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Abstract

Coastal regions are continuously under the threat of flooding induced by tropical cyclones worldwide. These threats continue to
increase due to the effects of climate change such as sea-level rise. A number of available protective or mitigation strategies have
been examined to address this threat and protect coastlines around the world. However, identifying the most effective strategy
given limited resources is a complex question. Optimization methodologies as we have proposed integrate physical analysis
and stakeholder feedback to come to a set of best mitigation strategies. This study examines physical and socio-economical
aspects of flooding impacts to optimize these strategies. These are then examined including seawalls, elevated promenades, and

strategic retreats.
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