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Abstract

India receives more than 80% of annual rainfall during the summer monsoon season of June – September. Extreme rainfall

during summer monsoon season causes severe floods in many parts of India, annually. The floods in Kerala in 2019; Chennai

during 2015 and Uttarakhand in 2013 are some of the major floods in recent years. With high population density and weaker

infrastructure, even moderate precipitation extremes result in substantial loss to life and property. Thus, understanding and

modeling the return levels of extreme precipitation in space and time is crucial for disaster mitigation efforts. To this end, we

develop a Bayesian hierarchical model to capture the space-time variability of –summer season 3-day maximum precipitation

over India. In this framework, the data layer, the precipitation extreme – i.e., seasonal maximum precipitation, at each station

in each year is modeled using a generalized extreme value (GEV) distribution with temporally varying parameters, which are

decomposed as linear functions of covariates. The coefficients of the covariates, in the process layer, are spatially modeled with

a Gaussian multivariate process which enables capturing the spatial structure of the rainfall extremes and covariates. Suitable

priors are used for the spatial model hyperparameters to complete the Bayesian formulation. With the posterior distribution

of spatial fields of the GEV parameters for each year, posterior distribution of the nonstationary space–time return levels of

the precipitation extremes are obtained. Climate diagnostics will be performed on the 3-day maximum precipitation field to

obtain robust covariates. The model is demonstrated by application to extreme summer precipitation at 357 stations from this

region. Preliminary model validation indicates that our model captures historical variability at the stations very well. Maps of

return levels provide spatial and temporal variability of the risk of extreme precipitation over India that will be of great help

in management and mitigation of hazards on natural resources and infrastructure.
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Motivation
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• India receives more than 80% of annual rainfall 

during the summer monsoon season (June-

September)

• Floods occur mostly during this season (Rainfall-

runoff basins)

• Understanding and modeling extreme precipitation 

is crucial for flood risk assessment and mitigation



Year to year variability of the rainfall over India is 
driven largely by ENSO and IOD
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El Nino

La Nina



Data
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Precipitation

Potential Temporal Covariates (1951-2017)

• Climate indices: ENSO, and IOD - NOAA

• Spatial Average Summer Monsoon  Precipitation 

(SASP) – The India Meteorological Department (IMD)

• Monsoon season

• Daily observed precipitation – The India 

Meteorological Department (IMD) 

• Years: 1951-2017 (67 years), no. of sites 240

• 3-day summer (Jun-Sept) monsoon maximum 

precipitation

Spatial Covariates (1° spatial resolution)

• Elevation and Climatology of annual precipitation 



General Bayesian Model Structure
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𝜽 𝑠𝑖 , 𝑡𝑗 = 𝜇 𝑠𝑖 , 𝑡𝑗 , log 𝜎 𝑠𝑖 , 𝑡𝑗 , 𝜉 𝑠𝑖 , 𝑡𝑗

For each time and location

𝑦 𝑠𝑖 , 𝑡𝑗 ~𝐺𝐸𝑉 𝜇 𝑠𝑖 , 𝑡𝑗 , 𝜎 𝑠𝑖 , 𝑡𝑗 , 𝜉 𝑠𝑖 , 𝑡𝑗
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All the potential covariates show regions of 
strong correlation with summer maximum 
precipitation
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Model implementation 
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• Temporal covariates selected based on the 

lowest sum of AIC values at site (MLE)

→ SASP (𝛼𝜇1)

• Only location was considered nonstationary

• For the Gaussian kernels, we used 10 

knots and group size of 10 (Bracken et al., 

2016)

• We used weakly informative normal priors.

• Posterior distributions estimated using the 

No-U-Turn Sampler (NUTS; Hoffman and 

Gelman 2014) for the Markov Chain Monte 

Carlo method (Gelman and Hill 2006).

• 3000 posterior samples (ensembles)



Posterior distribution of the GEV regression 
coefficients capture the spatial patterns of the data
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𝜶𝝁𝟎 𝜶𝝁𝟏

𝜶𝝈 𝜶𝝃• Same pattern for scale parameter (𝛼𝜎)

• Posterior median of SASP (𝛼𝜇1) positive for 

most of the country except for the region 

close to the Himalayas

• Posterior median of shape (𝛼𝜉) does not 

show any spatial pattern

• Spatial pattern of the 

posterior median of the 

intercept of location 

parameter (𝛼𝜇0) is 

consistent with seasonal 

maximum precipitation 

climatology



Median of 2-year return level maximum precipitation 
captures the spatial patterns of the data
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• BHM capture the spatial patterns of the observed summer maximum 

precipitation

• Small uncertainty for most of the domain with high values in the west 

coast and the mountain region close to the Himalayas  



Median of 100-year return level maximum precipitation
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• Similar pattern to the climatology of the observed summer maximum 

precipitation and the median of 2 years return level  



Time series of return levels
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100 years return level2 years return level

• BHM can generally capture the temporal variability of

the data



Conclusions
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Captures the spatial 

pattern of the data

Provides temporal 

variability of the data by 

considering nonstationarity

The framework can be applied 

regionally to improve the 

results by considering tailored 

covariates
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