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Abstract

Elevated organic matter (OM) concentrations are found in hadal surface sediments relative to the surrounding abyssal seabed.
However, the origin of the biological material remains elusive. Here, we report the composition and distribution of cellular
membrane intact polar lipids (IPLs) extracted from surface sediments around the deepest points of the Atacama Trench and
adjacent bathyal margin to assess and constrain the sources of labile OM in the hadal seabed. Multiscale bootstrap resampling
of IPLs’ structural diversity and abundance indicates distinct lipid signatures in the sediments of the Atacama Trench that are
more closely related to those found in bathyal sediments than to those previously reported for the upper ocean water column
in the region. While the overall number of unique IPL structures in hadal sediments is limited and they contribute a small
fraction of the total IPL pool, they include a high contribution of phospholipids with mono- and di-unsaturated fatty acids that
are not associated with photoautotrophic sources. The diversity of IPLs in hadal sediments of the Atacama Trench suggests
the presence of in situ microbial production and biomass that resembles traits of physiological adaptation to high pressure and
low temperature, and/or the transport of labile OM from shallower sediment. We argue that the export of the most labile
lipid component of the OM pool from the euphotic zone and the overlying oxygen minimum zone into the hadal sediments
is neglectable. Our results contribute to the understanding of the mechanisms that control the delivery of labile OM to this
extreme deep-sea ecosystem. Furthermore, they provide insights into some potential physiological adaptation of the in situ

microbial community to high pressure and low temperature through lipid remodeling.
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ABSTRACT

Elevated organic matter (OM) concentrations are found in hadal surface sediments relative to the surrounding abyssal seabed. However, the origin of the biological material remains
elusive. Here, we report the composition and distribution of cellular membrane intact polar lipids (IPLs) extracted from surface sediments around the deepest points of the Atacama
Trench and adjacent bathyal margin to assess and constrain the sources of labile OM in the hadal seabed. Multiscale bootstrap resampling of IPLs’ structural diversity and abundance
indicates distinct lipid signatures in the sediments of the Atacama Trench that are more closely related to those found in bathyal sediments than to those previously reported for the
upper ocean water column in the region. While the overall number of unique IPL structures in hadal sediments is limited and they contribute a small fraction of the total IPL pool, they
include a high contribution of phospholipids with mono- and di-unsaturated fatty acids that are not associated with photoautotrophic sources. The diversity of IPLs in hadal sediments
of the Atacama Trench suggests the presence of in situ microbial production and biomass that resembles traits of physiological adaptation to high pressure and low temperature,
and/or the transport of labile OM from shallower sediment. We argue that the export of the most labile lipid component of the OM pool from the euphotic zone and the overlying
oxygen minimum zone into the hadal sediments is neglectable. Our results contribute to the understanding of the mechanisms that control the delivery of labile OM to this extreme
deep-sea ecosystem. Furthermore, they provide insights into some potential physiological adaptation of the in situ microbial community to high pressure and low w

through lipid remodeling.
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Figure 1. Representation of the main mechanisms of transport of organic matter to the inner
renches.

The black squares indicate the hadal sediment sampling stations, the black circles indicate the bathyal
ediment sampling stations, and the black triangles indicate water column sampling stations.
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Figure 3. Figure 2. Cumulative bar charts of the fractional abundance of IPL Relative abundance of IPLs per sample

classes in each surface sediment sample from the bathyal and hadal regions (left
panel). Samples were grouped according to arithmetic mean (UPGMA) hierarchical

clustering based on Euclidean distances. The p-values are shown at branches, AU Figure 4. Relative abundance of individual IPLs contributing most of the dissimilarity between the 4 clusters shown in Fig. 2. Sampling stations

in red and BP in green (right panel). Clusters 3 with an AU 2 95% confidence are were organized from top to bottom and are shown using the same order from hierarchical clusters in Fig. 3, and were organized from left to right by

indizatzd tby the red rectangles (left) and are considered to be strongly supported IPL classes. The circle ratios are proportional to the relative abundance of IPLs in each sample (bottom panel).
e data.

MAIN FINDINGS / CONCLUSIONS

1. The high statistical similarity of ester-bound IPLs between Bathyal and Hadal
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Statistical ratios higher than the water column.




