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Abstract

California’s Central Valley is responsible for $17 billion of annual agricultural output, producing 1/4 of the nation’s food.

However, land in the Central Valley is sinking at a rapid rate (as much as 20 cm per year) due to continued groundwater

pumping. Land subsidence has a significant impact on infrastructure resilience and groundwater sustainability. It is important to

understand subsidence and groundwater depletion in a consistent framework using improved models capable of simulating in-situ

well observations and observed subsidence. Currently, groundwater well data is sparse and sampled irregularly, compromising

our understanding of groundwater changes. Moreover, groundwater pumping data is a major missing piece of the puzzle. Limited

data availability and spatial/temporal uncertainty in the available data have hampered understanding the complex dynamics

of groundwater and subsidence. To address this limitation, we first integrated multimodal data including InSAR, groundwater,

precipitation, and soil composition by interpolating data with the same spatial and temporal resolutions. We then identified

regions with different temporal dynamics of land displacement, groundwater depth, and precipitation. Some areas (e.g., Helm)

with coarser grain soil compositions exhibited potentially reversible land transformations (elastic land compaction). Finally, we

fed the integrated data into the deep neural network of a gated recurrent unit-based sequence-to-sequence generation model.

We found that the combination of InSAR, groundwater depth, and precipitation data had predictive power for soil composition

using deep neural networks (correlation coefficient R=0.83, normalized Nash-Sutcliffe model efficiency NNSE=0.84). A random

forest model was tested as baseline (R=0.65, NNSE=0.69). We also achieved significant accuracy with only 40% of the training

data (NNSE=0.8), suggesting that the model can be generalized to other regions for indirect estimation of soil composition.

Our results indicate that soil composition can be estimated using InSAR, groundwater depth and precipitation data. In-

situ measurements of soil composition can be expensive and time consuming and may be impractical in some areas. The

generalizability of the model sheds light on high spatial resolution soil composition estimation utilizing existing measurements.
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California's Central Valley is responsible for $17 billion of annual agricultural output,
producing 1/4 of the nation’s food. However, land in the Central Valley is sinking at a rapid
rate (as much as 20 cm per year) due to continued groundwater pumping. Land
subsidence has a significant impact on infrastructure resilience and groundwater
sustainability. It is important to understand subsidence and groundwater depletion in a
consistent framework using improved models capable of simulating in-situ well
observations and observed subsidence. Currently, groundwater well data is sparse and
sampled irregularly, compromising our understanding of groundwater changes. Moreover,
groundwater pumping data is a major missing piece of the puzzle. Limited data availability
and spatial/temporal uncertainty in the available data have hampered understanding the
complex dynamics of groundwater and subsidence.

To address this limitation, we first integrated multimodal data including InSAR,
groundwater, precipitation, and soil composition by interpolating data with the same
spatial and temporal resolutions (every 2 weeks on a 1kmX1km grid). We then identified
regions with different temporal dynamics of land displacement, groundwater depth, and
precipitation (Figure 1). Some areas (e.g., Helm) with coarser grain soil compositions
exhibited potentially reversible land transformations (elastic land compaction), which can
inform government agencies of better management of groundwater use and water
recharge for subsidence recovery.

We fed the integrated data into the deep neural network of a gated recurrent unit
(GRU)-based sequence-to-sequence generation model. We found that the combination of
InSAR, groundwater depth, and precipitation data had predictive power for soil
composition using deep neural networks (correlation coefficient R=0.83, normalized
Nash-Sutcliffe model efficiency NNSE=0.84). A random forest model was tested as
baseline (R=0.65, NNSE=0.69) (Figure 2). We also achieved significant accuracy with
only 40% of the training data (NNSE=0.8), suggesting that the model can be generalized
to other regions for indirect estimation of soil composition.
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Our results indicate that soil composition can be estimated using InSAR, groundwater
depth and precipitation data. In-situ measurements of soil composition can be expensive
and time consuming and may be impractical in some areas. The generalizability of the
model sheds light on high spatial resolution soil composition estimation utilizing existing
measurements.
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Figure 1. Two representative regions of the Central Valley with significant subsidence with
different characteristics. (A) Chowchilla has been shown to maintain monotonically
decreasing land displacements, less fluctuating groundwater depth, relatively low
precipitation, and high fine-grain ratio across the middle soil layers. (B) Helm, on the other
hand, exhibited fluctuating land displacements, relatively large seasonal changes in
groundwater depth, high precipitation, and a higher overall coarse-grain ratio across all
soil layers. (C) A displacement map including Chowchilla and Helm (2015-2020).
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Figure 2. Deep neural network model of soil composition estimation. (A) Example training
and testing areas randomly selected for validation. (B) Ground truth coarse-grained ratio
of Central Valley in soil layer 1. (C) Correlation plot between ground-truth coarse-grain
and the estimated coarse-grain ratios (correlation coefficient R=0.84, normalized
Nash-Sutcliffe model efficiency NNSE=0.83). (D) NNSE of neural networks and random
forest models over various training data ratios (0.1-0.9).
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