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Abstract

We describe new cosmogenic Be-10 and C-14 exposure age dating on previously glaciated bedrock samples from Lyell Canyon
as constraints to model the glacier’s rate and timing of thinning and retreat after the Last Glacial Maximum (LGM). Close
analysis of deglaciation following the LGM (22-12 ka) can offer insight into how glacier retreat proceeds in a warming climate.
The extent and age of the LGM glaciation in Yosemite National Park, California are relatively well-constrained. Our new
exposure ages from Yosemite can quantify the change of the glaciation after the LGM. This is important because the rate
and timing of glacier retreat after the LGM allows us to learn about the LGM-Holocene climate transition. We collected 16
granodiorite bedrock samples from the Lyell Canyon walls in three vertical transects: at the end, in the middle, and near the
head of Lyell Canyon. Sample elevations range from 2781m to 3388m. The samples are being processed for cosmogenic Be-10
and C-14 concentrations (for the lower and higher elevations in the transects, respectively). Together with previously acquired
Be-10 exposure ages from glacial polished bedrock and boulders at the canyon floor, our vertical transects will help to define
the relationship between glacier retreat and thinning along the valley. The combination of different nuclide measurements has
the potential to reveal whether the glacier melted rapidly or went through multiple thinning and thickening cycles. We created
several simple forward models of cosmogenic Be-10 and C-14 exposure ages on the valley wall for different glacier thinning
patterns: (i) rapid thinning, (ii) thinning and thickening cycles during the melting, (iii) thickening first, followed by thinning,
and (iv) breaking an upper small cirque glacier from the main glacier during the thinning. After we have obtained all our data,
we will compare the exposure age data to our modeled scenarios, as well as local paleoclimate records, to quantify the glacier’s
geometry and mass balance during the climate warming period. Understanding the timing, rates, and patterns of LGM retreat
and thinning constitute a useful test case that aids mountain glacier melting predictions and water budget planning under

contemporary climate change in analogous environments.
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We choose Be-10 for lower elevation samples because it is more
accurate for our timeframe. Be-10 is also what used in previous studies,
which can help us compare our study to previous ones. Using two
nuclides in one elevation transect and also inform us about the burial
history during the thinning process.



