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1The University of Texas at Austin
2ExxonMobil, 22777 Springwoods Village, Parkway Spring, TX 77389, USA
3University of Alabama, Dept. of Geological Sciences, Tuscaloosa, Alabama, 35487-0338,
USA

November 22, 2022

Abstract

Western Anatolia is located at the boundary between the Aegean and Anatolian microplates. It is considered a type-location for

marking a significant transition between compressional and extensional tectonics across the Alpine-Himalayan chain. The onset

of lateral extrusion in Western Anatolia and the Aegean during the Eocene is only one of its transitional episodes. The region

has a geological history marked by diverse tectonic events starting from the Paleoproterozoic through the Cambrian, Devonian,

and Late Cretaceous, as recorded by its suture zones, metamorphic history, and intrusions of igneous assemblages. Extension in

Western Anatolia initiated in a complex lithospheric tectonic collage of multiple sutured crustal fragments from ancient orogens.

This history can be traced to the Aegean microplate, and today both regions are transitioning or have transitioned to a stress

regime dominated by strike-slip tectonics. The control for extension in Western Anatolia is widely accepted as the rollback of

the African (Nubian) slab along the Hellenic arc, and several outstanding questions remain regarding subduction dynamics.

These include the timing and geometry of the Hellenic arc and its connections to other subduction systems along strike. Slab

tear is proposed for many regions across the Anatolian and Aegean microplates, either trench-parallel or perpendicular, and

varies in scale from regional to local. The role of magma in driving and facilitating extension in Western Anatolia and where

and why switches in stress regimes occurred along the Anatolia and Aegean microplates are still under consideration. The

correlation between Aegean and Anatolian tectonic events requires a better understanding of the detailed metamorphic history

recorded in Western Anatolia rocks, possible now with advances in garnet-based themobarometric approaches. Slab tear and

ultimate delamination impact lithospheric dynamics, including generating economic and energy deposits, facilitating lithospheric

thinning, and influencing the onset of transfer zones that accommodate deformation and provide conduits for magmatism.
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Abstract 23 

Western Anatolia is located at the boundary between the Aegean and Anatolian microplates. It is 24 
considered a type-location for marking a significant transition between compressional and 25 

extensional tectonics across the Alpine-Himalayan chain. The onset of lateral extrusion in 26 
Western Anatolia and the Aegean during the Eocene is only one of its transitional episodes. The 27 

region has a geological history marked by diverse tectonic events starting from the 28 
Paleoproterozoic through the Cambrian, Devonian, and Late Cretaceous, as recorded by its 29 
suture zones, metamorphic history, and intrusions of igneous assemblages. Extension in Western 30 

Anatolia initiated in a complex lithospheric tectonic collage of multiple sutured crustal fragments 31 
from ancient orogens. This history can be traced to the Aegean microplate, and today both 32 

regions are transitioning or have transitioned to a stress regime dominated by strike-slip 33 
tectonics. The control for extension in Western Anatolia is widely accepted as the rollback of the 34 
African (Nubian) slab along the Hellenic arc, and several outstanding questions remain regarding 35 
subduction dynamics. These include the timing and geometry of the Hellenic arc and its 36 
connections to other subduction systems along strike. Slab tear is proposed for many regions 37 

across the Anatolian and Aegean microplates, either trench-parallel or perpendicular, and varies 38 

in scale from regional to local. The role of magma in driving and facilitating extension in 39 

Western Anatolia and where and why switches in stress regimes occurred along the Anatolia and 40 
Aegean microplates are still under consideration. The correlation between Aegean and Anatolian 41 
tectonic events requires a better understanding of the detailed metamorphic history recorded in 42 
Western Anatolia rocks, possible now with advances in garnet-based themobarometric 43 
approaches. Slab tear and ultimate delamination impact lithospheric dynamics, including 44 
generating economic and energy deposits, facilitating lithospheric thinning, and influencing the 45 
onset of transfer zones that accommodate deformation and provide conduits for magmatism. 46 
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1 Introduction 47 

The Aegean and eastern Mediterranean are considered the most rapidly deforming 48 

regions across the Alpine-Himalayan chain (Figure 1) (e.g., Papazachos & Delibasis 1969; 49 
Papazachos & Comninakis, 1971; McKenzie, 1972; Şengör et al., 1985; Taymaz et al., 1991; 50 
Jackson, 1994; Reilinger et al., 1997; Nyst & Thatcher, 2004; Le Pichon et al., 2019; Meng et al., 51 
2021). The Aegean and Anatolia microplates, sometimes classified as the single Aegean-52 
Anatolian microplate, are a complex amalgamation of a series of terranes that today experience 53 

seismicity (e.g., Şengör & Yılmaz, 1981; Okay et al., 1996; Reilinger et al., 1997; Nyst & 54 
Thatcher, 2004; Tan, 2013). The Anatolian microplate is a large peninsula that coincides with 55 
over two-thirds of the country of Turkey (Figure 1) (Le Pichon et al., 1995; Oral et al., 1995; 56 
Reilinger et al., 1997; Papazachos, 1999). It is the westernmost protrusion of the Asian continent, 57 
with a pole of rotation located in the northern Sinai Peninsula (e.g., Reilinger et al., 2010). The 58 

Black Sea bounds it to the north and the Mediterranean Sea to the south. The Aegean microplate 59 
is largely comprised of continental crust and sediments obscured by the Aegean Sea (Le Pichon 60 

& Angelier, 1981; Jolivet & Patriat, 1999; Makris et al., 2013). The Sea of Marmara connects the 61 
Black and Aegean Seas through the Bosphorus and Dardanelles straits and separates a fragment 62 

of Eurasia’s microplate (Nyst & Thatcher, 2004).  63 

Deciphering the assembly of the Aegean and Anatolian microplates and their past and 64 
present-day deformation drivers impacts our understanding of continental tectonics, subduction 65 

zone processes, lithospheric deformation, ore generation process, and hazards (e.g., Jackson, 66 
1994; Meng et al., 2021; Rabayrol & Hart, 2021). The borders of the Aegean and Anatolian 67 

microplates coincide with fault systems that played vital roles in triggering changes in their 68 
tectonic nature (e.g., McKenzie, 1972; 1978). The microplates share some borders, including the 69 
right-lateral strike-slip North Anatolian transform fault and the Western Anatolian Extensional 70 

Province (WTEP) (Figure 1) (e.g., Ketin, 1948; Şengör et al., 1985; Barka, 1992; Armijo et al., 71 

1999; Çemen et al., 2006; Barka et al., 2000; McClusky et al., 2000; Chousianitis et al., 2015). 72 
The subducting Hellenic and Cyprus arcs and the complex dynamics coinciding with the 73 
Florence Rise make up their southern borders (e.g., Le Pichon & Angelier, 1979; Angelier et al., 74 

1982; Anastasakis & Kelling 1991; Papazachos et al., 2000; Ergün et al., 2005; Suckale et al., 75 
2009; Royden & Papanikolaou, 2011). Global Positioning System (GPS) constraints show that 76 

the principal northern boundaries of the southwestern Aegean plate are the North Aegean Trough 77 

(NAT) and Kephalonia (also Cephalonia and Kefalonia) Transform Zone (KTZ) (McKenzie 78 
1972; Pichon et al. 1995; Kahle et al. 2000; Pearce et al., 2012; Chousianitis et al. 2015; Haddad 79 
et al. 2020). The southern boundary is separated from the Anatolia plate by the WTEP., a zone of 80 
N-S extension (Figure 1) (McClusky et al., 2000; Chousianitis et al., 2015). Although many of its 81 
bounding fault systems are presently active, both the Anatolian and Aegean microplates contain 82 

internal structures, including transfer zones (Figure 1 and Figure 2) (e.g., Nyst & Thatcher, 2004; 83 

Çemen et al., 2006; Oner et al., 2010; Aktuğ et al., 2013; Özkaymak et al., 2013; Uzel et al., 84 

2013; Seghedi et al., 2015; Barbot & Weiss, 2021). 85 

Several tectonic models applied to the Aegean and Anatolian microplates have 86 
transformed our ideas about the lithosphere’s response to extensional, strike-slip, and 87 
compressional forces (see review in Aktuğ et al., 2013). Advances in tomography and GPS 88 
technology have contributed to our understanding of its present-day dynamics (e.g., Barka & 89 
Reilinger, 1997; McClusky et al., 2000; Ganas & Parsons, 2009; Komut et al., 2012; Aktuğ et al., 90 
2013; Jolivet et al., 2015; Ventouzi et al., 2018). The deformation, metamorphism, and igneous 91 



Manuscript accepted to AGU Books 

 

activity exposed in the upper portions of the microplate’s lithosphere provide constraints on 92 
processes that operated in its lower lithosphere over long periods of geological time (e.g., 93 

Jackson, 1994; Komut et al., 2012). 94 

This review paper is divided into two primary parts. The first section reviews some of the 95 
chronology and tectonic history of the juncture between the Aegean and Anatolian microplates 96 
from data available in Western Anatolia (Figure 1 and Figure 2). The goal is to outline how the 97 
boundary results from an accumulation of a series of tectonic processes that record stress 98 

transitions in the geological past. The second part of the paper aims to present outstanding 99 
questions that remain in unraveling its complex dynamics. This particular area of the Anatolian 100 
microplate has been the focus of attention for almost fifty years (e.g., McKenzie 1972) and has 101 
become the type-locality for understanding subduction zone dynamics, a focus of diverse and 102 
multi-disciplinary studies. 103 

2 Geological Background 104 

2.1 Assembly of key components (Paleoproterozic-Eocene) 105 

The Anatolian microplate is comprised of multiple continental fragments separated by 106 
oceans that collided and ultimately combined by the Late Cretaceous-Eocene, with exposures of 107 

ophiolitic and high-pressure/low-temperature rock assemblages that mark the suture zones 108 
(Figure 2, Figure 3, Figure 4) (e.g., Şengör & Yılmaz, 1981; Okay, 2008; Moix et al., 2008; 109 
Okay & Tuysuz, 1999; Pourteau et al., 2016; Okay et al., 2020). Western Anatolia is explicitly 110 

defined by the amalgamation of two terranes: the Pontides to the north and the Anatolides-111 
Taurides to the south (e.g., Şengör & Yılmaz, 1981; Yilmaz et al., 1997; Okay & Tuysuz, 1999; 112 

Pourteau et al., 2016). The Pontides extends across northern Turkey and is comprised mainly of 113 
Pan-African basement blocks and Phanerozoic sedimentary cover units that may have originated 114 
from the southern Eurasia margin before back-arc extension initiated and created the Black Sea 115 

(Yilmaz et al., 1997; Moix et al., 2008; Pourteau et al., 2010; Okay et al., 2013).  116 

The Intra-Pontide suture zone (IPS) is mapped within the Pontide zone between the 117 
Sakarya continental zones and Istanbul-Zonguldak Unit (also Istanbul–Zonguldak Zone, Istanbul 118 
Nappe, or Istanbul Zone, see Yiğitbaş et al., 2004) (Figure 2, Figure 3, Figure 4). The Istanbul 119 

portion of the unit exists in the west (Istanbul, Gebze, south Camdağ regions) and the Zonguldak 120 
to the east (north Camdağ, Zonguldak, Safranbolu regions), both being Gondwanan fragments 121 
(e.g., Okay et al., 2006; Bozkaya et al., 2012). The IPS has varying interpretations, including an 122 

accretionary complex, a suprasubduction zone, and a remnant of a former ocean basin that may 123 
have extended into eastern Europe (e.g., Okay et al., 1996; Robertson & Ustaömer, 2004; 124 
Göncüoğlu et al., 2012; 2014; Marroni et al., 2014; Akbayram et al., 2016; Sayit et al., 2016; 125 
Frassi et al., 2018). Geological units within the IPS may also be from components from the 126 
Istanbul-Zonguldak or Sakarya zones, which has led to a debate about its presence and utility of 127 

the IPS in paleogeographic reconstructions (Moix et al., 2008).  128 

Magmatic assemblages help us understand the tectonic processes involved in Western 129 

Anatolia, so we present a summary of some available time constraints for several key granite 130 
bodies dispersed throughout this region in Tables 1-8 and Figure 4. Zircon ages extracted from 131 
metagranites and quartzite units indicate that the Istanbul-Zonguldak Unit has a Precambrian 132 
basement with Gondwanan units (Chen et al., 2002; Yiğitbaş et al., 2004; Ustaömer et al., 2005; 133 
2011) and stratigraphic similarities with Paleozoic rocks from the southern margin of Laurasia 134 
(Görür et al., 1997; Kaldova et al., 2003). Some of the oldest Neoproterozoic granites in Western 135 
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Anatolia are found in the Istanbul Zone (Table 1, Karadere or Karabuk metagranite, Figure 4; 136 
Chen et al., 2002; Ustaömer et al., 2016; Di Rosa et al. 2019), although zircons from the 137 

Karacabey (Tamsali) and Karaburun plutons in the Western Sakarya Zone and the Çine Massif in 138 
the southern portion of the Menderes Massif also yield Paleoproterozoic and Neoproterozoic 139 
ages (Tables 5 and 8; Loos & Reischmann 1999; Aysal et al., 2012; Ustaömer et al., 2012). The 140 
Triassic ages from granites that intrude the Istanbul-Zonguldak Unit are thought to time partial 141 
closure of the Paleotethyan Ocean (Table 1, e.g., Ustaömer et al., 2016). Some of the youngest 142 

mineral ages from Istanbul-Zonguldak granites are Late Cretaceous (40Ar/39Ar ages, 93.3±2.0 143 
Ma, 86.1±2.0 Ma, Delaloye & Bingöl, 2000), which are similar to estimates for the activity 144 
within the subduction-accretion complex associated with the Izmir-Ankara-Erzincan Suture Zone 145 
(IAESZ) (Figure 2, Figure 3, Figure 4) (Okay et al., 2020).  146 

The IAESZ separates the Pontide’s Sakarya Composite Terrane in the north from the 147 

Anatolide-Tauride block to the south (Figure 2 and Figure 4) (Şengör & Yılmaz, 1981; Okay & 148 
Tüysüz, 1999; Tekin et al., 2002; Göncüoğlu, 2010). Both the IPS and IAESZ mark late 149 

Cretaceous–earliest Tertiary closure of Neo-Tethyan ocean basins (e.g., Pourteau et al., 2010; 150 
Akbayram et al., 2016). In the Aegean microplate, the IAESZ is thought to record the closure of 151 

the Vardar ocean and link with the Vardar ophiolite (or Axios-Vardar suture zone) (Channell & 152 
Kozur, 1997; Okay & Tuysuz, 1999; Tekin et al., 2002; Moix et al., 2008), but its exposure 153 
beneath the Aegean Sea is masked (e.g., Burtman, 1994; Stampfli, 2000; Yılmaz et al., 2001; 154 

Burchfiel et al., 2008). The Vardar suture may also connect to the IPS that separates the Sakarya 155 
Zone from the Istanbul Zone (Şengör & Yılmaz, 1981; Okay & Satir, 2000; Okay et al., 2001; 156 

Beccaletto & Jenny, 2004; Okay et al., 2010; d'Atri et al., 2012; Di Rosa et al. 2019), and may 157 
connect to the Meliata-Balkan suture of Greece (Stampfli, 2000). The IPS and Vardar connection 158 
may be evidenced in the Biga Peninsula by an isolated ophiolite-bearing accretionary complex 159 

that was active until the Late Cretaceous (Figure 2 and Figure 4) (e.g., Okay et al., 1991). Some 160 

disagree and do not map any major suture within the Biga Peninsula (Altunkaynak & Genc, 161 
2008; Burchfiel et al., 2008; Sengun et al., 2011). Because of the uncertain link between the 162 
sutures, the relationship of the basement of the Biga Peninsula to that in the Rhodope-Thrace 163 

Massif is debated (Bonev & Beccaletto, 2007; Elmas, 2012). In Western Anatolia, the 164 
Pamphylian Suture (Figure 2) may connect to the Alanya and Bitlis suture zones further to the 165 

east (Centikaplan et al., 2016) and beneath the Lycian nappes to the Cycladic domain to the west 166 

(Stampfli & Kozur, 2006).  167 

In Western Anatolia, blueschist assemblages exposed along the IAESZ are intruded by 168 
Suture Zone Granitoids (SZGs) [Topuk, Orhaneli, Tepeldag (Gürgenyayla and Gürgenyayla), 169 
Table 2; Figure 4]. These granitoids have Paleocene (63.5±2.8 Ma) to Oligocene (31.4±0.6 Ma) 170 
ages but are largely thought to have crystallized in the early Eocene (~45-47 Ma, Okay & Satir, 171 

2006; Altunkaynak, 2007). The SGZs intrude the western portion of the Tavşanlı Zone, a 172 

blueschist sequence overlain by a Cretaceous accretionary complex and ophiolitic sheet. The 173 

zone formed as a result of northward-dipping subduction and represents the Mesozoic to Eocene 174 
closing of the northern branch of the Neo-Tethyan Ocean (Okay, 1986; 2008; Okay & Kelley, 175 
1994; Sherlock et al., 1999; Moix et al., 2008, Shin et al., 2013; Plunder et al., 2013; Fornash & 176 
Whitney, 2020). The Tavşanlı Zone is narrow (~50 km) and trends E-W for approximately 250-177 
350 km (Okay & Whitney, 2010; Plunder et al., 2013). The western and central portions contain 178 

blueschist facies metavolcanic and metasedimentary rocks with rare metabasalts (Okay, 1980a, 179 
1980b, 1982; Okay & Kelley, 1994, see Seaton et al., 2009).  180 
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The Sivrihisar Massif further to the east is the only portion of the Tavşanlı Zone to 181 
contain eclogite and blueschist and Barrovian sequences (Figure 4 and Figure 5) (Gautier, 1984; 182 

Seaton et al., 2009). Rb-Sr and 40Ar/39Ar phengite ages from the Sivrihisar Massif constrain 183 
high-pressure/low-temperature (HP/LT) metamorphism to ~88–80 Ma (Sherlock et al., 1999; 184 
Seaton et al., 2009; Whitney et al., 2011; Pourteau et al., 2013; Shin et al., 2013). Older ages 185 
from the HP/LT assemblages reported from the western portion of the Tavşanlı Zone may suffer 186 
from excess argon (see review in Shin et al., 2013). Barrovian-metamorphosed marble from the 187 

Sivrihisar massif contains ~59 Ma muscovite (40Ar/39Ar), timing their exhumation (Seaton et al., 188 
2009). Late Cretaceous and early Paleocene ages are also reported from eastern Tavşanlı Zone 189 
granitoids, which are medium to high K., calc-alkaline, metaluminous, I-type, and post-190 
collisional [Kaymaz, Sivrihisar, Sarıkavak (Topkaya), Günyüzü (Karacaören, Tekoren, Dinek, 191 
Kadinicik bodies) Figure 4 and Figure 5, Table 2] (e.g., Shin et al., 2013; Demirbilek et al., 192 

2018). However, these results are interpreted as inheritance (Shin et al., 2013; Demirbilek et al., 193 

2018). The Sivrihisar granite’s age is often cited to be 53±3 Ma, based on a hornblende 40Ar/39Ar 194 
age clearly affected by excess argon (Sherlock et al., 1999) (Figure 5B and C). However, the 195 

Sivrihisar granite contains zircon that is 78.4±8.5 Ma (likely inherited) to 41.9±2.3 Ma (U-Pb, 196 

±1σ, Shin et al., 2013). Figure 5B and C show the K-feldspar 40Ar/39Ar age from the same 197 
sample, which yields a plateau age of 46.02±0.21 Ma (MSWD 4.21), similar to those reported 198 
for the Sivrihisar and nearby Kaymaz granite and SZGs (Table 2). The flat 40Ar/39Ar age 199 

spectrum is consistent with rapid cooling during exhumation (Figure 5D). Paleocene-Eocene 200 
ages from the Tavşanlı Zone granites mark the timing of the closure of the IAESZ (e.g., Okay et 201 

al., 2020).  202 

The Tavşanlı zone is one component of the larger Anatolide-Tauride block, a 203 
microcontinent that rifted away from the northern margin of Gondwana beginning in the early 204 

Permian (Figure 2, Figure 3, and Figure 4) (Stampfli & Kozur, 2006) or Triassic (e.g., Şengör & 205 

Yılmaz, 1981; Şengör et al., 1984; Okay & Tuysuz, 1999; Robertson & Ustaömer, 2009a, 206 
2009b). The Taurides comprise the southern portion of the Anatolide-Tauride block and is 207 
Neoproterozoic-Early Cambrian (Infracambrian) basement overlain by Cambrian to Eocene 208 

marine sediments (e.g., Gutnic et al., 1979; Özgül, 1997; Candan et al., 2016). The Anatolide 209 
terrane is the metamorphic equivalent of the Taurides and is subdivided into zones based on 210 

lithologies and the type and age of metamorphism (see review in Bozkurt & Oberhansli, 2001; 211 

Candan et al., 2016; Moix et al., 2008). These include the Tavşanlı Zone, Afyon Zone, Menderes 212 
Massif, and Lycian nappes (Figure 2, Figure 3, and Figure 4). The Tavşanlı and Afyon zones are 213 

sometimes considered as part of a single Kütahya–Bolkardağ Belt (Özcan et al., 1988; 214 
Göncüoğlu et al., 1997; 2012). 215 

Note that a series of granite bodies intrude the IPS between the Sakarya and Istanbul 216 

Zones also ages that resemble the SZGs and eastern portions of the Tavşanlı Zone. These Middle 217 

Eocene Magmatic Rocks (MEMR), also known as the South Marmara Granitoids [Şevketiye, 218 

İlyasdağ tonalite (Marmara Island), Karabiga (Lapeski), Fistikli (Armutlu–Yalova), Kapidağ, 219 
and Avsa Island; Figure 4, Table 3] are located in close association with the IPS and range in age 220 
from the Late Cretaceous (71.9±1.8 Ma) to Late Eocene (34.3±0.9 Ma). The MEMR are unique 221 
in these ages, as further east, along strike of the IPS and into the central portion of the Sakarya 222 
Zone, some of the oldest plutons in Western Anatolia are exposed (Pamukova, Gemlik, Inhisar, 223 

Gevyke, Bilecik, Söğüt, Figure 4, Table 4). Some of these intrusions are associated with 224 
economically important kaolinite deposits (e.g., Kadir & Kart, 2009). The Cambrian Gemlik 225 
granite body is located in the vicinity of the MEMR granites (Figure 4). Its age is more 226 
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consistent with Cadomian Orogeny (650–550 Ma) granites further north in the Istanbul-227 
Zonguldak and Strandja zones (e.g., Şahin et al., 2014) and similar-age rocks from the basement 228 

or core of the Afyon Zone and Menderes Massif (e.g., Dannat, 1997; Loos & Reichmann, 1999; 229 
Şahin et al., 2014; Hetzel & Reischmann, 1996). Western Anatolian granites with Cambrian ages 230 
are termed the Late Pan-African Granitoids or Cadomian Granitoids and are associated with 231 
tectonic events along the northern margin of Gondwana (Gürsu & Göncüoğlu, 2006; Şahin et al., 232 
2014). We identify some of these granites in their particular zones in Figure 4 and distinct 233 

sections of Tables 1, 4, and 8. Note that the entire core of the Menderes Massif is considered 234 
Pan-African (primarily late Neoproterozoic to Cambrian) basement (see review in Oberhänsli et 235 
al., 2010). 236 

Proterozoic zircon ages are found in the Pontides zone, but some of its central and 237 
western granite assemblages also record Silurian-Devonian ages [Saricakaya, Table 4; 238 

Karaburun, Güveylerobası (Çamlik-related), Karacabey (Tamsali), Eybek (Çamlik), 239 
Güveylerobası, Table 5; Figure 4]. These ages are linked to the amalgamation of a fragment of 240 

Avalonia terrane in a subduction-zone type setting (Aysal et al., 2012; Sunal, 2012; Topuz et al., 241 
2020). Variscan-age (Carboniferous) granites are also reported for granites in the Central and 242 

Western Sakarya Zone and Afyon Zone (Tables 4 and 6; Figure 4). Some of these results could 243 
represent inherited cores or xenocrystic grains from the surrounding metamorphic assemblages. 244 
For example, the Miocene-age Alaçam granite in the Afyon Zone has reported Carboniferous 245 

ages, but the older ages were likely entrained from its basement units (Hasözbek et al. 2010; 246 
Candan et al. 2016).  247 

The Afyon zone is considered the southward palaeogeographic extension of the Tavşanlı 248 
zone (Candan et al., 2005; Pourteau et al., 2010; Akal, 2013; Özdamar et al., 2013). Although it 249 
is often mapped as closely and narrowly paralleling the Tavşanlı Zone, the southern extent of the 250 

Afyon Zone is unclear, and a portion may also be exposed between the southern Menderes 251 

Massif and Lycian Nappes (Okay, 1986; Candan et al., 2005; Pourteau et al., 2013; Ustaömer et 252 
al., 2020). The zone has also been termed the Afyon–Bolkardag Zone (Okay, 1986; Özdamar et 253 
al., 2013) and Ören–Afyon Zone (Pourteau et al., 2013). The zone consists of Pan-African-254 

related basement underlying shelf-type Palaeozoic-Mesozoic sequence of the Taurides and 255 
metasedimentary and metavolcanic rocks, portions of which have undergone regional greenschist 256 

to blueschist facies (Fe–Mg carpholite and glaucophane) metamorphism (Figure 3) (Okay, 1984; 257 

Candan et al., 2005, Pourteau et al., 2010; Özdamar et al., 2013). In this sense, its stratigraphy 258 
resembles that of the Tavşanlı Zone (Candan et al., 2005). Rhyolitic volcanic assemblages 259 
contain zircon that crystallized in the Late Triassic time extension along the northern margin of 260 
Gondwana as the Neo-Tethyan Ocean developed (230±2 Ma and 229±2 Ma; Özdamar et al., 261 
2013). Triassic ages reported for granitic assemblages found within the Istanbul-Zonguldak zone, 262 

central and western Sarkarya, and Menderes Massif are also attributed to this event (Figure 4; 263 

Okay et al., 2020). LT/HP metamorphism in the Afyon Zone is thought to have occurred at 70-264 

65 Ma coincident with the closure of the Neo-Tethyan Ocean (Pourteau et al., 2010, 2013; 265 
Özdamar et al., 2013; Plunder et al., 2013). Based on zircon ages from granites intruding 266 
Tavşanlı Zone blueschist and altered ophiolitic assemblages, portions of the Afyon Zone may 267 
have subducted beneath the Tavşanlı Zone during the Late Cretaceous (Speciale et al., 2012; 268 
Shin et al., 2013). Upper Palaeocene-Lower Eocene sedimentary rocks overly the metamorphic 269 

rocks of the Afyon Zone (Candan et al., 2005).  270 
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The Menderes Massif is considered the metamorphic basement on which the rocks of the 271 
Afyon Zone were deposited before regional metamorphism (Okay, 1984). The Menderes Massif 272 

exposes ~40,000 km2 of metamorphic and igneous rocks, and its stratigraphy was originally 273 
described as a gneiss ‘core’ and Paleozoic schist envelope with overlying Mesozoic-Cenozoic 274 
marble ‘cover’ (e.g., Schuiling, 1962; Durr, 1975; Şengör et al., 1984). The massif has also been 275 
mapped as a large-scale recumbent fold (Okay, 2001; Gessner et al., 2002), a series of nappes 276 
stacked during south-directed thrusting (Ring et al., 1999; 2001; Gessner et al., 2001), or north-277 

directed thrusting (Hetzel et al., 1995a,b) (see Gessner et al., 2013). In the nappe model, the core 278 
is represented by the Çine and Bozdağ nappes, whereas the cover would be the Bayındır and 279 
Selimiye nappes (Ring et al., 2001), although all nappes may be part of the Menderes Massif 280 
core series stacked during Eocene out-of-sequence thrusting (Régnier et al., 2007). Timeframes 281 
recorded by the massif begin in the Archean and Neoproterozoic based on zircons extracted from 282 

metagranites and orthogneisses with geochemical signatures dominated by reworking of old 283 

crust (Oberhansli et al., 2010; Zlatkin et al., 2013). During this time, the Menderes Massif was 284 
part of a collage of terranes associated with NE Africa and Arabia (Şengör et al., 1984; von 285 

Raumer et al., 2015). Some Neoproterozoic zircons (ca. 570 Ma) have an older crust signature, 286 

but others suggest a proximal juvenile source resembling the Arabian-Nubian shield (Zlatkin et 287 
al., 2013). 288 

Cambrian metagranites, orthogneisses, granulites, and ecologites, mica schists are 289 

exposed throughout the massif (Hetzel & Reischmann, 1996; Dannat, 1997; Loos & Reichmann, 290 
1999; Neubauer, 2002; Oberhansli et al., 2010; Zlatkin et al., 2013; Koralay, 2015). Cambrian-291 

Ordovician monazite and zircon inclusions are found in Menderes Massif garnets (Catlos & 292 
Çemen, 2005; Etzel et al., 2019). During this time, the Menderes Massif was affected by events 293 
related to the Cadomian Orogeny, and its core units were intruded by Pan African S- and I-type 294 

granites followed by metamorphism (Neubauer, 2002). Note that other terranes within Western 295 

Anatolia likewise have a Cadomian signature (Figure 4, e.g., Kozur & Göncüoğlu, 1998). 296 
Granulite-facies metamorphism in the Menderes Massif was suggested to have occurred at 297 
580.0±5.7 Ma to 660±61 Ma by (U-Pb monazite ages, Oelsner et al., 1997; U-Pb zircon ages, 298 

Korolay et al., 2006). Middle-Triassic zircons in metagranites are found in its central portions 299 
(Figure 4; Dannat, 1997; Koralay et al., 2001).  300 

The timing of Menderes Massif nappe stacking is largely thought to have occurred during 301 

the Eocene-Oligocene, or sometime after the Late Cretaceous (Main Menderes Metamorphism, 302 
MMM., e.g., Satir & Friedrichsen, 1986; Konak et al., 1987; Dora et al., 1995; Bozkurt & Park, 303 
1999; Bozkurt & Satir, 2000; Bozkurt & Oberhansli, 2001; Candan et al., 2001; Lips et al., 2001; 304 
Gessner et al., 2011). Gessner et al. (2001) report that the Bayındır nappe deformed once during 305 
the Eocene related to MMM., whereas the Bozdağ, Çine, and Selimiye nappes record pre-MMM 306 

and MMM events. Figure 6 shows a paleogeographic reconstruction of the possible setting of the 307 

fragments comprising Western Anatolia during the closure of the IAESZ during the Eocene. This 308 

paleographic timeframe is critical for understanding the complex tectonic scenario that set the 309 
scene before the onset of extension.  310 

The Aegean Orogeny (Searle & Lamont, 2020a) is proposed for the tectonic history 311 
further to the west of the Menderes Massif, including the Cycladic Metamorphic Core 312 
Complexes but may mirror its development. In this scenario, subduction and a continent-313 
continent collision occur between the Eurasian and Adria-Apulia/Cyclades plates as marked by 314 
ophiolite obduction at 74 Ma (Lamont et al., 2020a) and HP eclogite and blueschist facies 315 
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metamorphism at 57 Ma–46.5 Ma (Tomaschek et al., 2003; Lagos et al., 2007; Bulle et al., 2010; 316 
Dragovic et al., 2012). The HP metamorphism (P = 11-12 kbar) is documented by ophiolitic 317 

melanges that may record a cycle of Alpine collisional thickening followed by extension and 318 
overprinting via extension (Papanikolau, 1987, Okrusch & Bröcker, 1990; Avigad & Garfunkel, 319 
1991; Katzir et al., 2000; Parra et al., 2002; Laurent et al., 2018; Lamont et al., 2020b). HP 320 
metamorphism is recognized as part of a NE-trending subduction-exhumation channel (e.g., 321 
Xypolias & Alsop, 2014; Laurent et al., 2018; Gerogiannis et al., 2019). Crustal thickening and 322 

regional kyanite – sillimanite grade Barrovian-type metamorphism occur from 22–14 Ma, 323 
followed by orogenic collapse. The island of Naxos exemplifies the process with structural data 324 
that suggest it is the result of the gravitational collapse of the Aegean orogenic wedge 325 
(Vanderhaeghe, 2004). This model emphasizes the role of compression in forming Aegean 326 
metamorphic core complexes (e.g., Coney and Harms, 1984; Searle and Lamont, 2020a,b), 327 

which is an alternative to the perspective of solely extensionally-driven core complexes 328 

discussed in the next section. 329 

2.2 Extensional history (Oligocene-Miocene) 330 

Following the final amalgamation of the various terranes as described in the previous 331 

section, Western Anatolia experienced a switch from the dynamics of collision to extension and 332 
extrusion (e.g., Berckhemer, 1977; Le Pichon & Angelier, 1979; 1981; Şengör & Yılmaz, 1981; 333 
Şengör et al., 1985; Meulenkamp et al., 1988; Buick, 1991; Jolivet et al., 1994; Seyitoğlu & 334 

Scott, 1996; Okay & Satir, 2000; Bozkurt, 2001; Çemen et al., 2006). A sequence of partial 335 
melting, Barrovian metamorphism, and granitoid emplacement has been cited for providing 336 

evidence of a change from crustal shortening to extensional tectonism (e.g., Keay et al., 2001; 337 
Altunkaynak, 2007; Dilek & Altunkaynak, 2007; Altunkaynak et al., 2012; Rossetti et al., 2017). 338 
The process may be recorded by numerous Oligocene to Miocene-age granites (Figure 4, Tables 339 

5-8) and linked to the development of metamorphic core complexes located from northeastern 340 

Greece and southern Bulgaria through the Aegean Sea and western Turkey.  341 

In continental orogenic domains, metamorphic core complexes are deep crustal domes 342 
exhumed and deformed during extension and are commonly surrounded by sedimentary and 343 

volcanic rocks, which may be partly deposited during their exhumation (Tirel et al., 2008). Core 344 
complexes in western Turkey and the Aegean region include the Rhodope, Kazdağ, Uludağ, 345 
Cyclades, Menderes, and Crete massifs (Figure 1, Figure 2, and Figure 4) (Sokoutis et al., 1993; 346 

Hetzel et al., 1995a,b; Burg et al., 1996; Lips et al., 1999; Bozkurt & Oberhänsli, 2001; Candan 347 
et al., 2001; Lips et al., 2001; Ring et al., 2003; Bozkurt & Sözbilir, 2004; Duru et al., 2004; 348 
Vanderhaeghe, 2004; Catlos & Çemen, 2005; Brun & Sokoutis, 2007; Okay et al., 2008; 349 
Cavazza et al., 2009; Kruckenberg et al., 2011; Gessner et al., 2013; Baran et al., 2017).  350 

In Western Anatolia specifically, the Menderes, Kazdağ, and Uludağ massifs are central 351 

locations for studying post-collision extensional tectonics (Figures 1, Figure 2, and Figure 4) 352 
(e.g., Şengör et al., 1984, Bozkurt & Park, 1994; Hetzel et al., 1995a,b; Yılmaz et al., 2001; Işik 353 

& Tekeli, 2001; Çemen et al., 2006; Topuz & Okay, 2017). The Menderes Massif has global 354 
importance due to its role as the largest zone of active continental extension (e.g., Jolivet & 355 
Faccenna, 2000; Çemen et al., 2006). The region has long attracted the attention of those seeking 356 
to understand the driving forces of extension from a variety of perspectives (e.g., Lister et al., 357 
1984, Thomson & Ring, 2006; Régnier et al., 2007; Gessner et al., 2013; Uzel et al., 2015). Both 358 
low-angle detachment faults and high-angle normal faults bound sedimentary basins and separate 359 
the Menderes Massif into northern (Gördes), central (Ödemis), and southern (Çine) submassifs 360 
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(Figure 2). In the central Menderes Massif, Miocene-age granites are cut by the low-angle 361 
Alasehir detachment, helping to constrain the timing of extension (Alasehir, Salihli, Turgutlu, 362 

Table 8). The Kazdağ Massif is smaller in scale compared to the Menderes Massif and is a NE-363 
SW oriented structural dome or tectonic window flanked by detachment structures (Figure 2 and 364 
Figure 4) (Okay et al., 1991; Okay & Satir, 2000; Duru et al., 2004; Bonev et al., 2009; Cavazza 365 
et al., 2009). This massif’s Evciler (Kazdağ) pluton routinely yields Oligo-Miocene 366 
crystallization ages from a range of chronometers (Table 5). The Uludağ Massif is NW-SE 367 

trending and has high-grade metamorphic and intrusive Eocene-Miocene age granitic rocks 368 
(Figure 4, Table 5, Okay et al., 2008). Large Neogene basins bind the northern and southern 369 
sections of the Uludağ Massif, and late-stage exhumation is largely thought to have occurred 370 
during the Early Miocene (e.g., Topuz & Okay, 2017). 371 

Besides these localities, Miocene ages have been reported for granites in the eastern 372 

Tavşanlı zone (Table 2) [Kaymaz and Tekoren granodiorite (Günyüzü); Shin et al., 2013; 373 
Demirbilek et al., 2018]. These ages likely represent metamorphism and subsequent alteration 374 

associated with the large-scale extension/exhumation affecting Western Anatolia during this 375 
time. Early Miocene ages also characterize granites closely associated with the Menderes, 376 

Kazdağ, and Uludağ metamorphic core complexes. For example, Miocene ages are reported for a 377 
group of granites near the Kazdağ Massif, extensively exposed in the Biga Peninsula and western 378 
Pontides [Kozak, Eybek, Katrandag, Cataldag (Bozenkoy, Cataltepe, Turfaldag, Balicikhisar), 379 

Kuscayir, and Kestanbol (Ezine), Figure 4, Table 5] and from a series of plutons grouped as the 380 
Younger South Marmara Granitoids (Yenice, Ilica, Kizildam, Danisment, Sarioluk, Davutlar, 381 

and Yeniköy; Figure 4, Table 5; Karacık et al. 2008). North of the Menderes Massif, Miocene-382 
age plutons also intrude the Afyon Zone, in close association with the Simav fault system, which 383 
includes the lower angle Simav Detachment Fault (SDF) and higher-angle Simav Fault further 384 

south (Koyunoba, Alaçam, and Egrigöz, Figure 2, Figure 4 and Figure 7, Table 7; Isik et al., 385 

2003).  386 

The Simav structures are at the boundary between two dynamically distinct regions in 387 
western Turkey: a northern component dominated by the NAFZ that accommodates the lateral 388 

extrusion of the Anatolian block and a southern zone of large-scale crustal extension (Seyitoğlu, 389 
1997; Ersoy et al., 2010). The Simav Fault is a distinct, a high-angle (~45-60º) system that 390 

extends ~150 km between the towns of Banaz in the east and Sındırgı in the west (Figure 7) 391 

(Ambraseys & Tchalenko, 1972; Seyitoğlu, 1997; Ersoy et al., 2010; Hetzel et al., 2013). The 392 
structure near the town of Simav has >200 m of relief between the top of the hanging-wall and 393 
footwall, and dips steeply to the north, roughly perpendicular to the current extension direction 394 
(Tekeli et al., 2001; Işık et al., 2003). This fault is thought to have formed during the Pliocene 395 
and is currently active (Seyitoğlu, 1997; Ring & Collins, 2005). Deciphering the sense of motion 396 

of the Simav Fault has implications for the understanding of the neotectonic regime of Turkey 397 

and is discussed further in the section regarding outstanding questions in Aegean tectonics. 398 

Estimates of timing core complex exhumation and extension in Western Anatolia have 399 
relied on calc-alkaline magmatism, widespread continental sedimentation, and mineral 400 
chronometers (Sokoutis et al., 1993; Gautier et al., 1999; Catlos & Çemen, 2005; Altunkaynak & 401 
Genç, 2008; Brun & Sokoutis 2010; Brun et al., 2016). In some locations, the complexes record 402 
progression of magmatism from earlier Eocene-age mantle melts and input from asthenosphere 403 
upwelling to later Oligocene to Late Miocene crustal contamination and subduction signatures, 404 
with emplacement ages that young to the south (e.g., Delaloye & Bingöl, 2000; Altunkaynak & 405 



Manuscript accepted to AGU Books 

 

Dilek, 2006; Dilek & Altunkaynak, 2007; Altunkaynak, 2007; Altunkaynak & Genç, 2008; Dilek 406 
& Altunkaynak, 2009; Altunkaynak et al., 2012; Karaoğlu & Helvacı, 2014). However, this 407 

simple scenario of melt origin and emplacement can be complicated, as the melts are influenced 408 
by varied protoliths of varying sources, ages, and degrees of crustal anatexis (Pe-piper, 2000; 409 
Stouraiti et al., 2010; 2018).  410 

Late Cenozoic (since ~32 Ma) plutonic rocks are also widespread in the Aegean (e.g., 411 
Altherr et al., 1982; Henjes-Kunst et al. 1988; Pe-piper, 2000; Keay et al., 2001; Brichau et al., 412 

2007; 2008). The origin of the granites is linked to subduction migration along the Hellenic arc 413 
(e.g., Fytikas et al., 1984; Schaarschmidt et al., 2021) or regional, widespread extensional 414 
deformation (e.g., Boztuğ et al., 2009). Barrovian metamorphism on Naxos is thought to have 415 
influenced the development of fluid-fluxed melts at ca. 8–10 kbar between 18.5 Ma and 17 Ma 416 
(Lamont et al., 2019; Searle and Lamont, 2020b). Peak metamorphism is thought to have 417 

occurred at 20.7-16.7 Ma (Keay et al., 2001). In some locations, coeval mafic and felsic melts 418 
were emplaced (Seyitoğlu & Scott, 1996; Aldanmaz et al., 2000; Okay & Satir, 2000; Pe-Piper & 419 

Piper 2001; Ozgenç & Ilbeyli, 2008). Magma compositions were influenced by a range of 420 
factors, including inflowing mantle at the site of melting, the nature of the subduction component 421 

and the degree of interaction between mantle and subduction components, as well as the melting 422 
of fluid-rich mantle and the assimilation/crystallization history of the resulting hydrous magma 423 
(e.g., Pearce & Stern, 2006). Extensive geochemical and isotopic studies of Miocene I-type 424 

granitoid plutons of the central Aegean Sea show little evidence for a significant contribution of 425 
mantle-derived magmas (Altherr & Siebel, 2002).  426 

Cenozoic magmatism in the Anatolian microplate consists of three distinct, continuous 427 
geochemical phases (Innocenti et al., 2005; Dilek & Altunkaynak, 2007; Altunkaynak & Genc, 428 
2008; Akay, 2009; Altunkaynak et al., 2012). Magmatic rocks represent a Late Eocene-Middle 429 

Miocene phase with orogenic character and a petrological affinity ranging from calc-alkaline to 430 

dominant high-K calc-alkaline to shoshonites. During the Late Miocene–Early Pliocene, alkaline 431 
volcanic rocks appear. The third phase is characterized by Pliocene–Quaternary Na-enriched 432 
alkali basalts with an oceanic island basalt (OIB) signature (Aldanmaz, 2012). The first volcanic 433 

activity in the South Aegean Active Volcanic Arc occurred between 5 and 2 Ma (e.g., Müller et 434 
al., 1979; Fytikas et al., 1984; Matsuda et al., 1999; Elburg & Smet, 2020). The driver of 435 

extension is widely thought to be the rollback of a subducting African slab (Figure 8, Figure 9, 436 

and Figure 10) (e.g., Jolivet & Faccenna, 2000; Çemen et al., 2006; van Hinsbergen, 2010; 437 
Royden 1993; Faccenna et al. 2003, 2014; Brun & Faccenna 2008). We discuss the slab and arc 438 
dynamics, geometry, and age in the section regarding outstanding questions in Aegean tectonics.  439 

2.3 Strike-slip History (Late Miocene, Pliocene-present) 440 

The Aegean and Anatolian microplates have emerged to be type-localities for the model 441 

of tectonic escape based on GPS vectors (Reilinger et al., 2006). In this scenario, the Anatolian 442 
plate moves westward in response to the collision of Arabia and Eurasia (e.g., Şengör & Yılmaz, 443 

1981; Şengör et al., 1985; Bozkurt, 2001). The North and East Anatolian transform fault systems 444 
accommodate extrusion, and rollback along the Hellenic arc is suggested to provide space to 445 
accommodate the escaping plate (McKenzie, 1972; Dewey & Şengör, 1979; Le Pichon & 446 
Angelier, 1979; Jackson & McKenzie, 1984; Barka & Kadinsky-Cade, 1988; Taymaz et al., 447 
1991; Reilinger et al., 1997; McClusky et al., 2000; Tatar et al., 2013). Philippon et al. (2014) 448 
suggest a two-stage evolution of the arc. At 30 Ma, extension was only driven by the southward 449 
retreat of the Hellenic trench at a rate lower than 1 cm/yr, but since the last 13 Ma, the 450 
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interaction of trench retreat with Anatolia escape accelerated the rate of trench retreat in the 451 
southwest direction at a rate of up to 3 cm/yr. 452 

In western Turkey, extrusion tectonics is dominated by the active right-lateral North 453 
Anatolian strike-slip fault (NAF) and North Anatolian Shear Zone (NASZ), which extends for 454 
~1200 from the Karlıova triple junction through the Sea of Marmara and Biga Peninsula (Figure 455 
1) (Ketin, 1948; Barka, 1992; Armijo et al., 1999; Şengör & Zabcı, 2019). The NASZ contains 456 
the NAF and is speculated to have accommodated from 25 to 110 km of displacement, 457 

depending on location since the late Miocene (Westaway 1994; Yoshioka 1996; Armijo et al., 458 
1999; Hubert-Ferrari et al. 2002; Şengör & Zabcı, 2019). The structure accommodates ~24 459 
mm/year of slip along northern Turkey (McClusky et al., 2000; Bulut et al., 2018). The 460 
geometries of its western and eastern terminations are poorly defined (Barbot & Weiss, 2021). 461 

The NAF splits into three strands as it trends westward into Western Anatolia and the 462 

Aegean Sea (Figure 1) (e.g., Emre et al., 1998; Kürçer et al., 2008; Beniest et al., 2016; Şengör 463 
& Zabcı, 2019). Each segment is comprised of several en échelon fragments (Emre et al., 1998; 464 

Kürçer et al., 2008). The northernmost E-W striking segments within the Sea of Marmara change 465 
strike in the Northern Aegean Sea towards a NE-SW orientation in the North Aegean Trough, 466 

maintaining its right-lateral strike-slip character but splits across three basins and two 467 
transpressional ridges (Bulut et al., 2018). A branch between the northern and central segments 468 
originates southeast of Sapanca Lake (Kürçer et al., 2008) and terminates at the western end of 469 

the North Aegean Trough (Ferentinos et al., 2018). This structure enters the Aegean Sea and 470 
trends into the Northern Skyros Basin. Strands of the NAF have also been linked to the KTZ 471 

through the transtensional Central Hellenic Shear Zone (Royden & Papanikolaou, 2011; 472 
Evangelidis, 2017). In the Western Anatolia -Marmara region, the NAF may have been active 473 
since the Pliocene (e.g., Ünay et al., 2001). 474 

Sakellariou et al. (2013) suggest that the southwestward expansion and stretching of the 475 

Aegean microplate during Plio-Quaternary is accommodated by a northern right lateral tectonic 476 
boundary marked by the KTZ and NASZ, and a southern left-lateral tectonic boundary, marked 477 
by the Pliny and Strabo trenches (Figure 9). Papanikolaou and Royden (2007) note that regional 478 

extension has a much-reduced role in the dynamics of the Aegean microplate and that, in fact, no 479 
active extensional strain is present, except for a small southeastern domain (Figure 1) (Corinth 480 
rift, south Viotia, south of Evia, and across the Sperchios-Kammena Vourla rift; Brooks & 481 

Ferentinos 1980; Chousianitis et al., 2013, 2015). Maggini & Caputo (2020) report that 482 
seismogenic faults in the internal Aegean domain associated with the Hellenic subduction arc are 483 
characterized by pure normal and strike-slip kinematics or by a combination and that active 484 
thrusting is limited to the central and western sectors of the Hellenic subduction zone and the 485 
offshore regions external to it.  486 

Figure 11 shows the focal mechanisms for some recent earthquakes (2010-2020) that 487 
appear along the Aegean-Anatolian microplate boundary. Recent earthquakes with focal 488 

mechanisms consistent with reverse faulting have occurred south of Crete, including those 489 
associated with an Mw 6.4 earthquake on 5/2/2020. These earthquakes occurred at relatively 490 
shallow depths (6.5-9.6 km, Table 10) and may be associated with a plate interface zone defined 491 
by the upper plate and splay-thrust faults (Saltogianni et al., 2020). Observations and modeling 492 
of historical and recent earthquakes have shown that uplift along the Hellenic arc margin 493 
offshore of Crete is controlled by reverse fault motion with little contribution from plate-494 
interface slip (e.g., Mouslopoulou et al., 2015).  495 
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Extrusion and deformation in Western Anatolia are also accommodated by transfer zones, 496 
where strain is transferred from one structural element to another and displacement changes 497 

between individual fault and basin segments (e.g., Gawthorpe & Hurst, 1993; Barbot & Weiss, 498 
2021). Some examples of these zones include the NE-SW trending strike-slip dominated Izmir–499 
Balıkesir transfer zone (İBTZ), Uşak-Mugla Transfer Zone (UMTZ), and Southwestern 500 
Anatolian Shear Zone (SWASZ) (Figure 1 and Figure 2) (Çemen et al., 2006; Oner et al., 2010; 501 
Sözbilir et al., 2011; Gessner et al., 2013; Özkaymak et al., 2013; Uzel et al., 2013; Karaoğlu & 502 

Helvacı, 2014; Seghedi et al., 2015). These transfer zones have been considered as significant 503 
portions of the larger Western Anatolian Shear Zone (WASZ) or Western Anatolian Extensional 504 
Province (Figure 1) and may have developed due to mantle processes related to the subduction of 505 
the Aegean slab (e.g., Gessner et al., 2013; Uzel et al. 2020). Some transfer zones trend into 506 
other fault systems. For example, the İBTZ is speculated to connect to the Mid-Cycladic 507 

Lineament (MCL) in central Greece and the NASZ in northern Turkey (Figure 1, Figure 11) 508 

(Uzel et al., 2013; Seghedi et al., 2015; Westerweel et al., 2020). The MCL is a strike-slip 509 
structure that may be the result of the reactivation of the Vardar suture zone, evidenced by the 510 

North Cycladic Detachment (Figure 11), to accommodate westward extrusion of Anatolia in the 511 

Late Miocene (e.g., Philippon et al., 2014). These transfer zones have been used to illustrate that 512 
the Aegean and Anatolian microplates experienced or are currently transitioning from a stress 513 
regime dominated by extension to transform tectonics (Papanikolaou & Royden, 2007; Cavazza 514 

et al., 2009).  515 

Presently, normal fault motion exists within the İBTZ as illustrated by focal mechanisms 516 

from a 2020 Mw 6.6 earthquake and 2018 Mw 4.5 earthquake within the zone. An Mw 4.4 517 
earthquake with normal motion occurred off the coast of Amorgos near the 1956 Mw 7.7 (or 7.8) 518 
earthquake, one of the strongest earthquakes of the 20th century in the area of the South Aegean 519 

(Okal et al., 2009; Alatza et al., 2020). The 1956 event has debated focal mechanisms, as either 520 

strike-slip or normal faulting geometries (see Okal et al., 2009). A normal sense of motion also is 521 
found with some recent earthquakes near the NASZ, including 2017 Mw 6.2 and 2017 Mw 5.3 522 
earthquakes (Figure 11, Table 10). These events are likely associated with transtensional motion. 523 

3. Outstanding Questions in Aegean Tectonics 524 

As outlined in the previous section, significant contributions have been made regarding 525 
the fundamental tectonics and geological history recorded by rocks throughout the Western 526 

Anatolian microplate. However, outstanding questions remain to be addressed regarding the 527 
boundary between the Aegean and Anatolian microplates that affect our understanding of the 528 
mechanisms that drive extension in the Earth’s lithosphere. Most of these questions center on 529 
how upper lithospheric and crustal deformation are linked and are related to lower lithosphere 530 
and mantle processes. 531 

3.1. Slab dynamics 532 

3.1.1 African slab geometry and connections to other subduction systems 533 

Based on several geophysical, tectonic, and geochemical developments, the subducting 534 
African (Nubian or Aegean) slab has emerged as the primary driver for extension in the Aegean 535 
and Anatolian microplates and the development of their metamorphic core complexes (Figure 1, 536 
Figure 2, Figure 8, Figure 9, and Figure 10) (e.g., Jolivet et al. 2013; Jolivet & Faccenna, 2000; 537 
Çemen et al., 2006; Dilek & Sandvol, 2009; van Hinsbergen et al., 2010; van Hinsbergen & 538 
Schmid 2012; Salaün et al., 2012; Faccenna et al., 2014; El-Sharkawy et al., 2020; Barbot & 539 
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Weiss, 2021). The Hellenic and Cyprus arcs are the surface expression of the subducting African 540 
plate and eastern Mediterranean lithosphere beneath the Anatolian and Aegean microplates (e.g., 541 

Le Pichon & Angelier, 1979; Angelier et al., 1982; Anastasakis & Kelling, 1991; Papazachos et 542 
al., 2000; Ergün et al., 2005; Ganas & Parsons, 2009; Hall et al., 2009; Royden & Papanikolaou, 543 
2011; Hall et al., 2014; Symeou et al., 2018; Ventouzi et al. 2018).  544 

Although it has a well-developed Wadati-Benioff zone dipping ~30º from 20-100 km 545 
depth and ~45º from 100-150 km depths (Figure 10B) (e.g., Papazachos & Comninakis, 1971; 546 

Papazachos et al., 2000; Sukale et al., 2009; Hayes, 2018), it has a debated slab geometry at 547 
intermediate depths (150-250 km, Suckale et al., 2009; Agostini et al., 2010; see review in 548 
Hansen et al., 2019; El-Sharkawy et al., 2020). Seismic body wave tomography shows it extends 549 
into the upper and lower mantle to 1400±100 km depth (Figure 10A) (e.g., Spakman et al., 1988; 550 
Bijwaard et al., 1998; van der Meer et al., 2018; see review in Bocchini et al., 2018). However, 551 

the slab may be a single folded body that overturned in the lower mantle (Faccenna et al., 2003), 552 
or two slabs, located between 2000-1500 km and from 1500 km to the surface (van Hinsbergen 553 

et al., 2005; van der Meer et al., 2018). Mantle tomography has shown multiple subducted slabs 554 
beneath the Aegean and Anatolian microplates (e.g., Spakman et al., 1988; Spakman, 1990; 555 

1991; Wortel & Spakman, 2000; Govers & Fichtner, 2016; van der Meer et al., 2018; Wei et al., 556 
2019). Blom et al. (2019) show the Hellenic slab, visible in both S and P velocity, extending 557 
from the surface to the transition zone in a bent, arcuate shape. A high-velocity structure exists 558 

beneath the Hellenic arc and the Aegean Sea that flattens from the 410 km discontinuity and is 559 
not seen at deeper levels. Wei et al. (2020) show a gap in the subducting slab at depths of 60-100 560 

km just west of the south Hellenides. In the South Hellenides, slab tear may be visible at the 660 561 
km discontinuity, whereas four slabs are imaged beneath the North Hellenides.  562 

Interpretations of these tomographic images have indicated that more slab is imaged than 563 

is reflected by seismicity (e.g., Spakman et al., 1988; Papadopoulos, 1997; Bijwaard et al., 564 

1998), and that a variation of slab exists thickness across the Aegean Sea (e.g., Karagianni et al., 565 
2002). Mantle tomography has also shown that not all slabs in the Mediterranean region are 566 
connected to the lithosphere at the surface, consistent with past delamination (e.g., Spakman et 567 

al., 1988; Dilek & Sandvol, 2009; Wortel & Spakman, 2000). Challenges in imaging the 568 
subduction zone include its small size, its spatially highly variable nature, and the uneven 569 

distribution of its seismic stations (El-Sharkawy et al., 2020). 570 

The Hellenic subduction system is comprised of three regions: an outer compressional 571 
non-volcanic arc, a volcanic arc, and an extensional back-arc region that makes up the broader 572 
Aegean Sea region (Figure 8) (McKenzie 1972; Papazachos, 2019). Although the Western 573 
Hellenic Arc (also termed the North and Southern Hellenic arc, Royden & Papanikolaou, 2011) 574 
has a well-defined topography, trench, sedimentation, and strain pattern (Stanley et al., 1978; 575 

Papadopoulos et al., 1988; Hatzfeld et al., 1990; Cocard et al., 1999), the central and eastern 576 

portions of the Hellenic arc are more difficult to characterize as the boundary becomes diffuse 577 

(Beißer et al., 1990; Shaw & Jackson, 2010; Özbakır et al., 2013). The Hellenic arc’s connection 578 
with the Cyprus arc and even the nature of plate motion along strike of the Cyprus arc has been 579 
debated (Anastasakis & Kelling, 1991; Woodside et al., 2002; Ergün et al., 2005; Hall et al., 580 
2009; Harrison et al., 2012; Kinnaird & Robertson, 2012; Symeou et al., 2018). The surface 581 
morphology of the southern and eastern portions of the Hellenic arc and its connection to the 582 
Cyprus arc is obstructed by up to 300-km wide, 6-10 km-thick section of sediments that 583 
comprise the Mediterranean Ridge (Figure 8 and Figure 9; Heezen & Ewing, 1963; Emery et al., 584 
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1966; Le Pichon et al., 1982; Kenyon et al. 1982; Kastens et al., 1992; Foucher et al., 1993; 585 
Westbrook & Reston, 2002; Kopf et al., 2003). The ridge is a giant accretionary complex, 586 

extending ~2000 km from the Calabrian Rise east of Greece to the Florence Rise, and is the 587 
largest structural unit of the Eastern Mediterranean Sea (Liminov et al., 1996; Cita et al., 1996). 588 
The front of subduction of the Hellenic arc is located south of the Mediterranean Ridge (e.g., Jost 589 
et al., 2002; Westbrook & Reston, 2002; Jolivet et al., 2013). The majority of the subducting 590 
African plate beneath the ridge is oceanic, except along the central sector of its southern margin, 591 

where the accretionary complex collides with the African continental margin (Chaumillon & 592 
Mascle, 1997; Westbrook & Reston, 2002). The ridge may be the fastest outward growing wedge 593 
in most recent Earth history, with a rate of up to 10 km/Myr (Kastens, 1991; Kopf et al., 2003). It 594 
has been speculated to grow by off scraping against a backstop formed by the Alpine nappes of 595 
the Hellenic Arc (Kastens, 1991).  596 

The intensively folded and faulted rocks of the Mediterranean Ridge vary in geometry 597 
along strike (Cita et al., 1996; Chaumillon & Mascle, 1997; Westbrook & Reston, 2002; Kopf et 598 

al., 2003). In its western and eastern portions, the wedge accumulates sediments, but in its central 599 
portion between Libya and Crete, the ridge behaves unlike a typical accretionary complex. In this 600 

area, a trench system (the Hellenic trenches; Ptolemy, Pliny, and Strabo; Figure 9) developed in 601 
between the accretionary complex and volcanic arc, likely as a result of back-thrusting beneath 602 
the northern edge of the complex (Galindo-Zaldivar et al., 1996; Westbrook & Reston, 2002). 603 

The accretionary complex is unusual compared to others worldwide, not only because of these 604 
back thrusts but also because it appears to have formed in a continent-continent collisional 605 

setting and contains shallow, Messinian-age evaporites (e.g., Cita et al., 1996; Chaumillon & 606 
Mascle, 1997). These evaporites influence its deformation and fast growth rate due to their 607 
mechanical properties and effect upon fluid flow and pressure (Kastens, 1991; Westbrook & 608 

Reston, 2002; Kopf et al., 2003). Understanding the development of the Mediterranean Ridge is 609 

critical to determining the initiation age of the Hellenic arc, as described in the next section. 610 

3.1.2 The age of subduction of the African slab 611 

The Subduction Zone Initiation (SZI) age is defined as the onset of downward plate 612 

motion forming a new slab, which later evolves into a self-sustaining subduction zone (Crameri 613 
et al., 2020). Constraints regarding SZI age of the present-day expression of the Hellenic arc 614 
developed from several independent approaches, including timing sedimentation within the 615 

Mediterranean Ridge (Kastens, 1991; Kopf et al., 2003), analysis of topography combined with 616 
estimates of slab age and depth (McKenzie, 1978; Le Pichon et al., 2019), reconstructions of 617 
subducted slabs using tomography (e.g., Spakman et al., 1988), paleomagnetism (Savostin et al., 618 
1986; Marsellos et al., 2010), and the timing of metamorphism and volcanic activity (e.g., 619 
Fytikas et al., 1984). Early estimates for the initiation of Hellenic arc subduction are 13±3-5 Ma 620 

(Le Pichon & Angelier, 1979) to 5-10 Ma (McKenzie, 1978; Mercier, 1981) based on 621 

interpretations of seismic activity coupled with assumptions regarding the age of subducted 622 

lithosphere and subduction depths. These ages are similar to the onset of the KTZ based on 623 
geodynamic modeling and GPS data (Figure 1) (6-8 Ma, Royden & Papanikolaou, 2011) and the 624 
timing of the earliest volcanic activity in the South Aegean arc (Pliocene, Pe-Piper & Piper, 625 
2005). Reconstructions of fault systems in the northern margin of the eastern Mediterranean Sea 626 
are consistent with estimates of 15 Ma (Le Pichon et al., 2019). 627 

However, interpretations of the Aegean seismic velocity structure, tomography, and 628 
seismicity data in the Aegean area suggest older estimates (26-40 Ma; Meulenkamp et al., 1988; 629 
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Spakman et al., 1988; Papadopoulos, 1997; Brun & Sokoutis, 2010). These ages are more 630 
consistent with the ages of granitic intrusions found throughout Western Anatolia (Figure 4, 631 

Tables 5-8) and the timing of the onset of sedimentation associated with the Mediterranean 632 
Ridge at 23.6-33 Ma (Fytikas et al., 1984; Kastens, 1991). Younger estimates from the ridge are 633 
also reported (~19 Ma, Kopf et al., 2003). Plate reconstructions suggest that the Northern 634 
Hellenic trench experienced the onset of subduction from 27-34 Ma, whereas the southern 635 
Hellenic segment was active at 34 Ma (Royden & Papanikolaou, 2011).  636 

If the incoming lithosphere is heterogeneous in terms of thickness and compositions, 637 
subduction zones may behave chaotically, in that they may, over time, retreat, advance, or 638 
remain stationary at different stages (e.g., Royden & Husson 2009; Husson et al., 2009). The 639 
progressive deceleration in motion of Africa with respect to Europe in the Mediterranean region 640 
is observed to have occurred since 35 Ma, and in the eastern Mediterranean from 35 Ma to 10 641 

Ma to a convergence rate of a few mm/yr (Savostin et al., 1986; Marsellos et al., 2010). The rate 642 
of trench retreat is estimated to have accelerated from ~0.6 cm/y during the first 30 M.y. of 643 

subduction to 3.2 cm/yr during the past 15 m.y., perhaps due to Middle Miocene-Pliocene slab 644 
tear (Brun et al., 2017). Differences in the timing of initiation and rate of subduction exist 645 

between segments along the Western Hellenic Arc and should also be expected to occur along 646 
other portions of the Hellenic and Cyprus arcs (Royden & Papanikolaou, 2011; Pearce et al., 647 
2012). The timing of interpreted ductile ‘extensional’ shear fabrics in metamorphic rocks can 648 

also be complicated as these may record extrusion instead of processes associated with slab 649 
rollback (see Searle and Lamont, 2020b). 650 

These Late Cenozoic estimates are difficult to reconcile with the model in which the 651 
Hellenic arc is a single, evolving subduction zone system that initiated in the Mesozoic (Jurassic) 652 
(Faccenna et al., 2003; van Hinsbergen, 2005; Royden & Papanikolaou, 2011; Jolivet et al., 653 

2013; Malandri et al., 2017). In this scenario, the Vardar suture in Greece, equivalent to the 654 

IAESZ (Channell & Kozur, 1997; Okay & Tuysuz, 1999; Moix et al., 2008), and Pindos suture 655 
zone, equivalent to units within the Antalya domain and Dilek peninsula (Stampfli & Kozur, 656 
2006) had buoyant microcontinents that entered and locked subduction, triggering southward 657 

slab rollback and migration of the volcanic arc (van Hinsbergen et al. 2005; Brun & Faccenna 658 
2008; Jolivet & Brun 2010; Jolivet et al., 2013; Cornée et al., 2018). The model eliminates the 659 

need for multiple sutures and subducted slabs to be present beneath western Turkey and the 660 

Aegean and simplifies the evolution of the Aegean microplate to a single evolving, long-lived 661 
subduction system. The present-day curvature of the Hellenic forearc thus represents oblique 662 
subduction and a plate-boundary expression that grew systematically over long periods of 663 
geological time (Huchon et al., 1982; Le Pichon et al., 1995; ten Veen & Kleinspehn, 2003; 664 
Gautier et al. 1999; Le Pichon et al., 2002; Wallace et al., 2005, 2008; van Hinsbergen & 665 

Schmid, 2012; Philippon et al., 2014; Cornée et al., 2018).  666 

The single subduction system requires all the lower plate continental crust to be accreted 667 

into the upper plate while subducting continental lithosphere and requires the entire Aegean 668 
Crust from the Vardar suture to the Mediterranean ridge was derived from the lower plate (e.g., 669 
Figure 2 in van Hinsbergen et al. 2005). Oceans between the accreted domains were of 670 
significant size (500 km in some cases), and the process would lead to significant elevation 671 
changes, crustal thicknesses, and critical changes in the zone of subduction transitions occurred 672 
from oceanic to continental shear zones (see discussion in Le Pichon et al., 2019). Not all units 673 
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record blueschist facies conditions, and some experienced Barrovian prograde (burial) P-T paths, 674 
such as on the island of Naxos (e.g., Lamont et al., 2019).  675 

Currently, the Hellenic arc is migrating SW faster than the counterclockwise rotation of 676 
Anatolia (ten Veen & Kleinspehn, 2003), and the rate of convergence between Africa and 677 
Eurasia is 4 cm/yr (Reilinger et al., 1997; Kahle et al., 2000; McClusky et al., 2000; Hollenstein 678 
et al., 2008). Timing constraints on Aegean forearc curvature, due to opposite rotations, 679 
clockwise in the west and counterclockwise in the east, are Eocene and Middle Miocene (Morris 680 

& Robertson 1993; Cornée et al., 2018). Trench bending and rollback increased subduction 681 
obliquity over time, which has been accommodated by strain partitioning within the upper 682 
Eurasian plate (Philippon et al. 2014; Brun et al. 2016; Cornée et al., 2018). Subduction zones 683 
with limited trench-parallel lengths on the order of the Hellenic arc (600-800 km) and narrow 684 
slabs (<1,500 km) typically have rapid retreat rates (Schellart et al., 2007; Bolhar et al., 2010). 685 

3.1.3 The number, location, and impacts of slab detachments and tears 686 

An additional key focus of study has been identifying the location, depth, and 687 

relationship of ancient and present-day active subducting slabs and their detachment mechanisms 688 
beneath the Aegean and Anatolian microplates (see review in Hansen et al., 2019; El-Sharkawy 689 

et al., 2020). Several locations across the Aegean and Anatolian microplates have been suggested 690 
to be affected by slab tear, either trench parallel or perpendicular (Figure 1).  The tearing process 691 
in the near term can lead to intermediate-depth seismicity (e.g., Meighan et al., 2013) and explain 692 

earthquakes that appear inconsistent with a coherent subducting slab (e.g., Clark et al., 2008). 693 
Tears can lead to large volume magmatism (e.g., Cocchi et al., 2017), changes in igneous 694 

geochemistry, and facilitate the ore-forming process and mineral deposits (e.g., de Boorder et al., 695 
1998; Rabayrol et al., 2019; Rabayrol and Hart, 2021). The process leads to asthenosphere 696 
upwelling and changes in thermal and fluid regimes (e.g., Roche et al., 2018; Gessner et al., 697 

2018). Slab tear has been related to present and past geothermal activity in Western Anatolia and 698 

the generation of a late Eocene-Miocene metallogenic period (Pb-Zn- followed by Au-rich) 699 
(Menant et al., 2018; Gessner et al., 2018; Rabayrol & Hart, 2021). Their presence significantly 700 
affects plate dynamics, including subduction rates, plate motion, and mantle dynamics (e.g., 701 

Gianni et al., 2019).  702 

These sites vary in scale from regional to local and include the boundary between the 703 
Hellenic and Cyprus arcs (Wortel & Spakman, 1992; Biryol et al., 2011), at the Anaximander 704 

Mountains (Woodside et al., 1992), south of Crete at the Pliny–Strabo Shear Zone (Özbakır et 705 
al., 2013), the İBTZ transfer zone (e.g., Kaya, 1981; Gessner et al., 2013), and beneath the 706 
Menderes Massif itself (Biryol et al., 2011; Rabayrol & Hart, 2021). A tear is speculated to 707 
generate a ~200 km-depth low-velocity anomaly below western Turkey (Roche et al., 2019). 708 
Slab tear has been used to interpret the deep Rhodes Basin (Faccenna et al., 2014; Woodside et 709 

al., 2000) and tectonic activity within southwest Anatolia (Biryol et al., 2011; Roche et al., 710 
2019). 711 

Trench‐parallel tear affects the subducting African lithosphere between northern Greece 712 
and the Gulf of Corinth along the Western Hellenic Arc (Hansen et al., 2019). Trench-713 
perpendicular tear may accommodate the region between the Hellenic and Cyprian arcs, which 714 
differ in subduction steepness and material subducted (Dilek & Sandvol, 2009). The Cyprian arc 715 
involves shallower subduction dynamics with the Eratosthenes seamount and Anixamander 716 
Mountains (mud volcanoes; Lykousis et al., 2009) impinging on the trench (Figure 9) (Kempler 717 
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& Ben-Avraham 1987; Zitter et al. 2003). The back thrusts and tectonic geometry of the 718 
Mediterranean Ridge has led to speculation that the African slab detached in the region between 719 

Libya and Crete (Kopf et al., 2003). Alternatively, a Subduction Transform Edge Propagator 720 
(STEP., a tear fault or a hinge fault, Govers & Wortel, 2005) may exist in this region (Özbakır et 721 
al., 2013). Nine of these structures have been proposed to exist beneath southern Greece, 722 
segmenting the subducting African slab and contributing to seismicity and deformation 723 
(Sachpazi et al., 2016). A STEP is also proposed for the transition between the Cyprus and 724 

Hellenic arcs (e.g., Salaün et al., 2012; Elitez et al., 2016; Portner et al., 2018). 725 

The KTZ (Figure 1 and Figure 9) has been a particular subject of the debate regarding 726 
slab tear (see Bocchini et al., 2018; Hansen et al., 2019). The structure is part of the Western 727 
Hellenic Subduction Zone, considered one of the most seismically active areas in Europe (Pearce 728 
et al., 2012; Halpaap et al., 2018). The KTZ may represent a vertical tear along oceanic and 729 

continental lithosphere (Suckale et al., 2009), forming the KTZ as a STEP-fault (Govers & 730 
Wortel, 2005). The STEP fault may be in its initial stages of forming (Evangelidis, 2017; 731 

Özbakır et al., 2020), or the slab may have entirely detached (Wortel & Spakman, 2000). A 732 
smooth transition has also been proposed between two segments, without the presence of a tear 733 

between, at least at depths shallower than 100 km (Pearce et al., 2012; Halpaap et al., 2018). 734 

Despite the fragmentation of the subducting African lithosphere, the thickness of the 735 
Aegean and Anatolian crust is remarkably similar (Zhu et al., 2005; Sodoudi et al., 2006; 736 

Karabulut et al., 2019). Estimates from the central Menderes Massif are 28–30 km (Zhu et al., 737 
2005), whereas the thickness beneath the Aegean Sea averages ~25 km (Zhu et al., 2005; Tirel et 738 

al., 2004; Kind et al., 2015). The crustal thickness in the southern and central parts of the Aegean 739 
is reported to be thinner (20–22 km), whereas the northern Aegean Sea shows a relatively thicker 740 
crust (25–28 km) (Karagianni et al., 2005; Sodoudi et al., 2006). Depending on the model used, 741 

the crustal thickness beneath western Crete could be 32.5-35 km or up to 45 km (Snopek et al., 742 

2007). Karabulut et al. (2019) demonstrates large crustal thickness variations (20–47 km) from 743 
western Greece to eastern Anatolia but shows that these are fairly uniform within specific 744 
regions. In Western Anatolia, the crustal thicknesses are 25–30 km, increasing slightly to the 745 

north, whereas in southern Anatolia, crustal thicknesses decrease from 35 to 25 km in the 746 
Mediterranean Sea, except north of Antalya Bay, where the thickness locally reaches 40 km. A 747 

thickness of 40 km is in line with estimates of Eastern Anatolia (Kind et al., 2015), western 748 

Greece (Karagianni et al., 2005), and the Anatolian plateau (Saunders et al., 1998). 749 

These thickness estimates seem at odds with large-scale back-arc thinning typically seen 750 
in subduction zone settings (e.g., Saunders & Tarney 1984). The Aegean is not a typical back-arc 751 
basin (Agostini et al., 2010; Doglioni et al., 2002) because it is underlain by a thick layer of 752 
continental crust and lacks an ocean floor (e.g., Makris, 1978), is disrupted by the active North 753 

Anatolian Shear Zone (NASZ) in its northern portion (e.g., Brooks & Ferentinos, 1980; Gürer et 754 

al., 2006; Kokkalas et al., 2006; Kreemer et al., 2004; Lyberis, 1984). The region displays a 755 

complex tensional regime where crustal stretching is inconsistent with the geometry and 756 
direction of the subducting Hellenic slab (e.g., Mantovani et al., 1997; Agostini et al., 2010). The 757 
premise of extrusion tectonics driven by convergence in the west requires a free lateral boundary 758 
in the east. However, the Aegean plate is constructed mainly of continental lithosphere and has a 759 
similar thickness as the Anatolian plate, as seen in both bathymetry (Figure 9) and seismic 760 
reflection (e.g., Zhu et al., 2005; Sodoudi et al., 2006). However, slab ruptures associated with 761 
the differential retreat, inherited lower plate lithospheric heterogeneities, and mantle upwelling 762 
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would provide accommodation for the microplates to extrude (Agostini et al., 2010; Govers & 763 
Fichtner et al., 2016; Karabulut et al., 2019). The onset of the NASZ may be the result of slab 764 

deformation and detachment beneath the Bitlis–Hellenic subduction zone, which accelerated slab 765 
retreat in the west and indentation of the continent along the Bitlis–Zagros suture zone (Figure 1) 766 
(Faccenna et al., 2006; Schildgen et al., 2014) 767 

3.2 Timing, number, and geometry of transfer zones 768 

Transfer zones play a significant role in accommodating tectonic escape (Barbot & 769 

Weiss, 2021), and despite their importance in accommodating the present-day subduction 770 
dynamics, when, how, and why specific transfer zones occur across Western Anatolia is debated. 771 
For example, the İBTZ is a deep crustal transform fault zone consisting of NE-trending active 772 
strike-slip dominated faults and accommodates differential deformation between the Cycladic 773 
and Menderes core complexes (Uzel et al., 2013; 2020). The İBTZ is also mapped as the 774 

Western Anatolian Transfer Zone (WATZ, Gessner et al., 2013; 2017). The zone may be the 775 
surface expression of a tear in the subducting African slab (Gessner et al., 2013; Uzel et al., 776 

2015; Sümer et al., 2018) or a transition between extensional and strike-slip dynamics due to the 777 
southward rotation rollback of the subduction zone (Ersoy & Palmer, 2013; Özkaymak et al., 778 

2013; Ersoy et al., 2014; Ersoy et al., 2017; Uzel et al., 2020). Based on a compilation of data 779 
from igneous rocks throughout Western Anatolia, Uzel et al. (2020) suggest that volcanic 780 
activity in the region is always associated with the İBTZ as recorded by the positions of the 781 

eruption centers that follow the trend of the transfer zone. A lack of 40Ar/39Ar ages from igneous 782 
assemblages between 15.97 and 13.82 Ma is attributed to a pulse of core complex exhumation 783 

and a change in partitioning extension between the Cyclades and Menderes Massif. Geochemical 784 
compositions of Miocene-age (17.48–14.94 Ma) volcanoes within the transfer zone indicate their 785 
origins are decompression melting of the upper mantle/lower crust, consistent with the outcome 786 

of regional transtensional movements in a post-collisional setting (Seghedi et al., 2015). Slab-787 

tear typically results in asthenosphere-derived (Ocean-Island Basalt, OIB-like) Na-alkaline 788 
basalts, which are only exposed in the region within the northern Menderes Massif (Kula 789 
volcanics) (Holness & Bunbry, 2006; Ersoy et al., 2017).  790 

The İBTZ may trend further south into the MCL, an extensional fault exposed near or on 791 
the island of Paros that records orogen-parallel extension or transform fault motion (Figure 11) 792 
(Morris & Anderson, 1996; Avigad et al., 1998; Walcott & White, 1998; Pe-Piper et al., 2002; 793 

Tirel et al., 2009; Gessner et al., 2013; Philippon et al., 2014; Beniest et al., 2016; Malandri et 794 
al., 2017). Besides the İBTZ, the SWASZ and UMTZ are located near each other on the border 795 
of the Menderes Massif, but their influence on each other is presently unclear (Figure 2).  796 

3.3 Magmatic influence in driving extension  797 

Throughout Western Anatolia, magmatic pulses are exposed as geochemically variable 798 

extrusive and intrusive igneous rocks (Tables 1-9; Figure 4; e.g., Rossetti et al., 2017). 799 
Metamorphic core complexes with their associated post-collisional magmatic suites offer 800 

insights into the tectonic processes controlling crustal extension (e.g., Perkins et al., 2018). 801 
Extensional systems cut igneous intrusions in Western Anatolia metamorphic core complexes, 802 
and their ages are critical for timing events that facilitated their emplacement. Geochemical data 803 
regarding the depths of granite formation lends additional insight into how the mantle processes 804 
operated in the past. The picture, however, is complicated by the influence of the collisional 805 
dynamics that characterized the earlier assembly of the microplate (see Assembly section). 806 
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Granite crystallization ages provide information regarding how extension during the Eocene to 807 
Miocene migrated through Western Anatolia and the Aegean region in the past (e.g., Delaloye & 808 

Bingöl, 2000; Pe-Piper, 2000; Altunkaynak & Dilek, 2006; Altunkaynak et al., 2012). 809 

Magma bodies can drive extension through the conductive transfer of heat from 810 
upwelling of hot, asthenospheric mantle beneath significantly extended crust, and small volume 811 
partial melts can exploit crustal pathways developed during extensional deformation (e.g., 812 
McKenzie & Bickle 1988; von Blanckenburg & Davies 1995; Perkins et al., 2018). Volatiles 813 

facilitate additional crustal deformation and metamorphism, resulting in feedbacks between 814 
decompression and mantle upwelling and driving additional lithospheric melting (Teyssier & 815 
Whitney, 2002; Kendall et al., 2005; Whitney et al., 2013; Platt et al., 2015; Perkins et al., 2018). 816 
The Menderes Massif of western Turkey is suggested to be a key area to study feedback 817 
relationships between magma generation/emplacement, rheological weakening, activation of 818 

extensional detachment tectonics (Rossetti et al., 2017). The island of Naxos likewise illustrates 819 
the interplays between lower crustal flow and upper crustal extension and between buoyancy- 820 

and isostasy-driven controls in developing migmatite domes (Kruckenberg et al., 2011). The 821 
connections between detachment faulting and magma emplacement have also been explored in 822 

the Cyclades (e.g., Rabillard et al., 2018). 823 

To determine the role between magma generation and extension requires understanding 824 
intrusive rock relationships to fault structures. In Western Anatolia, maps of the same pluton are 825 

commonly inconsistent in terms of the locations of structures that may have affected or result 826 
from exhumation. For example, the northern boundary of the Kozak pluton (Figure 4) is shown 827 

by some as an intrusive contact (Akal & Helvacı, 1999) but by others as fault-bounded 828 
(Altunkaynak & Yilmaz, 1998; 1999; Yilmaz et al., 2001). The Eğrigöz, Koyunoba, and Alaçam 829 
plutons (Figure 4) have been the focus of many field-based, geochemical and geochronological 830 

studies, but conflicting ideas exist regarding their relationship to the SDF (Figure 7) (see Catlos 831 

et al., 2012). For example, Işık and Tekeli (2001) map the SDF only along the northern portion 832 
of the Eğrigöz pluton, whereas Ring and Collins (2005) and Işık et al. (2004) indicate the SDF is 833 
exposed along the western edge of both the northern Eğrigöz and Koyonba plutons. Seyitoğlu et 834 

al. (2004) place the SDF within the central portion of the Eğrigöz pluton, whereas Ersoy et al. 835 
(2010) mark the structure as following the outer boundaries of the Eğrigöz and Koyunoba 836 

bodies. Thomson and Ring (2006) place the detachment prominently along the northern edge and 837 

central portion of the Eğrigöz granite and along the eastern edge of the Koyunoba body. Recent 838 
gravity measurements suggest an igneous intrusion at depth near the Simav Fault (Toker et al., 839 
2018, 2019). The 12-15 km-thick intrusion is located in the NE margin of the Simav graben at 840 
2.5-3 km below the surface and has been suggested to be a primary driver of recent-day 841 
seismicity. Developing links between magmatism and extensional dynamics requires a critical 842 

structural understanding of the granite petrology, structures, and clear delineation between how it 843 

appears affected by fault systems (e.g., Kruckenberg et al., 2011; Rabillard et al., 2018). 844 

In Western Anatolia, many published maps also do not distinguish different granite types 845 
or textural orientations (Karacik & Yılmaz, 1998; Akal & Helvacı, 1999; Şahı̇n et al., 2010). 846 
Mineral lineations and solid-state or magmatic fabrics associated with faulting or shearing are 847 
rarely reported. Besides the standard structural and petrographic analyses, cathodoluminescence 848 
(CL) images of extensional-related Western Anatolia granites (Salihli and Turgutlu, Catlos et al., 849 
2010; Eğrigöz, Koyunoba, and Alaçam, Catlos et al., 2012; Figure 4) help document mineral 850 
zoning, deformation, and fluid alteration (e.g., Ramseyer et al., 1992; Catlos et al., 2016). 851 
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Western Anatolia granites share many similar microtextural characteristics in CL., 852 
including evidence for fluid interactions and multiple generations of microcracks. The samples 853 

show secondary alteration textures, mineral growth generations, and evidence for fluid 854 
migration. The generations of microfractures, microcracks, and microfaults seen in CL document 855 
that these granites experienced brittle deformation multiple times, both at depth and at lower 856 
temperatures near the surface (Catlos et al., 2010; 2012). CL imagery is a powerful tool for 857 
identifying mineral textural relationships, growth histories, and deformation structures of 858 

Western Anatolia granite assemblages.  859 

3.4 Timing the switches in the stress regimes in Western Anatolia 860 

The Simav Fault system illustrates another outstanding question regarding deciphering 861 
stress regimes within Western Anatolia (Figure 7). On 19 May 2011, a magnitude 5.7 (Mww, 862 
USGS and Turkish Ministry of the Interior, Disaster and Emergency Management Presidency, 863 

Earthquake Department, AFAD) earthquake occurred near the town of Simav. The epicenter was 864 
located ~53 km NNW of Uşak and ~82 km WSW from Kütahya in western Turkey at 20:15:23.4 865 

GMT. The estimated depth of the earthquake varies (Doğangün et al., 2013). Table 9 reports the 866 
24.46 km result from AFAD, although the USGS Earthquake Catalog suggests a shallower 7.0 867 

km depth. Görgün (2014) estimated a best-fit hypocenter depth of 10 km and 6.0 magnitude 868 
(Mw). Karasözen et al. (2016) indicate that the centroid depth was 7–9 km, but the hypocenters 869 
of the mainshock and largest aftershocks were located systematically deeper at depths of 10–22 870 

km. In approximately the same location, an Mw ∼5.1 event preceded the mainshock on 17 871 

February 2009, and an Mw 4.4 foreshock occurred 15 min before the mainshock (e.g., Karasözen 872 
et al., 2016).  873 

The Simav region is considered to be one of the most seismically active portions of 874 

Western Anatolia (Inel et al., 2013; Görgün, 2014), and the 19 May 2011 Simav (Kütahya) 875 

earthquake was the largest felt in the region since the destructive 1969 Demirci and 1970 Gediz 876 
earthquake sequences (e.g., Ilhan, 1971; Ambraseys & Tchalenko, 1972; Eyidoğan & Jackson, 877 
1985). All of these earthquakes involved dominant normal faulting with nucleation zones from 6-878 

10 km depth and dips of 30-50° (Eyidoğan & Jackson, 1985; Emre & Duman, 2011; Görgün, 879 
2014; Karasözen et al., 2016). However, a strike-slip component is recorded by some of the 880 

aftershocks of the 1969 and 1970 earthquakes and the 2011 Simav event (Figure 7B) (Ambraseys 881 
& Tchalenko, 1972; Eyidoğan & Jackson, 1985; Emre & Duman, 2011). In addition, Figure 7B 882 

shows that some earthquakes in the Simav region after the 2011 event also yield fault plane 883 
solutions that include some or a significant strike-slip component.  884 

The epicenters of these earthquakes occurred near the Simav Fault (Figure 7) (Seyitoğlu, 885 
1997; Ersoy et al., 2010). The fault extends ~150 km between the towns of Banaz in the east and 886 
Sındırgı in the west (Ambraseys & Tchalenko, 1972; Seyitoğlu, 1997; Ersoy et al., 2010). It may 887 

be part of a larger extensional Akşehir-Simav Fault System (Koçyiğit & Deveci, 2007), which 888 
extends >250 km from the town of Akşehir in south-central Turkey and includes the Sultandağ 889 

Fault in the east (Aksarı et al., 2010). Or, it may be part of the Sındırgı-Sincanlı Fault Zone 890 
(SSFZ) between the towns of Soma and Afyon (Doğan & Emre, 2006). The Simav Fault may 891 
also connect to the Muratdağ Fault near the town of Gediz in an en echelon pattern, which lends 892 
support for a right-lateral system (Ambraseys & Tchalenko, 1972). Where the Akşehir-Simav 893 
Fault System is located between the cities of Uşak and Afyon is unclear (e.g., Karasözen et al. 894 
2016). 895 
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The Simav Fault is assigned as an active right-lateral strike-slip fault in active tectonic 896 
maps of Turkey (Şaroğlu et al., 1992; Emre et al., 2011). This sense of motion is based on offsets 897 

of metamorphic zones east of Simav (Konak, 1982; Seyitoğlu, 1997) and its relationship to the 898 
formation of the NAFZ (Konak, 1982; Doğan & Emre, 2006; Emre & Duman, 2011). The strike-899 
slip motion is also consistent with uniform (magnitude and orientation) GPS plate velocity 900 
vectors that show the region is extruding through an SW motion from 30–40 mm/yr (McClusky 901 
et al., 2000; Reilinger et al., 2006, 2010). However, the detailed analysis of the Simav fault 902 

mechanisms consistently indicates a normal mechanism (Görgün, 2014; Yolsal-Çevikbilen et al., 903 
2014; Demirci et al., 2015; Karasözen et al., 2016; Bello et al., 2017; Mutlu, 2020). This origin is 904 
linked to subduction-related extension along the Hellenic and Cyprus arcs (e.g., Seyitoğlu, 1997; 905 
Işik et al., 2003; Ersoy et al., 2010; Görgün, 2014; Yolsal-Çevikbilen et al., 2014; Demirci et al., 906 
2015; Karasözen et al. 2016; Bello et al., 2017).  907 

If the Simav Fault was initiated as a strike-slip system but switched to extension 908 
sometime after the Late Miocene is possible (Oygür & Erler, 2000). Strike-slip motion has also 909 

been speculated to predate subsidence currently experienced by Western Anatolia and may be 910 
related to Eocene to Oligocene compression (Oygür & Erler, 2000). Based on an analysis of the 911 

available data from the 19 May 2011 event, Görgün (2014) indicate that the hypocenter 912 
distribution is consistent with the activation of two nearly parallel faults: one northern one with a 913 
fault plane trending mainly E–W and dipping towards SE and a southern fault plane trending 914 

NW–SE and dipping towards SE. The strike-slip mechanisms are delegated to smaller fault 915 
segments that experience a stress change after the mainshock and more minor secondary faults in 916 

the region with different mechanisms. Karasözen et al. (2016) suggest the potential involvement 917 
of structures inherited from earlier deformation phases of shortening and extension in evaluating 918 
the nature of motion along the structure.  919 

The Simav E-W trending-graben hosts one of Turkey’s most important geothermal 920 

systems (Bello et al., 2017). Based on a study of geothermal activity, soil radon gas release, and 921 
regional seismicity patterns, İnan et al. (2012) suggests that the epicentral area of the 19 May 922 
2011 Simav earthquake is located within a block that is tectonically separated from Aegean 923 

Extensional Province and the Marmara Region. The observation is also supported by geodetic 924 
data that show a region surrounding the event behaves distinctly from the Aegean Extensional 925 

Province (Tiryakioğlu, 2011). Yolsal-Çevikbilen et al. (2014) suggest the magnitude of the stress 926 

drop associated with the 19 May 2011 event (62 bars) is more consistent with an intraplate 927 
earthquake compared to those associated with Aegean plate boundaries (3-11 bars).  928 

3.5 Relating geological units and events across boundaries 929 

As noted in the Geological Background section, several units and structures can be 930 
correlated from Western Anatolia to the Aegean region. For example, the Cyclades Blueschist 931 

Unit (CBU) from the southern portion of the Menderes Massif (Figure 12A) is often matched to 932 
outcrops exposed in the Cyclades (Ring et al., 1999; Roche et al., 2018; Çetinkaplan et al., 2020; 933 

Barbot and Weiss, 2021), but distinguishing structures developed during subduction-related 934 
burial and prograde metamorphism from those that formed due to decompression and 935 
retrogression is problematic (e.g., Rosenbaum et al., 2002; Xypolias et al., 2012; Çetinkaplan et 936 
al., 2020). The CBU experienced multiple phases of deformation and mineralogical 937 
transformations (e.g., Seman et al., 2017; Gerogiannis et al., 2019). Identifying local internal 938 
structures from those that would correlate as significant deformation zone poses a challenge. 939 
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Çetinkaplan et al. (2020) suggest that the contact between the Menderes Massif and the CBU, 940 
now defined by a ductile thrust fault, was originally a lithosphere-scale transform fault zone. 941 

The timing of detachment systems in the Menderes Massif are similar to those estimated 942 
in the Cyclades. Three major Aegean microplate detachment systems include the North Cycladic 943 
Detachment on Andros, Tinos, and Mykonos (Figure 11) (e.g., Jolivet et al., 2010), the Naxos-944 
Paros Detachment on Naxos and Paros (Buick, 1991; John & Howard, 1995; Cao et al., 2013), 945 
and the West Cycladic Detachment on Serifos (Grasemann et al., 2012). The North Cycladic 946 

Detachment may have initiated activity in the Oligocene until the Late Miocene (e.g., Jolivet et 947 
al., 2010). The Naxos-Paros Detachment records retrogression associated with its latest activity 948 
in the Late Miocene (e.g., Cao et al., 2017). These time frames are similar to constraints 949 
estimated for the activity of detachment faulting in the central Menderes Massif (Hetzel et al., 950 
1995a, Hetzel et al., 1995b, Işık et al., 2003, Glodny & Hetzel, 2007; Catlos et al., 2010). The 951 

Cyclades Detachments cross-cut blueschist-amphibolite facies fabrics and post-date HP 952 
metamorphism and peak Barrovian metamorphism (Searle and Lamont, 2020a). 953 

Another correlation links the lithologies, conditions, and metamorphic history of 954 
Menderes Massif nappes to those in the Cyclades (e.g., Robertson et al., 1991; Ring et al., 1999; 955 

Stampfli, 2000; Çetinkaplan et al., 2020). Menderes Massif nappes have zoned garnets useful for 956 
generating P‐T conditions and paths (e.g., Figure 12B and Figure 13). These paths are often 957 
developed by connecting peak metamorphic conditions of individual rocks, inferences from 958 

mineral assemblages, pseudosections, or Gibbs method thermodynamic modeling (e.g., 959 
Ashworth & Evirgen, 1984; 1985a,b; Ring et al., 2001; Whitney & Bozkurt, 2002; Cenki‑Tok et 960 

al., 2016; Etzel et al., 2019; 2020). Despite these studies, the number and timing of garnet-961 
growth events recorded in the rocks remain unclear. Some Çine nappe rocks experienced two 962 
stages of garnet growth (Ring et al., 2001), whereas other samples are consistent with one 963 

episode (Régnier et al., 2007). Pan-African garnet growth is recorded in the Menderes Massif, 964 

and conditions could reflect events unrelated to MMM (Ring et al., 2004; Catlos & Çemen, 965 
2005). Gessner et al. (2001) report that the Bayındır nappe deformed once during the Eocene 966 
related to MMM., whereas the Bozdağ, Çine, and Selimiye nappes record pre-MMM and MMM 967 

events. This contradicts Oberhaensli et al. (1997), who suggest the cover sequence records 968 
deformation during the Eocene, but structurally lower units record pre-MMM events. Studies of 969 

Bozdağ nappe rocks show prograde burial, but conditions decrease downward by ~40°C/kbar per 970 

km of structural section (inverted metamorphism, Ring et al., 2001). Selimiye nappe rocks record 971 
exhumation and retrogression (Régnier et al., 2007). Paths in Figure 12B were generated by 972 
connecting peak metamorphic conditions of individual rocks, inferring from mineral 973 
assemblages, pseudosections, or Gibbs method thermodynamic modeling. P-T paths that 974 
decrease in pressure or temperature suggest the potential for tectonic switching as unloading and 975 

refrigeration occur when the thrust reverses and experiences extension.  976 

Challenges for generating P-T conditions and paths include a prior garnet-producing 977 

history and retrograde fluid-inducted alteration and overprinting as the core complex formed 978 
(e.g., Satir & Taubald, 2001; Régnier et al., 2003; Catlos & Çemen, 2005; Baker et al., 2008; 979 
Candan et al., 2011). Menderes Massif rocks are known to yield problematic P-T estimates based 980 
on evidence of disequilibrium among phases and the application of barometers to inappropriate 981 
(uncalibrated) mineral compositions (Ashworth & Evirgen, 1984; 1985a,b). In some cases, 982 
calculated conditions appear at odds with observed mineral assemblages and structural data 983 
(Ring et al., 2001; Whitney & Bozkurt, 2002). Pressure estimates using conventional approaches 984 
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are challenging to obtain due to the lack of appropriate mineral assemblages (Iredale et al., 985 
2013). Problems may arise if the chosen mineral compositions for thermobarometric calculations 986 

are associated with retrogression instead of the desired prograde conditions. P‐T paths that only 987 
rely on core and rim measurements are also limited in their ability to test models developed 988 
regarding lithospheric response to perturbations, including motion within fault zones.  989 

One promising avenue to address this issue is the application of isochemical phase 990 
equilibria modeling. Figure 13 shows this approach applied to garnets from the Menderes 991 

Massif’s Çine, Selimiye, and Bayindir nappe from Etzel et al. (2019) and Etzel et al. (2020) and 992 
a sample from the Northern Menderes Massif from Cenki-Tok et al. (2016). The researchers 993 
report petrological details, X-ray element maps, and geochemical data from the rocks. They 994 
compositionally analyzed micaschists with a mineral assemblage of garnet + biotite + 995 
plagioclase + muscovite + quartz + rutile ± ilmenite ± apatite ± pyrite ± zircon ± monazite. The 996 

sample from the Northern Menderes Massif contains kyanite and small porphyroblasts of 997 
staurolite. Using data reported in the papers, isochemical phase diagrams were created using rock 998 

bulk compositions, the software package Theriak‐Domino (de Capitani & Brown, 1987; de 999 
Capitani & Petrakakis, 2010) with the Holland and Powell (1998; 2010) thermodynamic data set, 1000 

and appropriate mixing models in the system MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–1001 
SiO2–H2O–TiO2. Isopleths of ±0.01 mole fraction spessartine, almandine, pyrope, and grossular 1002 
corresponding with the garnet core composition, are plotted on the phase diagram. This portion 1003 

of the diagram with intersecting isopleths approximates the chemical system at the time garnet 1004 
began growth. This diagram also tests if the thermodynamic data set and mixing models used in 1005 

the modeling are appropriate for these particular samples, as expected mineral assemblages 1006 
appeared in the phase diagrams with intersecting isopleths.  1007 

After the garnet core conditions are estimated, a Matlab script was applied to each step 1008 

along a garnet compositional traverse from core to rim to yield both an estimate of the P‐T 1009 

conditions of incremental growth and a new effective bulk rock composition, ultimately 1010 
culminating in a high-resolution P‐T path. High-resolution P-T paths are defined as those derived 1011 
from fractionated equilibrium phase diagram modeling and the resolution is an outcome of the 1012 

number of garnet fractionated steps. Garnets with complex zoning profiles, modified by 1013 
diffusion, or rocks that experienced major changes in bulk composition over their growth history 1014 

are not candidates (e.g., Catlos et al., 2018). However, even these types of samples may provide 1015 

clues by exploring the reason for their failure (e.g., Catlos et al., 2018; Etzel et al., 2020). Ideal 1016 
samples are those with garnets that preserve prograde, gradational core‐to‐rim zoning profiles. 1017 
Garnets from the Selimiye and Bayindir nappes of the Southern and Central Menderes Massif, 1018 
respectively, show similar trajectories. However, the Çine nappe garnet yields an N-shape path 1019 
and a significantly different metamorphic history.  1020 

Either tectonically-driven extension may have created the N-shaped P-T path during 1021 

orogenesis or the result of erosional exhumation during pulses of thrust motion (Etzel et al., 1022 

2019). Etzel et al. (2019) developed two thermal models: erosional denudation followed by fault 1023 
reactivation (Figure 14A) and tectonic switching (Figure 14B), which are briefly summarized 1024 
here. Figure 14A and Figure 14B show an upper equilibrium thermal grid (depth vs. horizontal 1025 
distance) before faulting with the position of fault (grey line) arbitrarily selected at 30°. Fault 1026 
displacement varies linearly across shear zones. The grid includes reflecting side boundaries and 1027 
top and bottom maintained at 25°C and 700°C and an initial geothermal gradient at 25°C/km 1028 
indicated by shaded zones. A hatched area shows the position of the Selimiye samples, and the 1029 
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grey bar represents the approximate initial location of the Çine nappe garnet with the N-shaped 1030 
P-T path. This position is also represented by point 1 in the P-T path insets. In Figure 14C and 1031 

Figure 14D, the fault is active. A finite-difference solution to the diffusion-advection equation is 1032 
used to examine the P-T variations in the hanging wall and footwall due to its motion. The rock 1033 
sample experiences the point 1 to 2 in the P-T path insets. Fault motion stops and denudation 1034 
occurs in Figure 14E and, whereas extension occurs in Figure 14F. This process is based on the 1035 
mid-rim lower pressure portion of the garnet P-T path and is represented by points 2 to 3 on the 1036 

P-T path insets. Although the end, the surface geometry in the denudation phase (Figure 13E) 1037 
and extensional phase (Figure 14F) are similar, the shape of the isotherms is different and leads 1038 
to the development of a decrease in temperature in the P-T loop observed in the tectonic 1039 
switching model. Finally, the fault is reactivated, represented by Figure 14G to Figure 14H. The 1040 
decrease in pressure with increasing temperature is related to an episode of denudation (model 1) 1041 

rather than a tectonic switch from compression to extension (Etzel et al., 2019).  1042 

The P-T paths reported in Figure 13 approximate how a garnet with specific 1043 

compositional zoning would behave in a closed system of a known bulk composition as it 1044 
evolves during increasing T. A critical assumption is that the minerals in a sample experienced 1045 

equilibrium, which can never be proven for any rock system (e.g., Spear & Peacock, 1989; 1046 
Lanari & Duesterhoeft, 2019). Closed system behavior also requires the original compositions of 1047 
the mineral phases, and the bulk rock has not changed significantly since metamorphism (e.g., 1048 

Lanari and Engi, 2017). Multiple sources of error are inherent, including uncertainty in the 1049 
accuracy of end-member reactions, electron microprobe analyses, calibration errors, variations in 1050 

activity models, compositional heterogeneity, and uncertainty associated with the 1051 
thermodynamic properties inherent in the choice of internally consistent database (e.g., Kohn & 1052 
Spear, 1991; White et al., 2014; Palin et al., 2016; Lanari & Duesterhoeft, 2019). Garnets with 1053 

significant changes in composition over short distances from core to the rim and those affected 1054 

by diffusion cannot be modeled. Garnets in samples that experienced significant changes in bulk 1055 
composition or multiple deformation episodes resulting in modification of composition are also 1056 
unsuitable.  1057 

A significant value of the high-resolution P-T path and isopleth approaches is that a user 1058 
can detect when systems stray from the equilibrium and closed system assumptions. Confidence 1059 

in paths and conditions increases when minerals assemblages agree with rock observations and if 1060 

the P-T paths reproduce trends in garnet zoning. Samples collected from the same outcrop or 1061 
nearby should yield similar P-T conditions and paths. In addition, a user can gauge the extent of 1062 
overlapping mineral isopleths in P-T space, including if matrix mineral compositions overlap the 1063 
garnet rim conditions. These paths are the first steps in developing critical insights into the 1064 
metamorphic history of the assembly of the Menderes Massif and, combined with age 1065 

information from the garnet itself or matrix or mineral inclusions, can be used to test models for 1066 

the development of Western Anatolia. 1067 

4. Conclusions 1068 

This paper is divided into two major sections. The first outlines, as much as is possible, 1069 
our present-day understanding of the geological history of Western Anatolia from its assembly 1070 
through its extensional and strike-slip history. We aim to illustrate the complex tectonic scenario 1071 
before the onset of large-scale extension and emphasize the present-day change in stress regime 1072 
towards strike-slip tectonics. The transitions are also comparable in duration and timing to those 1073 
experienced by the Aegean microplate.  1074 
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The second part highlights some outstanding questions that remain to be addressed. 1075 
These include issues regarding the dynamics of the African slab along the Hellenic arc, the arc's 1076 

geometry and connections to other subduction systems, and reconciling the Jurassic initiation age 1077 
of subduction with Late Cenozoic sedimentation, magmatic, and paleogeographic data that are 1078 
consistent with younger initiation. In addition, a large number of regions of slab tear are 1079 
proposed throughout the African slab, and their influence on accommodating extrusion, creating 1080 
economic resources, and driving lithospheric thinning and magmatism should be explored. Other 1081 

questions include investigating the influence of transfer zones in accommodating deformation 1082 
and the role of magma in driving extension in Western Anatolia. 1083 

The interface between Western Anatolia and the Aegean region exemplifies tectonic 1084 
transitions and how the interplay between large-scale tectonics influences smaller-scale 1085 
processes. The Aegean and western Turkey contain helpful assemblages that can be exploited to 1086 

time these processes that shape the lithosphere and are critical in understanding the region's 1087 
hazards and mineralizations. Extracting high-resolution P-T paths from Western Anatolia garnet-1088 

bearing rocks is a promising approach to evaluate tectonic models and correlate and compare 1089 
metamorphic histories of nearby assemblages and from those across long distances. 1090 
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Tables 2702 
Table 1. Brief summary of some available ages from granitic assemblages that intrude the 2703 

Istanbul-Zonguldak Zone.  2704 

Granite Locationa Approach Age Reference 

Late Pan-African Granitoids or Cadomian Granitoids 

Karadere  

(Karabuk 

metagranite) 

1 U-Pb zrn 924±4 

620±2  

Chen et al. (2002) 

Karadere  

(Karabuk 

metatonalite) 

1 U-Pb zrn 668±7  

589±4 

Chen et al. (2002) 

Bolu (Tüllükiris) 2 U-Pb zrn 576±6 Ustaömer et al. (2005) 

Bolu (Kapıkaya) 2 U-Pb zrn 565.3±1.9 Ustaömer et al. (2005) 

Karadere 

(Karabuk) 

1 Sm-Nd grt + wr 559±8  Chen et al. (2002) 

Devonian  

Bolu 2  389, 200 

273-255 

229.6±4.2/2.3  

Ustaömer et al. (2012) 

Bolu 2 40Ar/39Ar or + hbl 381.1±7.1 

93.3±2.0 

Delaloye and Bingöl 

(2000) 

Permo-Triassic 

Bolu (Sünnice 

Group) 

2 207Pb/206Pb zrn 262±19 Ustaömer et al. (2005) 

Sancaktepe 3 U-Pb zrn 257.3±1.5 

253.7±1.8 

Aysal et al. (2018) 

Akyazi 4 40Ar/39Ar or + chl 240.4±4.9 

86.1±2.0 

Delaloye and Bingöl 

(2000) 

a See Figure 4 for locations of these granite bodies. 2705 
b Abbreviations after Whitney and Evans (2010), wr= whole rock. 2706 
 2707 

 2708 

 2709 
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 2711 
 2712 
 2713 
 2714 
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 2716 
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Table 2. Brief summary of some available ages from granitic assemblages that intrude the 2718 
Tavşanlı Zone. 2719 

Granite Location Approach Age Reference  

Western Tavsanli Zone: Suture Zone Granitoids 

Topuk 5 40Ar/39Ar bt+kfs 63.5±2.8 

43.0±2.7  

Delaloye and Bingöl 

(2000) 

Orhaneli 6 40Ar/39Ar bt+hbl 57.9±1.2 

31.4±0.6  

Delaloye and Bingöl 

(2000) 

Orhaneli 6 40Ar/39Ar bt+hbl 52.6±0.4 

52.4±1.4 

Harris et al. (1994) 

Topuk 5 40Ar/39Ar bt+hbl 47.8±0.4 Harris et al. (1994) 

Tepeldag 

(Gürgenyayla) 

7 U-Pb zrn 44.9±0.2 Okay and Satir 

(2006) 

Tepeldag 

(Gürgenyayla) 

7 Rb-Sr bt 44.7±0.4 Okay and Satir 

(2006) 

Eastern Tavsanli Granitoids 

Kaymaz 9 U-Pb zrn 84.98±6.27 Gautier (1984) 

Sivrihisar 10 U-Pb zrn 79.9±8.6 

42.4±2.4 

Shin et al. (2013) 

Sarıkavak 

(Topkaya)  

11 U-Pb zrn 65.9±3.8 

 

Gautier (1984) 

Sivrihisar 10 40Ar/39Ar bt+hbl 62.9±1.3 

56.8±0.2  

Delaloye and Bingöl 

(2000) 

Karacaören 

(Günyüzü) 

10 40Ar/39Ar hbl+bt 59.3±3.0 

46.7±2.3 

Demirbilek et al. 

(2018) 

Tekoren 

granodiorite 

(Günyüzü) 

10 40Ar/39Ar hbl+bt 57.8±2.3 

23.4±1.1 

Demirbilek et al. 

(2018) 

Dinek 

granodiorite 

(Günyüzü) 

10 40Ar/39Ar hbl+kfs 55.9±2.7 

45.3±1.8 

Demirbilek et al. 

(2018) 

Kaymaz 9 40Ar/39Ar kfs 54.0±2.1 

52.1±2.0  

Demirbilek et al. 

(2018) 

Sivrihisar 10 40Ar/39Ar hbl 53.2±2.1 

44.7±1.7 

Demirbilek et al. 

(2018) 

Kadinicik 

(Günyüzü) 

10 40Ar/39Ar hbl+wr 52.8±2.4 

45.7±1.7 

Demirbilek et al. 

(2018) 

Kaymaz 9 U-Pb zrn 44.3±4.9  

19.4±4.5 

Shin et al. (2013) 

Sivrihisar 

(Kadnıcık/Günyüzü) 

10 Rb-Sr kfs+bt 47.0±1.6 Bağcı et al. (2012) 

Sivrihisar 10 40Ar/39Ar kfs 46.02±0.21 This study 

Sivrihisar 

(Karacaören 

/Günyüzü) 

10 Rb-Sr kfs+bt 40.8±3.0 Bağcı et al. (2012) 

a See Figure 4 for locations of these granite bodies. 2720 
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b Abbreviations after Whitney and Evans (2010), wr= whole rock. 2721 
 2722 

Table 3. Brief summary of some available ages from granitic assemblages associated with 2723 
rocks between the Sakarya and Istanbul Zones. 2724 

Granite Location Approach Age Reference  

Middle Eocene Magmatic Rocks (South Marmara Granitoids) 

Şevketiye 12 40Ar/39Ar ms 71.9±1.8 Delaloye and Bingöl 

(2000) 

İlyasdağ tonalite 

(Marmara Island) 

13 U-Pb zrn 56.7±0.8 

46.1±0.7 

Ustaömer et al. (2009) 

Karabiga (Lapeski) 14 U-Pb xtm 52.7±1.9 Beccaletto et al. 

(2007) 

Fistikli (Armutlu–

Yalova) 

15 40Ar/39Ar bt+ms  48.2±1.0 

34.3±0.9  

Delaloye and Bingöl 

(2000) 

Karabiga (Lapeski) 14 40Ar/39Ar bt 45.3±0.9 Delaloye and Bingöl 

(2000) 

Kapidağ 16 40Ar/39Ar hbl+bt 42.2±1.0 

38.2±0.8 

Delaloye and Bingöl 

(2000) 

Avsa Island 17 K-Ar bt 40.9±1.1 Karacık et al. (2008) 
a See Figure 4 for locations of these granite bodies. 2725 
b Abbreviations after Whitney and Evans (2010), wr= whole rock. 2726 
 2727 

 2728 
 2729 
 2730 

 2731 

 2732 
 2733 
 2734 

 2735 
 2736 

 2737 
 2738 
 2739 
 2740 

 2741 
 2742 
 2743 

 2744 
 2745 
 2746 
 2747 

 2748 
 2749 
 2750 

 2751 



Manuscript accepted to AGU Books 

 

Table 4. Brief summary of some available ages from granitic assemblages that intrude the 2752 
Central Sakarya Zone. 2753 

Granite Location Approach Age Reference  

Late Pan-African Grantoids or Cadomian Granitoids 

Pamukova 18 U-Pb zrn 582.0±9.1 

446.0±3.8 

Okay et al. (2008) 

 

Gemlik 15 U-Pb zrn 575.5±3.6 

438.9±4.5 

Okay et al. (2008) 

Silurian-Devonian  

Saricakaya 19 U-Pb zrn 419±6  

434±7  

319±5 Ma  

Topuz et al. (2020) 

Carboniferous 

Inhisar 18 40Ar/39Ar ms+chl 348.5±6.6 

213.5±4.4 

Delaloye and Bingöl 

(2000) 

Gevyke 20 U-Pb zrn 327±12  Ustaömer et al. (2016) 

Söğüt granite 

(Saricakaya, Çaltı) 

19 U-Pb zrn 327.2±1.9 Ustaömer et al. (2012) 

Söğüt granite 

(Saricakaya, Küplü) 

19 U-Pb zrn 324.3±1.3 Ustaömer et al. (2012) 

Söğüt granite 

(Saricakaya, 

Borçak) 

19 U-Pb zrn 319.5±1.1 Ustaömer et al. 

(2012) 

Bilecik 21 40Ar/39Ar bt+or 312.1±6.0 

233.5±4.8 

Delaloye and Bingöl 

(2000) 

Permian     

Söğüt granite  19 40Ar/39Ar bt  290±4.8 Okay et al. (2002) 
Jurassic to Late Cretaceous  

Pamukova 18 40Ar/39Ar or +chl  168.2±3.5 

123.0±2.8 

Delaloye and Bingöl 

(2000) 

Beypazari 22 U-Pb zrn 95.4±4.2 

70.5±3.4 

Speciale et al. (2012) 

Beypazari 22 40Ar/39Ar bt 80.1±1.4 

79.2±0.9 

Okay et al. (2020) 

Beypazari 22 U-Pb zrn 74.8±0.4 

73.2±1.4 

Okay et al. (2020) 

Beypazari 22 40Ar/39Ar hbl 82.9±1.8 

77.7±4.5  

Delaloye and Bingöl 

(2000) 
a See Figure 4 for locations of these granite bodies. 2754 
b Abbreviations after Whitney and Evans (2010), wr= whole rock. 2755 
 2756 
 2757 
 2758 
 2759 
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Table 5. Brief summary of some available ages from granitic assemblages that intrude the 2760 
Western Pontides Zone. 2761 

Granite Location Approach Age Reference  

Proterozoic 

Karacabey (Tamsali) 23 U-Pb zrn 

(inherited cores) 

1961.9±16.4 

804±10.5  

Aysal et al. (2012) 

Evciler (Kazdağ) 24 U-Pb zrn 805, 286 Ustaomer et al. (2012) 

Karaburun 25 U-Pb zrn 

 

1800, 960, 

380, 297 

Ustaomer et al. (2012) 

Devonian  

Güveylerobası 

(Çamlik-related) 

26 U-Pb zrn 401.5±4.8  Aysal et al. (2012) 

Karacabey (Tamsali) 23 U-Pb zrn 400.3±1.4  Aysal et al. (2012) 

Eybek (Çamlik) 27 U-Pb zrn 397.5±1.4 Okay et al. (2006) 

Karacabey (Tamsali) 23 Pb-Pb zrn 395.9±4.1 

393.8±2.7  

Sunal (2012) 

Güveylerobası 26 U-Pb zrn 371.2 ± 2.3 Ustaömer et al. (2016) 

Permo-Triassic  

Karacabey (Tamsali) 23 40Ar/39Ar bt 298.3±5.8 

199.4±4.0 

Delaloye and Bingöl 

(2000) 

Karacabey (Tamsali) 23 40Ar/39Ar bt 304.5±3.7 

223.0±7.5 

Sunal (2012) 

Kozak  

 

28 U-Pb zrn 280.2±18.2 

259.1±13.8  

Black et al. (2013) 

 

Karaburun 25 U-Pb zrn 244.4±1.5 Ustaomer et al. (2012) 

Evciler 24 U-Pb zrn 229.6±0.60  Ustaomer et al. (2012) 

Karacabey (Tamsali) 23 (U/Th)-He zrn 93.0±6.9 Sunal (2012) 

Late Eocene-Oligocene-Miocene  

Kozak 28 40Ar/39Ar or +bt 37.6±3.3 

19.5±0.4  

Delaloye and Bingöl 

(2000) 

Kozak 28 
 

U-Pb zrn 36.5±6.6 

17.1±0.7 

Black et al. (2013) 

 

Evciler (Kazdağ) 24 40Ar/39Ar chl+bt 36.0±1.4 

26.4±0.6  

Delaloye and Bingöl 

(2000) 

Evciler (Kazdağ) 24 U-Pb zrn 24.8±4.6  Erdoğan et al. (2013) 

Evciler (Kazdağ) 24 207Pb-206Pb zrn 28.2±4.1  

26.0±5.6 

Erdoğan et al. (2013) 

Uludağ 29 U-Pb zrn 34.71±0.34 

28.24±0.39  

Topuz and Okay 

(2017) 

Eybek  

 

27 U-Pb zrn 32.5±3.0 

21.0±1.2 

Black et al. (2013) 

Katrandag 30 40Ar/39Ar hbl+chl 27.6±0.6  

24.7±0.6 

Delaloye and Bingöl 

(2000) 
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Uludağ 29 40Ar/39Ar bt 26.8±0.8 

24.7±0.7 

Delaloye and Bingöl 

(2000) 

Eybek 27 40Ar/39Ar bt 26.6±0.8  

21.1±0.4  

Delaloye and Bingöl 

(2000) 

Cataldag (Bozenkoy) 31 K-Ar bt+hbl 25.9±0.5 

21.27±0.44 

Boztuğ et al. (2009) 

Evciler (Kazdağ) 24 Rb-Sr 25.0± 0.3 Birkle (1992) 

Genc (1998) 

Kozak  

 

28 K-Ar bt+hbl 23.0±3.8 

14.6±1.0 

Boztuğ et al. (2009) 

Cataldag (Cataltepe) 31 K-Ar bt 22.0±0.3 

21.7±0.1 

Boztuğ et al. (2009) 

Cataldag (Turfaldag) 31 K-Ar bt 21.9±0.6 

21.2±0.6 

Boztuğ et al. (2009) 

Cataldag 

(Balicikhisar) 

31 40Ar/39Ar bt 20.8±0.4 Delaloye and Bingöl 

(2000) 

Evciler (Kazdağ) 24 Rb-Sr 20.7±0.2 

20.5±0.2 

Okay and Satir (2000) 

Younger South Marmara Granitoid Bodies 

Yenice 32 40Ar/39Ar hbl  47.6±1.4 

20.1±1.1 

Delaloye and Bingöl 

(2000) 

Ilica 33 K-Ar hbl 37.9±0.1 

25.6±1.9 

Boztuğ et al. (2009) 

Kizildam 34 K-Ar wr+bt 23.9±0.6 

20.7±0.8  

Karacık et al. (2008) 

Danisment 35 K-Ar wr+bt 23.2±1.1 

22.1±0.6 

Karacık et al. (2008) 

Ilica 33 K-Ar wr+bt 22.8±0.5 

18.4±2.2  

Karacık et al. (2008) 

Sarioluk 36 K-Ar hbl 22.6±0.8 Karacık et al. (2008) 

Yenice 32 K-Ar wr+bt 21.9±1.1 

18.8±1.3 

Karacık et al. (2008) 

Davutlar 37 K-Ar wr+bt 21.6±0.6 

18.4±1.1  

Karacık et al. (2008) 

Yeniköy 36 K-Ar wr 20.1±1.0 Karacık et al. (2008) 
a See Figure 4 for locations of these granite bodies. 2762 
b Abbreviations after Whitney and Evans (2010), wr= whole rock. 2763 
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Table 6. Brief summary of some available ages from granitic assemblages that intrude the 2773 
Rhodope-Strandja Zone (Biga Peninsula only). 2774 

Granite Location Approach Age Reference  

Kuscayir 38 40Ar/39Ar hbl 39.4±0.8 

35.7±0.8  

Delaloye and Bingöl 

(2000) 

Kestanbol (Ezine) 39 U-Pb zrn 26.2±2.0  

18.8±1.0 

Black et al. (2013) 

Kestanbol (Ezine) 39 40Ar/39Ar 22.21±0.07 

21.22±0.09 

Akal (2013) 

Kestanbol (Ezine) 39 40Ar/39Ar hbl  20.5±0.6  Delaloye and Bingöl 

(2000) 
a See Figure 4 for locations of these granite bodies. 2775 
b Abbreviations after Whitney and Evans (2010), wr= whole rock. 2776 
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Table 7. Brief summary of some available ages from granitic assemblages that intrude the 2810 
Afyon Zone. 2811 

Granite Location Approach Age Reference  

Paleozoic Granitoids 

Sandıklı 39 U-Pb zrn 541±9 Gürsu et al. (2004) 

Alaçam  

(basement) 

41 U-Pb zrn 331.3±1.7 

314.3±4.8 

Candan et al. (2016) 

Alaçam  

(basement) 

41 U-Pb zrn 314.9±2.7 

 

Hasözbek et al. (2010) 

Late Eocene-Oligocene-Miocene 

Balkan  

(Muratdag) 

40 40Ar/39Ar or 35.5±3.0 Delaloye and Bingöl 

(2000) 

Koyunoba 42 U-Pb zrn 30.0±3.9 

14.7±2.6 

Catlos et al. (2012) 

Alaçam 41 40Ar/39Ar or 27.1±1.0 

18.5±1.8  

Delaloye and Bingöl 

(2000) 

Alaçam 41 U-Pb zrn 25.3±1.5 

17.5±0.9 

Catlos et al. (2012) 

Egrigöz 43 40Ar/39Ar bt+or 24.6±1.4 

20.0±0.7 

Delaloye and Bingöl 

(2000) 

Egrigöz 43 U-Pb zrn 24.1±1.3 

5.7±0.6 

Catlos et al. (2012) 

Egrigöz 43 U-Pb zrn 20.7±0.6 Ring and Collins 

(2005) 

Koyunoba 42 40Ar/39Ar kfs  20.37±0.03  Etzel et al. (2020) 

Alaçam 41 Rb-Sr bt 20.17±0.20 

20.01±0.20  

Hasözbek et al. (2010) 

Egrigöz 43 40Ar/39Ar ms 20.2±0.3 Işık et al. (2004) 

Egrigöz 43 40Ar/39Ar kfs 20.02±0.03 Etzel et al. (2020) 

Alaçam 41 U-Pb zrn 20.0±1.4  

20.3±3.3 

Hasözbek et al. (2010) 

Baklan 40 40Ar/39Ar wr 19.3±0.9 

17.8±0.7  

Aydoğan et al. (2008) 

a See Figure 4 for locations of these granite bodies. 2812 
b Abbreviations after Whitney and Evans (2010), wr= whole rock. 2813 
 2814 
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Table 8. Brief summary of some available ages from granitic assemblages that intrude the 2825 
Menderes Massif. 2826 

Granite Location Approach Age Reference  

Late Pan-African Granitoids or Cadomian Granitoids 

Çine Massif 

metagranites 

north of 

Milas 

U-Pb zrn 662±3 

517±6 

 

Loos and Reichmann 

(1999) 

Demirci–Gördes  207Pb/206Pb zrn 537.2 ±2.4 

544.1 ± 4.3 

Dannat (1997) 

Ödemiş–Kiraz  207Pb/206Pb zrn 528.0 ±4.3 

570 ± 5 

Dannat (1997) 

  207Pb/206Pb zrn 546.0±1.6 

546.4± 0.8 

Hetzel and Reischmann 

(1996) 

Çine Massif  207Pb/206Pb zrn 521±5 

572±7 

Loos and Reischmann 

(1999) 

Bafa Lake-Çine 

Massif 

 U-Pb zrn 541±14 

566±9  

Gessner et al. (2004) 

Yatağan  207Pb/206Pb zrn  555.5±6.2 Dora et al. (2005) 

North of Yatağan  U/Pb zrn  549±26 Dora et al. (2005) 

Triassic  

Alasehir 44 U-Pb zrn 222.9±1.1 Ustaömer et al. (2016) 

Late Eocene-Oligocene-Miocene  

Alasehir 44 40Ar/39Ar bt 36.4±2.2 

 16.6±0.3  

Delaloye and Bingöl 

(2000) 

Gordes 45 40Ar/39Ar ms  28.8±0.6 

19.4±0.7  

Delaloye and Bingöl 

(2000) 

Salihli 46 Th-Pb mnz 21.7±4.5 

9.6±1.6 

Catlos et al. (2010) 

Turgutlu 47 Th-Pb mnz 19.2±5.1 

11.5±0.8 

Catlos et al. (2010) 

Salihli 46 U-Pb ttn 17.07±0.2 

14.36±0.3  

Rossetti et al. (2017) 

Turgutlu 47 U-Pb mnz 16.1±0.2 Glony and Hetzel 

(2007) 

Salihli 46 U-Pb aln 15.0±0.3 Glony and Hetzel 

(2007) 

Turgutlu 47 40Ar/39Ar kfs 14.06±0.03 Etzel et al. (2020) 

Salihli 46 40Ar/39Ar kfs  5.05±0.02 Etzel et al. (2020) 
a See Figure 4 for locations of these granite bodies. 2827 
b Abbreviations after Whitney and Evans (2010), wr= whole rock. 2828 
 2829 
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Table 9. List of selected earthquake events along the Simav Fault and associated fault systems. 2835 

No.a Event-IDb Time (UTC) Latitude Longitude Depth (km) Rmsc Magd 

1 465625 2/18/2020 16:09 39.1015 27.8453 14.68 0.45 5.2 

2 150860 12/10/2011 5:15 38.8625 30.1883 13.44 0.96 4.2 

3 319040 12/2/2015 15:52 39.1495 28.154 10.85 0.4 4.0 

4 132605 6/10/2011 22:47 39.0975 28.3405 34.38 0.85 4.7 

5 160143 3/29/2012 10:13 38.6035 30.004 12.77 0.73 4.2 

6 367059 3/29/2017 18:10 38.2003 31.0575 14.87 0.36 4.0 

7 495401 2/9/2021 15:51 38.5965 31.6318 7.01 0.49 4.7 

8 495403 2/9/2021 15:53 38.59 31.6495 4.61 0.41 4.1 

9 367501 4/3/2017 9:05 38.4801 31.7975 13.84 0.25 4.0 

10 136512 7/27/2011 9:58 38.3278 31.8802 17.79 0.33 4.8 

11 128573 5/19/2011 20:15 39.1328 29.082 24.46 0.49 5.7 

12 128577 5/19/2011 20:25 39.1442 29.1078 7.00 0.44 4.6 

13 128603 5/19/2011 21:12 39.113 29.0377 7.74 0.57 4.8 

14 128672 5/20/2011 0:13 39.1413 29.1065 16.92 0.62 4.1 

15 128701 5/20/2011 0:58 39.1147 29.0837 17.38 0.78 4.3 

16 129252 5/21/2011 21:43 39.1037 29.0513 7.00 0.11 4.0 

17 129791 5/24/2011 2:55 39.1013 29.0217 16.80 0.45 4.2 

18 131192 5/30/2011 22:03 39.1567 29.0112 15.29 0.85 4.0 

19 132022 6/5/2011 21:29 39.143 29.095 6.98 0.55 4.0 

20 134386 6/29/2011 11:40 39.1232 29.0032 9.28 0.75 4.0 

21 135896 7/19/2011 21:16 39.1048 29.093 17.66 0.67 4.1 

22 138300 8/25/2011 4:19 39.139 29.0957 22.54 0.77 4.3 

23 161414 4/16/2012 10:10 39.1227 29.1222 6.90 0.5 4.7 

24 161595 4/17/2012 20:45 39.1468 29.1142 6.99 0.58 4.5 

25 161902 4/20/2012 16:39 39.1525 29.0975 20.59 0.81 4.4 

26 177315 10/30/2012 0:12 39.1385 29.1787 21.35 0.76 4.1 

27 188611 3/12/2013 20:47 39.1203 29.0583 12.81 0.52 4.1 

28 197002 6/9/2013 14:18 39.1392 29.022 15.61 0.68 4.1 

29 234353 7/15/2014 12:25 39.13 29.0041 9.92 0.32 4.1 

30 309933 9/3/2015 8:23 39.1226 29.1225 10.24 0.49 4.1 

a. See Figure 7A for events 1-10 and Figure 7B for events 11-30. 2836 

b. Parameters were extracted from https://deprem.afad.gov.tr/depremkatalogu 1900-20XX 2837 

Earthquake Catalog (M>=4.0), Turkish Ministry of the Interior, Disaster and Emergency 2838 

Management Presidency, Earthquake Department (AFAD). 2839 

c. Rms= root-mean-square (RMS) travel time residual in seconds. 2840 

d. All magnitudes are ML (original magnitude relationship defined for local earthquakes), 2841 

except events 1, 3, 6, 7, 9, 29, and 30, which are moment magnitudes (Mw). 2842 
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Table 10. List of selected earthquake events along the Aegean-Anatolian plate boundary.  2847 

No.a Event-IDb Time (UTC) Latitude Longitude Depth (km) Rmsc Magd 

1 199626 7/12/2013 0:36 40.3738 25.946 27.85 0.45 4.3 

2 201060 7/30/2013 5:33 40.3028 25.7902 20.01 0.52 5.3 

3 184151 1/19/2013 19:26 39.6382 25.6795 20.91 0.5 4.2 

4 360268 2/6/2017 10:58 39.5275 26.1373 9.83 0.21 5.3 

5 183497 1/12/2013 13:47 39.6447 25.6733 6.89 0.8 4.0 

6 155511 1/29/2012 21:03 38.7387 26.0447 32.39 0.68 4.2 

7 101387 3/26/2010 18:35 38.1457 26.177 24.26 0.2 4.7 

8 426091 11/27/2018 23:16 36.7565 25.877 16.15 0.62 4.4 

9 426096 11/27/2018 23:46 36.6493 25.4535 5.95 0.75 4.1 

10 418888 8/19/2018 5:46 35.8861 26.0695 28.49 0.77 4.9 

11 309516 8/27/2015 0:25 34.7751 25.8068 7.06 0.52 4.5 

12 472843 5/2/2020 16:44 34.5521 25.8181 6.76 0.56 5.1 

13 472824 5/2/2020 13:45 34.2973 25.7371 9.63 0.98 5.2 

14 472819 5/2/2020 12:51 34.2226 25.8253 6.65 0.98 6.4 

15 472825 5/2/2020 13:33 33.9548 26.0141 6.5 0.96 4.6 

16 472827 5/2/2020 14:21 34.2123 26.232 5.86 0.93 4.8 

17 294406 4/16/2015 18:07 34.8643 26.7275 12.34 0.62 5.9 

18 169403 7/4/2012 23:46 35.1613 26.9993 34.09 0.35 5.0 

19 293183 3/27/2015 23:34 35.7295 26.576 56.13 0.47 5.0 

20 507881 8/1/2021 4:31 36.3843 27.0805 10.86 0.17 5.5 

21 187555 2/27/2013 22:05 36.7298 26.5115 140.27 0.43 4.1 

22 417483 7/26/2018 8:17 37.6546 26.6698 4.5 0.52 4.5 

23 483762 10/30/2020 11:51 37.879 26.703 14.9 1 6.6 

24 375576 6/12/2017 12:28 38.8486 26.313 15.96 0.28 6.2 

25 431610 2/20/2019 18:23 39.6011 26.4261 5.8 0.37 5.0 

26 411695 5/3/2018 2:04 39.967 26.8993 10.39 0.35 4.3 

27 284923 12/16/2014 9:02 40.1298 27.0845 17.35 0.29 4.3 

28 115792 11/3/2010 2:51 40.3997 26.3147 28.9 0.59 5.1 

29 199626 7/12/2013 0:36 40.3738 25.946 27.85 0.45 4.3 

a. See Figure 11 for events. 2848 

b. Parameters were extracted from https://deprem.afad.gov.tr/depremkatalogu 1900-20XX 2849 

Earthquake Catalog (M>=4.0), Turkish Ministry of the Interior, Disaster and Emergency 2850 

Management Presidency, Earthquake Department (AFAD). 2851 

c. Rms= root-mean-square (RMS) travel time residual in seconds. 2852 

d. All magnitudes are ML (original magnitude relationship defined for local earthquakes), 2853 

except events 4, 8-14, 16, 17, 19, 20, 23-28, which are moment magnitudes (Mw). 2854 



 

Figure 1. Tectonic map of the Aegean and Anatolian microplates. Plate boundaries after 

McClusky et al. (2000), Nyst & Thatcher (2004), Piper et al. (2010), Harrison et al. (2012), and 

Tan (2013). Only some major fault systems are labeled. NAF= North Anatolian Fault, EAFZ= 

East Anatolian Fault Zone, CATB = Central Anatolian Thrust Belt, DSF = Dead Sea Fault; KTZ 

= Kephalonia Transform Zone; MCL= Mid-Cycladic lineament; İBTZ= Izmir–Balıkesir transfer 

zone; NAT= North Aegean Trough; NAF = North Anatolian Fault (N-, northern, C- central, and 

S- southern segments); KM= Kazdağ Massif. Region of slab tear in western Turkey and the 

Aegean after Jolivet et al. (2015), near Crete (Özbakır et al., 2013), Cyprus (Woodside et al., 

2002), and between the Aegean domain and the Menderes Massif (Roche et al., 2019). 

Boundaries between Central and Western Anatolia after Şengör et al. (1985). 
 



 

Figure 2. Geological map of Western Anatolia focusing on the ophiolite and granite assemblages 

along the boundary between the Aegean and Anatolia microplates. Plate boundary after Nyst & 

Thatcher (2004). Terrane boundaries, major fault systems, and transfer zones after Okay (2008), 

Akbayram et al. (2016), Oner et al. (2010), and Karaoğlu & Helvacı (2014). Abbreviations: 

RPA= Rhodope-Pontide Arc; İBTZ = Izmir–Balıkesir Transfer Zone (also sometimes referred to 

as the Western Anatolia Transfer Zone, Gessner et al., 2013; 2017); SWASZ= South West 

Anatolian Shear Zone; IPS= Intra-Pontide suture zone; IAESZ = Izmir-Ankara-Erzincan suture 

zone; PS = Pamphylian suture zone; UMTZ= Uşak-Mugla Transfer Zone. 



 

Figure 3. North–south generalized cross-section across western Turkey after Okay (1986) and 

Shin et al. (2013). IAESZ=İzmir-Ankara-Erzincan Suture Zone. See Figure 2 for the 

approximate line of section on the geological map. 

 

 



 

Figure 4. Geological map showing structures and locations of Western Anatolia granite bodies. 

Base map after Delaloye & Bingöl (2000), Senel & Aydal (2002), and Okay (2008). See Tables 

1-7 for the granite names that correspond to the numbers in this figure. Abbreviations: IPS = 

Intrapontide Suture Zone, IAESZ = Izmir-Ankara-Erzincan Suture Zone, SDF= Simav 

Detachment Fault, AD= Alasehir Detachment. Locations of Figures 5 and 7 are indicated. 



 

 

Figure 5. (A) Simplified geologic map of the Sivrihisar Massif (eastern Tavşanlı Zone) overlain 

on a hillshade raster. Map after Senel & Aydal (2002), Özsayin & Dirik (2007), and Shin et al. 

(2013). See the data repository for the color figure. (B) Sivrihisar granite K-feldspar age spectra 

for sample TA04. The upper profile by Sherlock et al. (1999) and the lower are our results. 

(C)36Ar/40Ar vs. 39Ar/40Ar plot comparing our data to Sherlock et al. (1999). Our results show 

mixing between a radiogenic and atmospheric component of argon with four lower points from 

initial isothermal steps. Sherlock et al. (1999) data is affected by excess argon (ArE). (D) One 

possible thermal history path for the Sivrihisar granite based on the rapidly cooled K-feldspar 

ages, zircon ages, and zircon saturation temperature from Shin et al (2013). 
 



 

Figure 6. Paleogeographic reconstruction of Western Anatolia (center box) and the surrounding 

region at 46 Ma prior to the onset of extension (after Stampfli & Kozur, 2006). Abbreviations 

relevant to Western Anatolia are Mn=Menderes Massif, Kb=Karaburun, Dg=Denizgören 

ophiolite, Sk=Sakarya Is=Istanbul, Zo=Zonguldak, BS= Black Sea, Er= Eratosthenes seamount. 

For other abbreviations, please see Stampfli & Kozur (2006). 



 

Figure 7. (A) Map of the Simav Fault and associated structures. Small dots are extracted from 

the USGS Earthquake Catalog magnitude 2.5+ (http://earthquake.usgs.gov/earthquakes/search) 

of events from 1952-2021. Location of fault strands after Konak (2002). Inset shows the location 

near the town on Simav in panel (B). (B) Map of the surrounding area of Simav with earthquakes 

plotted. In this map, events were extracted from the Turkish Ministry of the Interior, Disaster and 

Emergency Management Presidency, Earthquake Department Earthquake Catalog (M>=4.0), 

1900-20XX (https://deprem.afad.gov.tr/depremkatalogu). The size of the circle represents 

magnitude. The figure highlights 2011 earthquakes by additional solid dots. Base maps in both 

panels are from ESRI. Focal mechanism solutions in both panels were extracted from the 

Turkish catalog. See Table 9 for details of the events. For locations of faults in panel (B), see 

Mutlu (2020). 



 

Figure 8. North-south generalized cross-section through the Hellenic arc system showing the 

key structural elements. Map of the Mediterranean Ridge after Westbrook & Reston (2002). 



 

Figure 9. (A) EMODnet Digital Bathymetry map with some structures overlain. The Aegean and 

Anatolian microplate boundaries are shown in grey after Nyst and Thatcher (2004). Other 

structures after Hall et al. (1984) and (2009), Woodside et al. (2002), Peterek & Schwarze 

(2004), Meier et al. (2007); Kinnaird & Robertson (2012), and Symeou et al. (2018). 

Abbreviations: BT= Backthrust; KFZ = Kephalonia Fault Zone; IAESZ = Izmir-Ankara-

Erzincan Suture Zone; KM= Kirşehir Massif, AM= Anaximander Mountains; PTF = Paphos 

Transform Fault, ES = Eratosthenes Seamount. (B) Profiles along the lines of section shown in 

panel (A). Abbreviations: CT= CFH = LN= Lycian Nappes, MR= Mediterranean Ridge 

Accretionary Complex, HB = Herodotus Basin, HSZ= Hellenic Shear Zone, NAF= North 

Anatolian Fault; AM = Anaximander Mountains; CA= Cyprus Arc. Hashed regions in panel (B) 

indicate area speculated to be affected by slab tear (e.g., Woodside et al., 2002; Özbakır et al., 

2013; Jolivet et al., 2015). See supplementary files for the color figure. 



 

Figure 10. (A) Cross-section of the Aegean anomaly interpreted as the African slab using the 

UUP07 P-wave model (Amaru, 2007). The line of section used latitude of 28°-43° and longitude 

of 24°-28°. For more detailed views of the anomaly, see van der Meer et al. (2018), Wei et al. 

(2019), Blom et al. (2020), and El-Sharkawy et al. (2021). The depths of the dashed lines are 

410, 660, 1000 km from the surface. Interpretations of the geology below 1000 are debated and 

discussed in the text. Image created using Hosseini et al. (2018). (B) Depth vs. estimated 

earthquake depth for the same latitude and longitude as seen in panel (A). In this map, events 

were extracted from the Turkish Ministry of the Interior, Disaster and Emergency Management 

Presidency, Earthquake Department Earthquake Catalog (M>=4.0), 1900-20XX 

(https://deprem.afad.gov.tr/depremkatalogu). Events are from 01/24/1900 to 6/17/2021. We 

indicate the largest event (6/26/1926, 19:46). 



 

Figure 11. Map of plate boundaries between the Aegean and Anatolian microplates with some 

faults indicated (after Nyst & Thatcher, 2004; Uzel et al., 2013; Pe-Piper et al., 2002; Menant et 

al., 2016). Focal mechanisms are from the Turkish Ministry of the Interior, Disaster and 

Emergency Management Presidency, Earthquake Department Earthquake Catalog (M>=4.0), 

1900-20XX (https://deprem.afad.gov.tr/depremkatalogu). Events are only from 2010-2020 and 

details are presented in Table 10. The size of the circle represents magnitude. The 9 July 1956 

Amorgos earthquake epicenter is also indicated after Alatza et al. (2020). See Okal et al. (2009) 

for discussions regarding the focal mechanism of this event. The base map is from ESRI. The 

abbreviations İBTZ = Izmir–Balıkesir transfer zone; NCSD= North Cyclades Detachment 

System; MCL= Mid-Cycladic Lineament. 



 
 
 

 
 

Figure 12. (A) Interpretative thrust sequence during the formation of Anatolide belt after 

Gessner et al. (2013). CBU= Cyclades Blueschist Unit; CMT= Cyclades Menderes Thrust; SSZ= 

Selimiye Shear Zone, BT= Bozdag Thrust. (B) P-T paths from Menderes Massif nappes (Ring et 

al., 2001; Whitney & Bozkurt, 2002; Rimmelé et al., 2005; Régnier et al., 2007). 
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Figure 13. Isochemical phase diagrams with overlapping garnet core compositional isopleths for 

garnet-bearing samples from the (A) Çine nappe, (B) Selimiye nappe after Etzel et al. (2019), 

(C) Northern Menderes Massif using data from Cenki-Tok et al. (2016), and (D) the Central 

Menderes Massif (Etzel et al., 2020). Mineral abbreviations after de Capitani and Brown (1987) 

and de Capitani and Petrakakis (2010). Labeled stripes are compositional isopleths of ±0.1 mole 

fraction for endmember garnet core compositional contents, except for panel (D), which overlies 

±0.2 mole fraction and is for the reported representative composition for that garnet by Cenki-

Tok et al. (2016). The grey polygon in each diagram represents the conditions estimated for 

garnet growth in the samples. High-resolution P-T paths for the samples are shown in panels (A), 

(B), and (D). See supplementary figures for this figure in color. 
 



 

Figure 14. Snapshots of thermal models of the Çine nappe for the (left) fault reactivation and 

(right) tectonic switching model after Etzel et al. (2019). (A) and (B) are the upper equilibrium 

thermal grid (depth vs. horizontal distance) before faulting with the position of fault (grey line) 

arbitrarily selected at 30°. Fault displacement varies linearly. The grid includes reflecting side 

boundaries and top and bottom maintained at 25°C and 700°C and an initial geothermal gradient 

at 25°C/km indicated by shaded bars. The position of the Selimiye samples is inferred by a hatch 

area, and the grey bar represents the approximate initial location of the Çine nappe garnet with 

the N-shaped P-T path. This is also represented by point 1 in P-T path insets. In panels (C) and 

(D), the fault is activated and a finite-difference solution to the diffusion-advection equation is 

used to examine the P-T variations in the hanging wall and footwall as a result of motion. The 

rock sample experiences the path from 1 to 2 on the P-T path insets. In panels (E) and (F), 

motion stops. In panel (E), extension occurs, whereas denudation occurs in panel (F). This is 

modeled based on the mid-rim lower pressure portion of the garnet P-T path and is represented 

by points 2 to 3 on the P-T path insets. In panels (G) and (H), the fault is reactivated, represented 

by points 3 to 4 on the P-T path insets. 


