in
forested watersheds, suggesting new sources of N in forests. Finally, TN trends were predicted for the entire Chesapeake Bay
watershed at the scale of 979 river segments, providing fine-level information that can facilitate targeted watershed management,
especially in unmonitored areas. More generally, this combined use of clustering and classification approaches can be applied

to other monitoring networks to address similar questions.
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Motivations

River water-quality (WQ) trend studies often focus on one or a few
monitoring locations, making conclusions difficult to generalize.

Much can be learned from the similarity in WQ signals and the similarity
in WQ responses to natural and anthropogenic drivers, which is made
possible by data from regional monitoring networks.

While many studies are aimed at the long-term scale (~30 years), short-
term analysis can leverage data from newly established stations and
provide relatively current information.

Monitoring networks (i.e., CBNTN) do not often cover the entire
watershed, leading to missing information in certain regions.

Prior analyses of drivers do not always evaluate all major input sources,
leading to potentially inaccurate or even contradicting inferences.



Objective

To reveal regional patterns and drivers of nitrogen trends
using advanced machine learning approaches -- combined
use of hierarchical clustering and random forest (RF).

1. Clustering: Categorize the short-term (2007-2018) TN trends
at the Chesapeake NTN stations (84) into distinct clusters,

2. Classification: Develop random forest (RF) models to identify
the most influential drivers for the cluster assignment, and

3. Prediction: Use the RF model to predict short-term trend
clusters for the entire watershed at a fine spatial resolution.
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CBNTN stations and TN data

CBNTN watersheds (n = 84)

2007-2018 TN flow-
normalized (FN) loads

Standardized for each
station (mean =0, sd = 1)
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ierarchical cluster analysis

Dissimilarity method:
Euclidean distance

Linkage method:
Ward’s minimum variance
method

VILLE, MD

Optimal cluster number:
Total Within Sum of Square




Hierarchical cluster analysis

 Cluster1 (n=23):

a V-shape trajectory.

* Cluster 2 (n=35):

a monotonic decline.

e Cluster 3 (n=26):

a monotonic increase.
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ACCOTINK CREEK NEAR ANNANDALE, VA
ANTIETAM CREEK NEAR SHARPSBURG, MD
ANTIETAM CREEK NEAR WAYNESBORO, PA

APPOMATTOX RIVER AT FARMVILLE, VA
APPOMATTOX RIVER AT MATOACA, VA

[ ] [ e [
BACK CREEK NEAR MOUNTAIN GROVE, VA
BIG ELK CREEK AT ELK MILLS, MD
BULLPASTURE RIVER AT WILLIAMSVILLE, VA
CACAPON RIVER NEAR GREAT CACAPON, WV
CALFPASTURE RIVER ABOVE MILL CREEK AT GOSHEN, VA
CATOCTIN CREEK AT TAYLORSTOWN, VA
CATOCTIN CREEK NEAR MIDDLETOWN, MD
CHEMUNG RIVER AT CHEMUNG NY
CHICKAHOMINY RIVER NEAR PROVIDENCE FORGE, VA
CHOPTANK RIVER NEAR GREENSBORO, MD
COHOCTON RIVER NEAR CAMPBELL NY
RIVER AT CONESTOGA, PA

° CO UE CREEK AT FAIRVIEW, MD
. p— CONODOGUINET CREEK NEAR HOGESTOWN, PA
— DEEP CREEK NEAR MANNBORO, VA

DEER CREEK NEAR DARLINGTON, MD
DIFFICULT RUN NEAR GREAT FALLS, VA
GEORGES CREEK AT FRANKLIN, MD
GUNPOWDER FALLS AT GLENCOE, MD

(]
GWYNNS FALLS AT VILLA NOVA, MD
W e re re I I l O Ve W I O ' l JAMES RIVER AT BLUE RIDGE PKWY NR BIG ISLAND, VA
JUNIATA RIVER AT NEWPORT, PA
LICKING CREEK AT PECTONVILLE, MD
LITTLE RIVER NEAR DOSWELL, VA

MARSHYHOPE CREEK NEAR ADAMSVILLE, DE
MATTAPONI| RIVER NEAR BEULAHVILLE, VA

re I a C e m e n t MATTAPONI RIVER NEAR BOWLING GREEN, VA
MATTAWOMAN CREEK NEAR POMONKEY, MD
° MAURY RIVER NEAR BUENA VISTA, VA

MECHUMS RIVER NEAR WHITE HALL, VA

MONOCACY RIVER AT BRIDGEPORT, MD

° ° ° MUDDY CREEK AT MOUNT CLINTON, VA

N F SHENANDOAH RIVER NEAR STRASBURG, VA

. — NANTICOKE RIVER NEAR BRIDGEVILLE, DE
— NORTH ANNA RIVER AT HART CORNER NEAR DOSWELL, VA

NORTH BRANCH PATAPSCO RIVER AT CEDARHURST, MD

NORTHWEST BR ANACOSTIA RIVER NR HYATTSVILLE, MD

OCTORARO CREEK NEAR RICHARDSMERE, MD

OPEQUON CREEK NEAR MARTINSBURG, WV

L]
PAMUNKEY RIVER NEAR HANOVER, VA
We re re a I l a Ze l l S I l I PATTERSON CREEK NEAR HEADSVILLE, WV
PATUXENT RIVER NEAR BOWIE, MD
PATUXENT RIVER NEAR UNITY, MD
PENNS CREEK AT PENNS CREEK, PA
PEQUEA CREEK AT MARTIC FORGE, PA
PINE CREEK BL L PINE CREEK NEAR WATERVILLE, PA

PO RIVER NEAR SPOTSYLVANIA, VA
RAPIDAN RIVER NEAR CULPEPER, VA
L] RAPIDAN RIVER NEAR RUCKERSVILLE, VA

RAPPAHANNOCK RIVER AT REMINGTON, VA

RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA

RAYSTOWN BRANCH JUNIATA RIVER AT SAXTON, PA

RIVANNA RIVER AT PALMYRA, VA

* The number of clusters was e e
S F QUANTICO CREEK NEAR INDEPENDENT HILL, VA

S F SHENANDOAH RIVER AT FRONT ROYAL, VA

S F SHENANDOAH RIVER NEAR LYNNWOOD, VA

SHERMAN CREEK AT SHERMANS DALE, PA

SIDELING HILL CREEK NEAR BELLEGROVE, MD

[
SMITH CREEK NEAR NEW MARKET, VA
S e a re e O e C O I l S I S e I I SOUTH BRANCH POTOMAL, RIVER NEAR SPRINGFIELD wv
° BORO, VA
C ONKLIN NY
SUSQUEHANNA RIVER AT DANVILLE, PA
SUSQUEHANNA RIVER AT TOWANDA, PA

SUSQUEHANNA RIVER AT WILKES-BARRE, PA

L]
. SUSQUEHANNA RIVER NEAR WAVERLY NY
SWATARA CREEK NEAR HERSHEY, PA
TONOLOWAY CREEK NEAR HANCOCK, MD

TOWN CREEK NEAR OLDTOWN, MD

TUCKAHOE CREEK NEAR RUTHSBURG, MD
UNADILLA RIVER AT ROCKDALE NY

wWB EHANNA RIVER AT JERSEY SHORE, PA

L]
WB SUSQUEHANNA RIVER AT KARTHAUS, PA
WEST BRANCH SUSQUEHANNA RIVER AT LEWISBURG, PA
WEST CONEWAGO CREEK NEAR MANCHESTER, PA

WESTERN BRANCH AT UPPER MARLBORO, MD
WILLS CREEK NEAR CUMBERLAND, MD
YELLOW BREECHES CREEK NEAR CAMP HILL, PA

among the iterations. Tt

lteration
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Explanatory Variables (Features)

Watershed size (n = 1) - Area_km2
Land uses, in % (n = 4) - Natural pct, Crop_pct, Pasture pct, Hay pct
Geology, in % (n = 1) - Carb_pct

Physiography, in % (n = 5) - Appalachian_pct, BlueRidge pct,
ValleyRidge pct, Piedmont_pct, Coastal pct

N input source trends (n = 6) - PointSource MK, Deposition MK,
Fertilizer MK, Manure_MK, Aglnput_MK, AgSurplus_ MK

1. CAST data aggregated for each NTN watershed —2007-2018 for point
sources; 1997-2018 for nonpoint sources.

2. Annual time series scaled by respective period-of-record medians.

3. Mann-Kendall trend and Sen’s slopes computed. 10



Explanatory Variables (Features)

ANOVA: p=0.00013 ANOVA: p=0.023

Cluslter‘l Cluslter 2 Clus:ter 3 Cluslter 1 Cluslter 2 Cluslter 3

ANOVA: p=0.038 ANOVA: p = 0.036

Deposition_MK

Fertilizer MK

Clus.ter 1 Clus.ter 2 Clus:ter 3

Clus:ter 1 Clus.ter 2 Clus.ter 3



Natural_pct
Deposition MK
Fertilizer MK
PointSource_MK
AgSurplus_ MK
Manure MK
Crop_pct
Hay_pct

Pasture pct
Aglnput_ MK
Carb_poct
Appalachian_pct
BlueRidge pct
ValleyRidge pct
Coastal_pct

Fiedmont_pct

Random Forest (Base Model)

Results show the importance of
Natural_pct, Deposition_MK, and
Ag variables (e.g., Fertilizer_MK,
AgSurplus_MK, Manure_MK).

| | | |
20 40 60 80

Importance

Natural_pct
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Exhaustive Search for Optimal Models (n < 6)

Model form OOB accuracy, percent

Overall Clusterl  Cluster2 Cluster3
Class ~ Natural pct + + 70.5 66.7 68.8 76.0
ValleyRidge pct + Deposition MK +
Carb_pct
Class ~ +
Deposition MK + Natural_pct
Class ~ BlueRidge pct + Deposition MK +
Coastal pct + Crop_pct + +
Natural pct

The selected models have varying accuracies for each cluster, indicating that
each model settled on a specific set of features that are most useful to

explain a specific cluster. To make predictions, an ensemble model approach
was adopted to combine the strengths of these three models —i.e., choosing
the prediction with the highest probability from the three models. 13



Marginal Effects of Features on Cluster 2

Regional Dri\le rs | Model A Model B | Model C
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3. Prediction of
nitrogen trend
clusters for the
entire watershed
(Prediction)
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Explanatory Variables for River Segments

Natural_pct A g Carb_pct crop_pet

| Natural_pct ; | carb_pet Q ! o | Crop_pct
3.21035.0 .| [Joote20 OSSN . 0.0t0 0.6
35.01t045.3 20 2.0t0 5.1 2

45310552 . 5110 10.0

55210633 ; 10.0t017.9
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Predictions for River Segments

Cluster1 293 (30%) 103 T —
Cluster 2

Cluster2 392 (40%) 227 a

Cluster 3 295 (30%) 128

=%
»

B

. o luster -l 6;»' Teby
These predictions are useful for watershed ‘ wx‘ ; 40
managers to understand trends across the
watershed, including unmonitored areas.

Combined with the effects of the model
features, these predictions may inform
managers on choosing priority watersheds
toward water-quality improvement.




Conclusions

Machine learning approaches —i.e., hierarchical clustering and random forest
— can be combined to better understand the regional patterns and drivers of
TN trends in large river monitoring networks.

We explicitly incorporated temporal trends in agricultural fertilizer, manure,
and agricultural input as well as agricultural surplus, providing evidence that
improved nutrient management has resulted in declines in agricultural
nonpoint sources, which in turn contributed to water quality improvement.

Water-quality improvements are more likely in watersheds underlain by
carbonate rocks but less likely in watersheds in the Coastal Plain.

Results show degrading trends in forested watersheds, suggesting new and/or
remobilized sources of N.

Although we aimed for parsimony, models may be improved with additional

features, e.g., management practice, legacy N, and riparian buffers. 19
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OBJECTIVE AND MOTIVATIONS E

Total Nitrogen per Acre Loads
and Trends: 2009-2018

« Torevealregional patterns and drivers of total =~ | | emreter it
nitrogen (TN) trends using advanced machine

Y  Improving

learning approaches -- combined use of e =7
hierarchical clustering and random forest (RF). 2 e =
Q Coverthe Nontidal Monitoring Network (NTN). |z L
. . . . . . [:] Western Shore = wﬁ‘_/“:".-._'_._v

0 Examine the similarity in TN trend signals and e w”f' . % .

responses to natural and anthropogenic drivers. L roepannos S TR er L

:]James v m S ‘ e

Q Analyze short-term trends in order to P S

incorporate newly established stations. 4 S 7 : !/

rate important Agricultural variables. |

Q Incorporate importa gricultural variables _ |zuses ( ﬁs‘”

O

Provide predictions for unmonitored areas. |
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 We used hierarchical
cluster analysis to
categorize the short-term
(2007-2018) TN trends at
the Chesapeake NTN
stations (84) into three
distinct clusters.

e Cluster2(n=35)
represents a trajectory of
long-term decline in TN.

PATTERSON CREEKNEARHEADSVILLE, WV
-2 | SUSQUEHANNA RIVER NEAR WAVERLY-NY

Flow—normalized TN load (standardized)

—~—CHOPTANK RIVER NEAR GREENSBORO, MD

. RAPPAHANNOCK RIVER AT REMINGTON, VA
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

&

Year
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2. REGIONAL DRIVERS OF TN TREND CLUSTERS (RANDOM FOREST)

 We developed an exhaustive search algorithm to identify random forest (RF)
models that can explain the TN cluster assignment.

 Three RF models selected by the search algorithm each settled on a specific
set of features that are most useful to explain a specific cluster.

Overall Clusterl Cluster2 Cluster3

A Class ~ Natural pct+ + 70.5 66.7 68.8 76.0
ValleyRidge pct+ Deposition. MK +
Carb_pct

B Class ™~ + + 70.5 66.7 75.0 68.0

Deposition_MK + Natural_pct
C Class ~ BlueRidge pct+ Deposition MK + 69.2 81.0 65.6 64.0 SGIENCE

Coastal_pct + Crop_pct + + &SUCIETY

Natural pct
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2. REGIONAL DRIVERS OF TN TREND CLUSTERS (RF)

 |mproved nutrient management has resulted in declines E
in agricultural nonpoint sources, which in turn o o
contributed to water quality improvement. cE E
s |
 Water-quality improvements are more likely to occurin 2 =
watersheds underlain by carbonate rocks, reflecting the = =
relatively quick groundwater transport of this terrain. e ‘ﬁ
e By contrast, water-quality improvements are less likely to = E
occur in watersheds in the Coastal Plain, reflecting the §§_'-'->
effect of legacy N in groundwater. =

 Results show degrading trends in forested watersheds,
suggesting new and/or remobilized sources of N that
may compromise downstream watershed restoration —
plans more focused on agricultural and urban areas.
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3. PREDICTIONS OF TN TREND CLUSTERS FOR THE ENTIRE WATERSHED

Observations Predictions

« Weapplied the RF models to

predict short-term trend A T e %
clusters for the entire Bay o) B - il =
watershed at a fine spatial TR o7 EHN
scale (i.e, river segments). =y +« H {,ff;?;
 These predictions are useful e S oo
for managers to understand L
trends across the watershed, 2K
including unmonitored areas, < 4+ s
and to choose priority
watersheds toward water- ' |
quality improvement. = % & o & % s = @ ¢ = =
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