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Abstract

In this study, contaminant transport behaviour in the aquifer system (140 m x 180 m X 5 m) was analyzed using a 3-
D groundwater flow and contaminant transport model viz. MODFLOW2005 and MT3DMS. The impacts of hydrodynamic
dispersion parameters on the conservative contaminant plume dynamics were analyzed for homogeneous and heterogeneous
aquifer systems with low permeability porous media (LPPM). The spatio-temporal distribution of contaminant concentration
and breakthrough curves (BTCs) at 12 observation wells were used to analyze the transport dynamics due to conservative
contaminant released from a single point source over a hypothetical study area for a period of 1 year (365 days). Results from
MODPATH show a significant variation in the pathway of groundwater for homogeneous and heterogeneous aquifer systems.
During the source loading period, a very low value of concentration of order 10-9 mg/m3 was observed in the LPPM region. The
spatial distribution of contaminant plume for aquifer system with LPPM varied largely as compared to homogeneous aquifer
system. The maximum value of concentration in the aquifer with LPPM was found to be "40% higher than the homogeneous
system after source removal. After the source removal, the maximum value of 1.98 mg/m3 was observed for the homogeneous
system at a location away from pumping and extraction well after 730 days; however, for a heterogeneous system with LPPM,
the maximum value of 2.57 mg/m3 was observed. An early breakthrough was observed for aL.= 54 m as compared to aL= 9 m
for homogeneous aquifer system, clearly depicting the effect of longitudinal dispersivity on BTC. However, effects of dispersivity
on the rising and falling limbs of the BTC were negligible for heterogeneous aquifer system with LPPM. Further, an impact
of LPPM and longitudinal dispersivity on the peak concentration value at observation well (OBS-7) was undistinguishable.
The numerical simulations carried out in this study mimic the realistic heterogeneous aquifer conditions and highlighted the
relevance of LPPM and associated transport processes on contaminant transport dynamics at field-scale, which was usually

overlooked.
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INTRODUCTION
I. Motivation
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Figure 1: Sources of Subsurface Pollution



« How to determine spatio-temporal variation of contaminant concentration
emanating from the above-shown sources at a fine-scale level?

« To understand the impact of flow and transport parameters for homogeneous and
heterogeneous aquifer systems.

II. Importance of Contaminant Transport Modelling

« To design remediation operations such as pump and treat method and check the efficacy
of operations.

« Design of waste containment facilities such as engineered landfill systems with bottom
and side liner.

« To understand complex contaminant transport behavior like the effect of dead-end
region, mass-transfer rate, etc.

III. Literature survey of studies that emphasized low
permeability porous media (LPPM) and dispersion
processes

. Studies indicated that low permeability porous media (LPPM) or aquitard
region behave as a sink during contaminant loading period and as a source
when the contaminant source is removed or isolated (Chapman and Parker
2005; Chapman et al., 2012; Guo and Brusseau 2017a; Yang et al. 2017a; b).

« LPPM caused long plume tailing for a longer duration due to de-sorption
(Brown et al. 2012).



« Non-ideal transport behavior observed for large heterogeneous systems at
Tucson International Airport Area (TTAA) federal Superfund site (Guo and
Brusseau 2017a; b).

« Non-ideal mass-removal behavior was observed to be governed by back-
diffusion from LPPM in the layered or highly heterogeneous aquifer systems
(Guo et al. 2019).

Thus, based on the literature, the present study focus on understanding the effects of
hydrodynamic dispersion parameters on concentration values for homogeneous and
heterogeneous aquifer systems.



METHODOLOGY

. Contaminant transport behavior in the aquifer system (140 m x 180 m x5
m) was analyzed using a 3-D groundwater flow and contaminant transport
model viz. MODFLOW2005 (Harbaugh, 2005) and MT3DMS (Zheng and
Wang, 1999).

« The impacts of hydrodynamic dispersion parameters on the conservative
contaminant plume dynamics were analyzed for homogeneous and
heterogeneous aquifer systems with low permeability porous media
(LPPM).

« The spatio-temporal distribution of contaminant concentration and
breakthrough curves (BTCs) at 12 observation wells were used to analyze the
transport dynamics due to conservative contaminant released from a single
point source over a hypothetical study area for a period of 1 year (365 days).

« Simulations were carried out for 730 days time period.
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Figure 2: Description of the geometry of numerical model and input parameters
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Figure 3: Details of the observation, pumping, and extraction wells

ModelMUSE graphical user interface was used to conduct numerical simulations
(Winston, 2020).

(D Details of the packages used for contaminant transport
modeling



Flow package: Layer property flow package (LPF)

« CHD: Time-variant specified head package
« WEL: Well package for pumping and extraction wells
« Flow solver: SIP (Strongly implicit procedure package)

& MODFLOW Packages and Programs

& Flow Packages
| # Boundary conditions
& Solvers

| ¢ PCG: Preconditioned Conjugate Gradient package
 PCGN: Preconditioned Conjugate Gradient Solver with Im|
¢ GMG: Geometric Multigrid package
S Siongyimpic roceaurepackage
¢ DE4: Direct Solver package

B Subsidence

B Observations

& Output

& Surface-Water Routing

B Post processors

& MT3DMS or MT3D-USGS

- o x
SIP: Strongly Impliicit Procedure package
Comments
Max. number of iterations (MXITER) 100
| Number of iteration variables (NPARM) 3
Acceleration variable (ACCL) 1
| Head change criterion (HCLOSE) 10.001
Seed source (IPCALC) [Seed will be calculated (1) -
Seed for seed for calculating iteration variables 9999
(WSEED)
Printout interval (IPRSIP) [999

low solver

# MODFLOW Packages and Programs.

# Flow Packages
& Boundary conditions
B Solvers
& Subsidence
& Observations
# Output
& Surface-Water Routing
& Post processors
4
I~ ZONEBUDGET
& MT3DMS or MT3D-USGS

MODPATH

package

Figure 4: Details of flow solver and MODPATH
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(II) Transport Package used in MT3DMS via MODELMUSE




(1) BTN: Basic Transport package
(2) ADV: Advection package

« Advection solution scheme: Standard finite difference method
. Particle tracking algorithm: RK only near sinks/sources
« Weighting scheme: Upstream weighting

(3) DSP: Dispersion package
(4) SSM: Sink and Source Mixing package
(5) GCG: Generalized Conjugate Gradient Solver

« Modified Incomplete Cholesky Preconditioner
« Convergence criteria 1E-06

« Maximum of outer iterations:1

« Maximum inner iterations: 200

Details of input parameters used in the study:

The details of input parameters such as pumping rate, source concentration,
hydraulic conductivity of LPPM, etc., are shown in Figure 3.

Depth of aquifer layer = 5 m (single layer)



K (aquifer region) = 1.0 m/day

K (aquifer region) = K

K, (aquifer region) = K/10

Porosity = 0.32

Table 1: Input parameters used in the sensitivity analysis

Aquifer system with or without
a;, Longitudinal
Scenario Analysis of scenario | low permeability porous media ary/ay
dispersivity

(LPPM)
Al LPPM absent 9 m (5% of 180 m) 0.2
A2 Effect of a; and LPPM absent 18 m (10%) 0.2
A3 LPPM LPPM absent 36 m (20%) 0.2
A4 LPPM absent 54 m (30%) 0.2
B1 LPPM present 9 m (5% of 180 m) 0.2
B2 Effect of a; and LPPM present 18 m (10%) 0.2
B3 LPPM LPPM present 36 m (20%) 0.2
B4 LPPM present 54 m (30%) 0.2
A2 Effect of apy /ay LPPM absent 18 m (10%) 0.2
A5 with and without LPPM absent 18 m (10%) 0.5
A6 LPPM LPPM absent 18 m (10%) 1.0
B2 Effectof ary/ay LPPM present 18 m (10%) 0.2
B5 with and without LPPM present 18 m (10%) 0.5
B6 LPPM LPPM present 18 m (10%) 1.0







RESULTS

(I) Contaminant plume evolution in the homogeneous aquifer
system

Groundwater system without LPPM (Scenario A1)
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Figure 5: Contaminant plume evolution in the homogeneous aquifer system up to

730 days time level
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Figure 6: Breakthrough curves(BTCs) predicted at various observation wells

(IT) Comparison of contaminant plume evolution in the
homogeneous and heterogeneous aquifer system



Comparison of scenario A1 and B1 (Aquifer system without and with LPPM)
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Figure 7: Particle track line predicted via MODPATH for aquifer system without and
with LPPM



Contaminant Plume Evolution in the Aquifer system without and with LPPM
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Figure 8 (a): Contaminant plume evolution for aquifer system without and with
LPPM during loading period



Contaminant Plume Evolution in the Aquifer system without and with LPPM
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Figure 8 (b): Contaminant plume evolution for aquifer system without and with
LPPM after source removal/isolation
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Figure 9: Comparison of BTC without and with LPPM



(I1I) Effect of dispersion parameters on the contaminant
transport behavior
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Figure 10: BTC predicted at observation well number 7 in the (a) absence and (b)
presence of LPPM for different values of longitudinal dispersivity

« An early breakthrough was observed for a; = 54 m as compared to a;= 9 m for
homogeneous aquifer systems, clearly depicting the effect of longitudinal
dispersivity on BTC.



« The effects of dispersivity on the rising and falling limbs of the BTC were
negligible for aquifer systems with LPPM.

« The impact of LPPM and longitudinal dispersivity on the peak concentration
value was indistinguishable.
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Figure 11: BTC predicted in the (a) absence and (b) presence of LPPM for different
values of the ratio of transverse to longitudinal dispersivity






DISCUSSION AND CONCLUSION
Discussion

« During the source loading period, a very low value of the concentration of order
1079 mg/m3 was observed in the LPPM region.

« The spatial distribution of contaminant plume for aquifer systems with LPPM
varied largely as compared to a homogeneous system.

« The maximum value of concentration in the aquifer with LPPM was found to be
~40% higher than the homogeneous system after source removal.

« After source removal, the maximum value of 1.98 mg/m3 was observed for the
homogeneous system at a location away from pumping and extraction well after
730 days; however, for a heterogeneous system with LPPM, the maximum value
of 2.57 mg/m3was observed.

Conclusion
The numerical simulations carried out in this study mimic the realistic field-scale

conditions and highlight the relevance of LPPM and associated transport processes
on contaminant transport dynamics, which was usually overlooked.



ABSTRACT

In this study, contaminant transport behaviour in the aquifer system (140 m x 180 m x 5 m) was analyzed using a 3-D
groundwater flow and contaminant transport model viz. MODFLOW2005 and MT3DMS. The impacts of hydrodynamic
dispersion parameters on the conservative contaminant plume dynamics were analyzed for homogeneous and heterogeneous
aquifer systems with low permeability porous media (LPPM). The spatio-temporal distribution of contaminant concentration
and breakthrough curves (BTCs) at 12 observation wells were used to analyze the transport dynamics due to conservative
contaminant released from a single point source over a hypothetical study area for a period of 1 year (365 days). Results from
MODPATH show a significant variation in the pathway of groundwater for homogeneous and heterogeneous aquifer systems.
During the source loading period, a very low value of concentration of order 107 mg/m3 was observed in the LPPM region.
The spatial distribution of contaminant plume for aquifer system with LPPM varied largely as compared to homogeneous
aquifer system. The maximum value of concentration in the aquifer with LPPM was found to be ~40% higher than the
homogeneous system after source removal. After the source removal, the maximum value of 1.98 mg/m3 was observed for
the homogeneous system at a location away from pumping and extraction well after 730 days; however, for a heterogeneous
system with LPPM, the maximum value of 2.57 mg/m> was observed. An early breakthrough was observed for a;= 54 m as
compared to a; = 9 m for homogeneous aquifer system, clearly depicting the effect of longitudinal dispersivity on BTC.
However, effects of dispersivity on the rising and falling limbs of the BTC were negligible for heterogeneous aquifer system
with LPPM. Further, an impact of LPPM and longitudinal dispersivity on the peak concentration value at observation well
(OBS-7) was undistinguishable. The numerical simulations carried out in this study mimic the realistic heterogeneous aquifer
conditions and highlighted the relevance of LPPM and associated transport processes on contaminant transport dynamics at
field-scale, which was usually overlooked.
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