#### Advancing Ability and Acceptance for Potential Subsea CO<sub>2</sub> Storage in the Eastern Gulf of Mexico

Denise Hills<sup>1</sup>, Marcella McIntyre-Redden<sup>2</sup>, John Koster<sup>2</sup>, and Christopher Hooks<sup>2</sup>

<sup>1</sup>Geological Survey of Alabama, University of Alabama <sup>2</sup>Geological Survey of Alabama

November 26, 2022

#### Abstract

The potential and practicality of offshore geologic carbon dioxide (CO2) subsea storage is being explored through a Department of Energy (DOE) supported project entitled "Southeast Regional Carbon Storage Partnership: Offshore Gulf of Mexico" (SECARB Offshore). SECARB Offshore supports the DOE's long-term objective to ensure a comprehensive assessment of the potential to implement offshore CO2 subsea storage in all Bureau of Ocean Energy Management (BOEM) Outer Continental Shelf (OCS) Oil and Gas Leasing Program Planning areas in the GOM. As an estimated 40% of U.S. anthropogenic CO2 emissions are generated in the southeast, with a large portion of these emissions generated within 100 km of the coastline, the eastern Gulf of Mexico (GOM) is a prime target for this type of storage. The project team has been assembling the knowledge base required for secure, long-term, large-scale CO2 subsea storage in the GOM with or without CO2 enhanced hydrocarbon recovery (CO2-EOR). The project team has confirmed that the storage potential in Cretaceous and Tertiary reservoirs in the eastern GOM is vast (e.g., ~1,000 Mt potential storage in the DeSoto Canyon Salt Basin alone). With the significant infrastructure already in place, abundant stacked saline formations, and depleted oil and gas reservoirs, the eastern GOM is an attractive prospect. However, offshore subsea CO2 storage has different challenges with respect to project development; monitoring, verification, and accounting (MVA); and outreach as compared to onshore CO2 storage. Thus, a significant effort moving forward will be surrounding education and outreach to facilitate engagement with stakeholders in potential CO2 storage in the offshore GOM. Such materials will describe the potential for CO2 storage in the offshore GOM, highlight the environmental and economic benefits that could accrue to the Gulf Coast region in pursuing this potential, characterize the risks associated with this pursuit, and document how offshore CO2 storage is currently being pursued effectively globally. The efforts need to be tailored for specific stakeholders - for example, commercial and recreational fishing industries may have different concerns than government officials - to be effective.

#### Advancing Ability and Acceptance for Potential Subsea CO<sub>2</sub> Storage in the Eastern Gulf of Mexico

Authors: Denise Hills<sup>1,2</sup>, Marcella Redden<sup>1</sup>, John Koster<sup>1</sup>, Chris Hooks<sup>1</sup> Affiliations: <sup>1</sup>Geological Survey of Alabama, Energy Program; <sup>2</sup>Primary contact, email: dhills@gsa.state.al.us

The potential and practicality of offshore geologic carbon dioxide (CO<sub>2</sub>) subsea storage is being explored through a Department of Energy (DOE) supported project entitled "Southeast Regional Carbon Storage Partnership: Offshore Gulf of Mexico" (SECARB Offshore). SECARB Offshore supports the DOE's long-term objective to ensure a comprehensive assessment of the potential to implement offshore CO<sub>2</sub> subsea storage in all Bureau of Ocean Energy Management (BOEM) Outer Continental Shelf (OCS) Oil and Gas Leasing Program Planning areas in the GOM.

As an estimated 40% of U.S. anthropogenic CO<sub>2</sub> emissions are generated in the southeast, with a large portion of these emissions generated within 100 km of the coastline, the eastern Gulf of Mexico (GOM) is a prime target for this type of storage. The project team has been assembling the knowledge base required for secure, long-term, large-scale CO<sub>2</sub> subsea storage in the GOM with or without CO<sub>2</sub> enhanced hydrocarbon recovery (CO<sub>2</sub>-EOR). The project team has confirmed that the storage potential in Cretaceous and Tertiary reservoirs in the eastern GOM is vast (e.g., ~1,000 Mt potential storage in the DeSoto Canyon Salt Basin alone). With the significant infrastructure already in place, abundant stacked saline formations, and depleted oil and gas reservoirs, the eastern GOM is an attractive prospect. However, offshore subsea CO<sub>2</sub> storage has different challenges with respect to project development; monitoring, verification, and accounting (MVA); and outreach as compared to onshore CO<sub>2</sub> storage.

Thus, a significant effort moving forward will be surrounding education and outreach to facilitate engagement with stakeholders in potential CO<sub>2</sub> storage in the offshore GOM. Such materials will describe the potential for CO<sub>2</sub> storage in the offshore GOM, highlight the environmental and economic benefits that could accrue to the Gulf Coast region in pursuing this potential, characterize the risks associated with this pursuit, and document how offshore CO<sub>2</sub> storage is currently being pursued effectively globally. The efforts need to be tailored for specific stakeholders – for example, commercial and recreational fishing industries may have different concerns than government officials – to be effective.

# Advancing Ability and Acceptance for Potential Subsea $CO_2$ Storage in the Eastern Gulf of Mexico

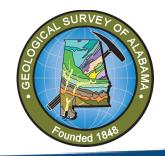
Denise J. Hills, Marcella R. McIntyre-Redden, John C. Koster, and Christopher Hooks Geological Survey of Alabama

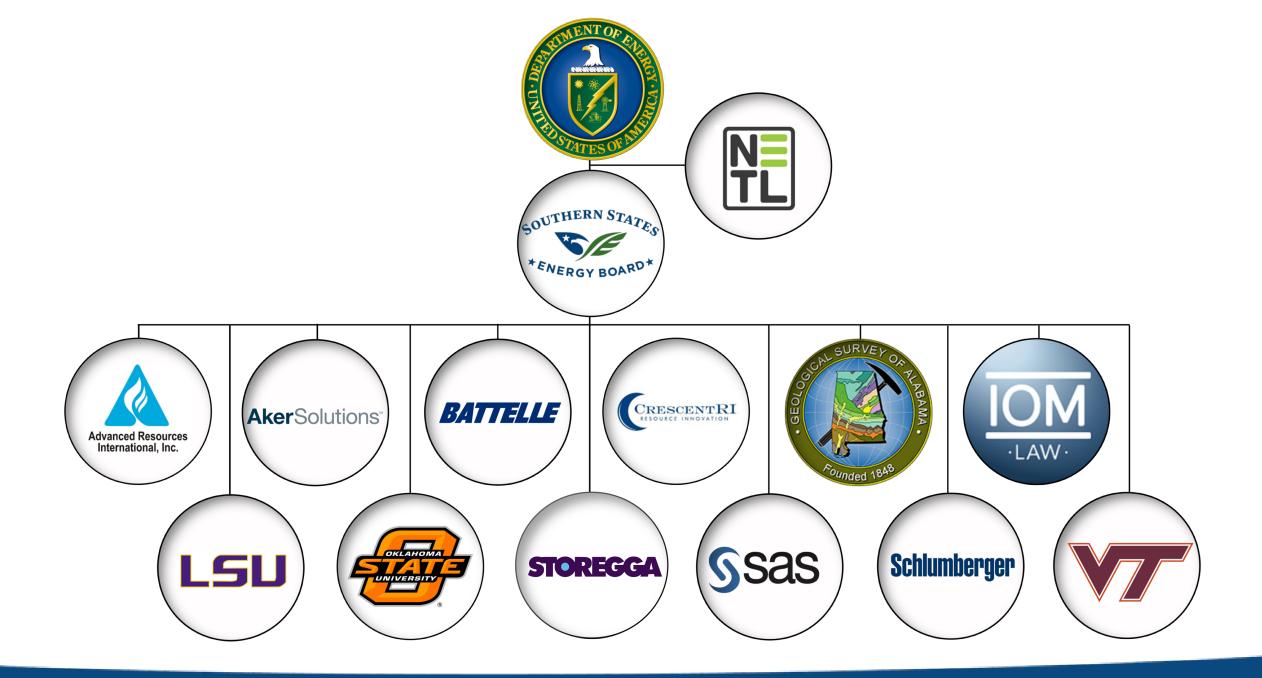


#### SOUTHEAST REGIONAL CARBON STORAGE PARTNERSHIP: OFFSHORE GULF OF MEXICO (SECARB OFFSHORE) PROJECT NUMBER: DE-FE0031557

Geological Society of America Connects 2021 Paper 170-4; T37. Geologic Energy Research II 12 October 2021

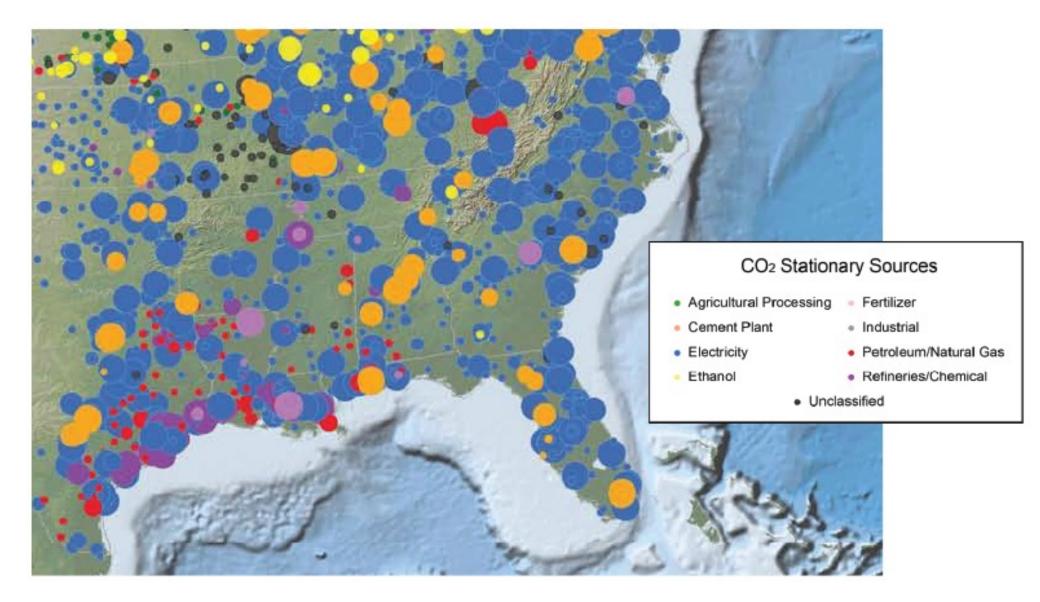
This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory (DE-FE0031557) Cost share and research support are provided by the Project Partners and an Advisory Committee


## DISCLAIMER

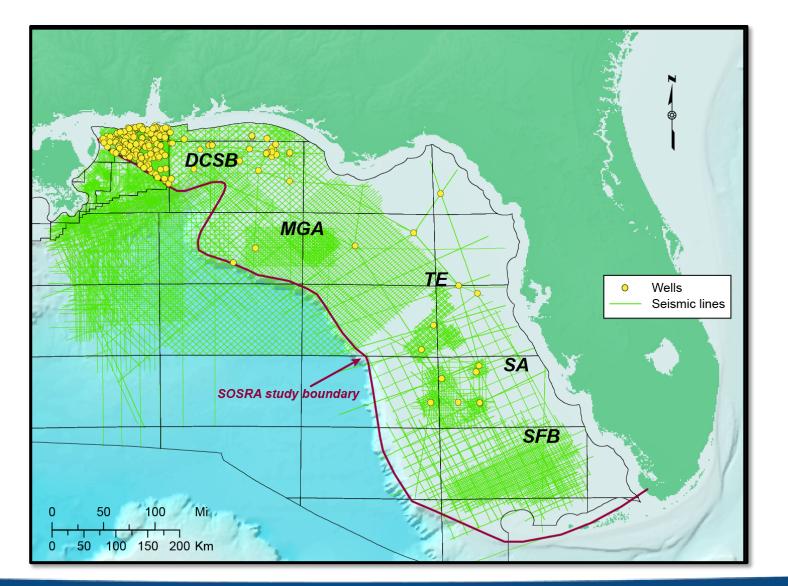

This presentation is based upon work supported by the Department of Energy and was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendations, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.









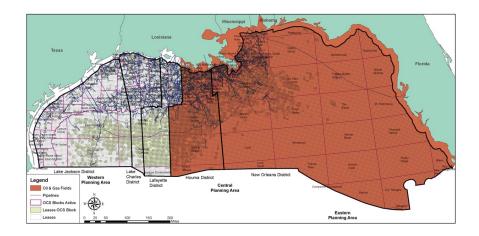

## WHY THE EASTERN GULF OF MEXICO IS ATTRACTIVE FOR CCUS

### Sources of Anthropogenic $CO_2$ are Favorably Located

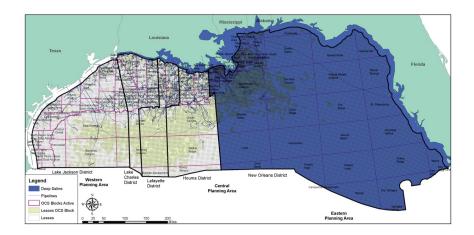


## WEALTH OF EXISTING DATA AND INFRASTRUCTURE

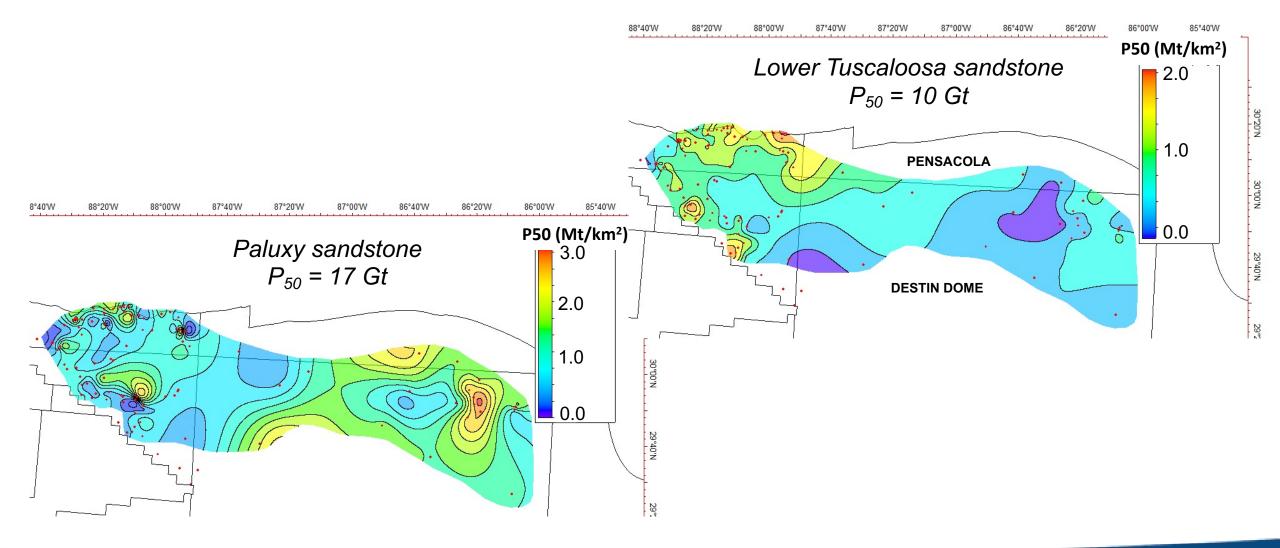



**DCSB** DeSoto Canyon Salt Basin

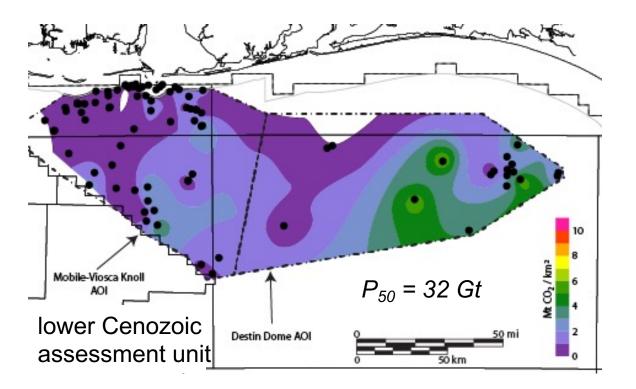
- MGA Middle Ground Arch
  - TE Tampa Embayment
  - SA Sarasota Arch
- SFB South Florida Basin

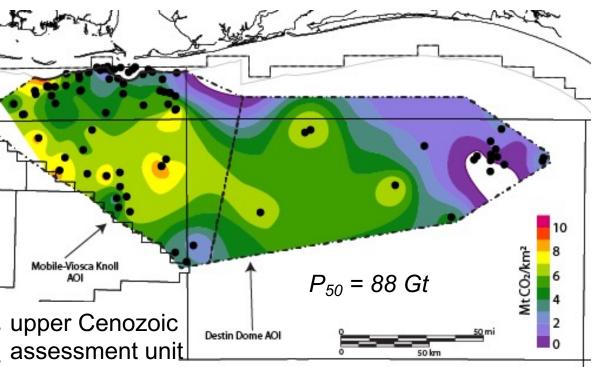

#### **SECARB OFFSHORE**

|                       | FEDERAL WATERS                                                                          |                                                                                               |
|-----------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                       | Depleted Oil & Gas Fields, and<br>Potentially Associated CO <sub>2</sub> -EOR           | Deep Saline                                                                                   |
| Western Planning Area | No                                                                                      | No                                                                                            |
| Central Planning Area | Study Area is East of Houma District's<br>Western Boundary<br>(includes Houma District) | Study Area is East of New Orleans<br>District's Western Boundary<br>(excludes Houma District) |
| Eastern Planning Area | All                                                                                     | All                                                                                           |
|                       | STATE WATERS                                                                            |                                                                                               |
|                       | Depleted Oil & Gas Fields, and Potentially Associated CO <sub>2</sub> -EOR              | Deep Saline                                                                                   |
| Texas                 | No                                                                                      | No                                                                                            |
| Louisiana             | Partial, Includes State Waters East of<br>Houma District Boundary Extension             | Partial, Excludes<br>Chandeleur Sound/Islands                                                 |
| Mississippi           | Yes                                                                                     | Yes                                                                                           |
| Alabama               | Yes                                                                                     | Yes                                                                                           |
| Florida (West Coast)  | Yes                                                                                     | Yes                                                                                           |


#### STUDY AREA | OIL AND GAS




#### STUDY AREA | SALINE FORMATIONS




## DCSB ESTIMATED CO<sub>2</sub> STORAGE RESOURCE (P50) -CRETACEOUS



## DSCB ESTIMATED CO<sub>2</sub> STORAGE RESOURCE (P50) -CENOZOIC





## ONSHORE SUBSURFACE CO<sub>2</sub> STORAGE VS OFFSHORE SUBSEA CO<sub>2</sub> STORAGE

## **PROJECT DEVELOPMENT: GEOLOGIC CHARACTERIZATION**

| Onshore Action                                                     | Description for BPM                                                                                                                                 | Comparison to Offshore                                                                                                                                                                                              |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model development -<br>Data Requirements and<br>cost               | Identify data requirements to optimize modeling results;<br>conduct cost vs. benefit analysis to determine value of<br>acquiring new data.          | Data acquisition costs offshore tend to be significantly<br>higher; data tends to be lower density due to higher<br>cost                                                                                            |
| Characterize Subsurface<br>Geology - Geological and<br>Geophysical | Establish geologic and geophysical framework of targeted injection and confining intervals for each Potential Site.                                 | No difference                                                                                                                                                                                                       |
| Test Models                                                        | Test scenarios for a range of reservoir parameters and boundary conditions.                                                                         | No difference                                                                                                                                                                                                       |
| Acquire and Analyze New<br>Data - Outcrop Studies                  | Conduct detailed mapping, sampling, and analysis of storage reservoir and caprock intervals within the vicinity of the designated Potential Site.   | Existing data will be sparser, and new data more difficult to obtain, due to significantly higher cost and more difficult logistics                                                                                 |
| Acquire and Analyze New<br>Data - Geophysical Data<br>Acquisition  | Conduct 2D or 3D seismic or other geophysical survey for improved stratigraphic and structural characterization of reservoir and caprock intervals. | Marine surveys generally have more complete data<br>coverage than onshore; likely to already exist for areas<br>of interest so may not be necessary to acquire new<br>data - may just need to license existing data |
| Acquire and Analyze New<br>Data - Appraisal Well                   | Drill and log appraisal well, if needed, to constrain site-specific reservoir properties and caprock integrity.                                     | Offshore wells are significantly more expensive and can be more difficult logistically.                                                                                                                             |

## **PROJECT DEVELOPMENT: RISK FRAMEWORK**

| Attribute/Risk             | Offshore GOM                                                                                                                                                 | Comparison to Onshore                                                                                                                                                                                               |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Caprock Seal Properties    | Generic risk of CO2 leaking through the caprock, through the overburden, and to the seabed is considered negligible.                                         | No difference between onshore and offshore                                                                                                                                                                          |
| Induced seismicity; stress | Low risk item (Soft rocks and large sedimentary stack above crystalline basement) but micro-seismic monitoring is an option onshore (surface or well based). | Risk not as critical due to a lack of buildings offshore;<br>also, basin characteristics in the Gulf not prone to<br>significant seismicity concerns.                                                               |
| Ground surface/seabed      | Difficult, expense to monitor; lower density that onshore.                                                                                                   | Easier access to monitoring locations onshore; lends itself to frequent, high density monitoring                                                                                                                    |
| Legacy wells; P&A'd wells  | Probably highest risk category for leakage from offshore operations.                                                                                         | Similar relative risks in the offshore                                                                                                                                                                              |
| Monitoring Wells           | Very expensive. Focus in offshore will be limiting new wells, little or no dedicated monitoring wells offshore                                               | Marine surveys generally have more complete data<br>coverage than onshore; likely to already exist for areas<br>of interest so may not be necessary to acquire new<br>data - may just need to license existing data |
| Injection strategy         | Plume area offshore is of lesser concern as long as there are<br>manageable leakage risks within AoR. Goal is to limit number of<br>injection wells.         | Goal is generally to limit plume area/AoR.                                                                                                                                                                          |

## **PROJECT DEVELOPMENT: MVA**

| Atmospheric                      | Aqueous Column                                                                                        | Shallow Subsurface                                                     | Deep Subsurface                                                                                      |
|----------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                  | Intelligent Monitoring S                                                                              | ystems (IMS) and SCADA <sup>1</sup>                                    |                                                                                                      |
| optical CO2 sensors <sup>2</sup> | seafloor penetrometers                                                                                | Well integrity testing tests (in                                       | ternal and external integrity) <sup>3</sup>                                                          |
| atmospheric tracers <sup>2</sup> | seafloor penetrometers                                                                                | remote sensing (satellite<br>imagery) <sup>4</sup>                     | wirelinelogging                                                                                      |
|                                  | aqueous geochemistry and salinometers                                                                 | soil/vadose zone geochemistry⁵                                         | tracers (PFCs, isotopes)                                                                             |
|                                  | echo sounder systems (acoustic<br>monitoring for bubbles)                                             | shallow groundwater<br>geochemistry⁵                                   | borehole fluid sampling                                                                              |
|                                  | surface deformation (tiltmeters,<br>extensometers, accelerometers,<br>nano bottom pressure recorders) | ecosystem stress monitoring<br>(including remote sensing) <sup>6</sup> | Crosswell geophysical methods,<br>including electrical methods and<br>crosswell seismic <sup>7</sup> |

| High Moderate Low |
|-------------------|
|-------------------|

## **PUBLIC OUTREACH**

- Public outreach tactics for offshore subsea CO<sub>2</sub> storage have a lot of similarities to onshore, for example
  - Integrating public outreach with project management
  - Developing outreach materials tailored to specific audiences
- Differences arise when
  - Identifying key stakeholders, as onshore stakeholders
    will be different than offshore stakeholders
  - Developing key messages, as onshore storage concerns are not identical to offshore subsea storage concerns





