Biogeochemical drivers of soil N_2O , CH_4 , and CO_2 emissions from alfalfa using long-term continuous measurements

Tyler Anthony¹, Joseph Verfaillie², Daphne Szutu², Dennis Baldocchi², and Whendee Silver²

¹University of California, Berkeley ²University of California Berkeley

November 21, 2022

Abstract

Agriculture is a significant source of carbon dioxide (CO_2) and methane (CH_4) and is the dominant source of anthropogenic nitrous oxide (N₂O) emissions. Changes in agricultural land management practices that reduce overall greenhouse gas (GHG) emissions have been suggested to help mitigate climate change, but a better understanding of the timing, magnitude, and drivers of GHG fluxes is needed. Alfalfa agroecosystems may be significant sources of N₂O given their ability to increase N inputs through symbiotic N_2 fixation and frequent irrigation events that create conditions for hot moments of N_2O production. However, few studies have explored long-term N_2O emissions and their associated drivers in alfalfa ecosystems. We collected over 108,000 CO₂, CH₄ and N₂O soil flux measurements over four years using cavity ring-down spectroscopy from a conventional flood-irrigated alfalfa field in California, USA. This ecosystem was a consistent source of N_2O (annual mean: 624.4 ± 27.8 mg $N_2O \text{ m}^{-2} \text{ yr}^{-1}$, range: 263.6. \pm 5.6 to 901.9 \pm 74.5 mg $N_2O \text{ m}^{-2} \text{ yr}^{-1}$) and a small net sink of CH₄ (annual mean: -53.5 \pm 2.5 mg $CH_4 \text{ m}^{-2} \text{ yr}^{-1}$, range: -78.2 \pm 8.8 to -31.6 \pm 2.5 mg $CH_4 \text{ m}^{-2} \text{ yr}^{-1}$). Soil CO_2 fluxes averaged 4925.9 \pm 13.5 g $CO_2 \text{ m}^{-2} \text{ yr}^{-1}$ and were greater than other alfalfa ecosystem estimates, likely driven by elevated temperatures and plant productivity throughout the growing season. Hot moments of N_2O emissions represented only 0.2% to 1.1% of annual measurements but were 31.6% to 56.8% of the annual flux. We found that both the magnitude and the contribution of N₂O hot moments to annual emissions decreased over time. Normalized difference vegetation index (NDVI), soil temperature, moisture, and O₂ were all significantly correlated with soil CO₂, N₂O, and CH₄ fluxes, although associations varied across both soil depth and timescales. Our results suggest that flood-irrigated alfalfa is a significant source of agricultural N_2O emissions, and that plant productivity and soil moisture effects on O_2 availability may modulate the net GHG budget of alfalfa agroecosystems.

Biogeochemical drivers of soil N₂O, CH₄, and CO₂ emissions from alfalfa using long-term continuous measurements

Tyler L. Anthony¹, Joseph G. Verfaillie¹, Daphne J. Szutu¹, Dennis D Baldocchi¹, Whendee L. Silver¹ Department of Environmental Science, Policy, and Management, University of California, Berkeley

Introduction

- Alfalfa (*Medicago Sativa* L.) is the most common perennial forage legume worldwide and the largest crop by acreage in the Western U.S.¹
- Alfalfa is often thought of as a climate-friendly feedstock given its potential to increase soil C as a deep-rooting, perennial plant² and symbiotic nitrogen (N_2) fixer, decreasing inorganic fertilizer inputs.
- Long-term CO_2 and CH_4 studies suggest alfalfa can be a net C sink³⁻⁴, but no continuous long-term N_2O studies exist⁴⁻⁵.
- Alfalfa may be a significant N₂O source as enriched soil N and irrigation may stimulate hot moments of N_2O production.

Methodology

- Jan 2016-Feb 2021: >108,000 CO₂, CH₄ and N₂O flux measurements from unfertilized alfalfa in California, USA with automated Eosense chambers and a Picarro greenhouse gas (GHG) analyzer.
- Apr 2018-Apr 2019: Weekly soil NO_3^- , NH_4^+ sampling.
- Sep 2018-Feb 2021: Continuous soil moisture,
- temperature, and oxygen (O_2) at 10, 30, and 50 cm. • Fluxes up to 5.7 \pm 0.8 kg N-N₂O ha⁻¹ yr⁻¹, and hot moments, only 1% of measurements, were 44% of total N₂O fluxes

Site Year	Annual mean (mg N ₂ O m ⁻² y ⁻¹)	Hot moment mean (mg N ₂ O m ⁻² d ⁻¹)	mo O
1 (2017-18)	611 ± 68	496 ± 67	+;
2 (2018-19)	902 ± 74	457 ± 43	+;
3 (2019-20)	777 ± 52	363 ± 46	+;
4 (2020-21)	264 ± 6	20 ± 1	+;
All years	624 ± 28	401 ± 27	+4

Table 1. Mean \pm SE annual and hot moment (>4 SD) N₂O fluxes.

Daily mean CO_2 , CH_4 , and N_2O fluxes

- Hot moments (fluxes > 4 SD) were 57% of N_2O fluxes, largely associated with flood irrigation.
- Strong seasonal trends in soil CO₂ fluxes closely followed air temperature and plant respiration.
- Alfalfa was a small net CH_4 sink with the largest sinks in 2020-21.

Fig. 1 Daily mean fluxes (± standard error) for N₂O and CO₂. Black circles represent daily mean flux measurements.

Diels trends in soil greenhouse gas emissions

- Diel CO₂ fluxes followed similar trends to temperature
- N₂O fluxes significantly higher in summer, lagged temperature

- Hot ment f flux
- ·56.8%
- 55.3%
- ·37.5%
- ·31.6%
- 44.4%

- N₂O coupled with soil O₂, moisture, and NDVI

Conclusions

- and hot moments are up to 57% of annual N₂O flux.
- N inputs

Acknowledgments

Thank you to the members of the Silver and Baldocchi Labs at UC Berkeley. This work was supported by a California Department of Water Resources Contract (award 4600011240). This was also supported by the California Sea Grant Delta Science Fellowship by the Delta Stewardship Council Delta Science Program under Grant No. 5298 and California Sea Grant College Program Project R/SF-89. *

References

1. M. Ottman et al., Proceedings, 2013 West. Alfalfa Forage Symp. Reno, NV, 11-13, December, 2013. (2013). **2**. G. Alberti et al., Agri. Ecosyst. Env. (2010). 3. K. S. Hemes, et al., Agric. For. Met. (2019). 4. M. Burger et al., Nutr. Cycl. Agroeco. (2016). 5. K. Savage et al., Biogeosci. (2014). f this material do not necessarily reflect the views and policies of the Delta Stewardship Council, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

• CO_2 coupled with temperature and normalized vegetation index (NDVI)

• Significant wavelet coherence of all three GHGs with NDVI,

temperature, moisture, and O_2 , but varied across timescales.

Fig. 4 Example wavelet coherence of N₂O and O₂ at 10 cm. Red = significant.

• Alfalfa is a significant N₂O source (up to 5.7 \pm 0.8 kg N-N₂O ha⁻¹ yr⁻¹),

• N_2O fluxes offset net ecosystem CO_2e sink by 10-20% even without

• Significant coherence with NDVI, temperature, moisture, and O_2 suggest plant productivity and soil O₂ modulate GHG budgets.