Impact of 2019 mid-west flood on CO_2 and CH_4 using yearly WRF-GHG simulations over the contiguous United States

Xiao-Ming Hu¹, Ming Xue², Lan Gao¹, and Sean Crowell³

¹University of Oklahoma Norman Campus ²Univ Oklahoma ³University of Oklahoma

November 22, 2022

Abstract

Sources and sinks of the two most important greenhouse gases CO_2 and CH_4 at regional to continental scales remain poorly understood. In our previous work, the WRF-VPRM, a weather-biosphere-online-coupled model in which the biogenic CO₂ fluxes are handled by the Vegetation Photosynthesis and Respiration Model (VPRM), was further developed by coupling with the CarbonTracker global CO_2 simulation and incorporating optimized terrestrial CO_2 flux parameterization (Hu et al., 2021; Hu et al., 2020). In this work, an enhanced version of WRF-VPRM by including CH_4 (referred to as WRF-GHG hereafter) is further developed by coupling with the Copernicus Atmosphere Monitoring Service (CAMS) CH₄ global simulation for the initial and boundary conditions and the WetCHARTs wetland CH₄ emissions and NEI2017 anthropogenic CH₄ emissions, which dominate emissions over the contiguous United States (CONUS). Yearly WRF-GHG simulations are conducted for year 2018 and 2019 over CONUS at a horizontal grid spacing of 12 km to examine the impact of 2019 abnormal mid-west precipitation on CO_2 and CH_4 fluxes and atmospheric concentrations, with the simulation for 2018 serving as a baseline for comparison, similarly to Yin et al (2020). Simulated CO_2 and CH_4 are evaluated using remotely sensed data from Total Carbon Column Observing Network (TCCON), OCO-2, TROPOMI, and in-situ measurements from the GLOBALVIEW obspack data. WRF-GHG has been shown to capture the monthly variation of column-averaged CO₂ concentrations (XCO₂) and episodic variations associated with frontal passages. In this work, we will show that TCCON XCH₄ shows mild seasonal variation and more prominent episodic variations, which are captured by WRF-GHG. As a case study, the 2019 May flood delayed growing season in mid-west and the typical spring and summer drawdown of atmospheric CO₂ by 1-3 weeks. Obspack and TROPOMI data indicate higher CH_4 in the mid-west in July and August, in 2019 relative to 2018, which we hypothesize is related to the abnormal precipitation in 2019 in the region that induces more wetland CH₄ emissions. The WRF-GHG model significantly underestimates CH₄ concentration in mid-west in summer 2019 when the WetCHARTs wetland CH₄ emissions are driven by ERA-Interim reanalysis precipitation, which is known to be underestimated. An updated WetCHARTs wetland CH₄ emissions driven by the PRISM precipitation data are currently being produced at JPL, which are expected to reduce the WRF-GHG CH₄ bias, as wetland fluxes are highly sensitive to inundation from precipitation.

Hosted file

essoar.10508159.1.docx available at https://authorea.com/users/535077/articles/599029impact-of-2019-mid-west-flood-on-co2-and-ch4-using-yearly-wrf-ghg-simulations-over-thecontiguous-united-states

Impact of 2019 mid-west flood on $\rm CO_2$ and $\rm CH_4$ using yearly WRF-GHG simulations over the contiguous United States

Xiao-Ming Hu^{1,2}, Ming Xue^{1,2}, Lan Gao², and Sean Crowell³

¹Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma 73072, USA

 $^2 \mathrm{School}$ of Meteorology, University of Oklahoma, Norman, Oklahoma 73072, USA

³GeoCarb Mission, University of Oklahoma, Norman, Oklahoma 73072, USA

Submitted to 2021 AGU Fall Meeting Dec 13-17

Updated on 7/30/21 3:14 PM

Abstract

Sources and sinks of the two most important greenhouse gases CO_2 and CH_4 at regional to continental scales remain poorly understood. In our previous work, the WRF-VPRM, a weather-biosphere-online-coupled model in which the biogenic CO₂ fluxes are handled by the Vegetation Photosynthesis and Respiration Model (VPRM), was further developed by coupling with the CarbonTracker global CO₂ simulation and incorporating optimized terrestrial CO₂ flux parameterization (Hu et al., 2021; Hu et al., 2020). In this work, an enhanced version of WRF-VPRM by including CH_4 (referred to as WRF-GHG hereafter) is further developed by coupling with the Copernicus Atmosphere Monitoring Service (CAMS) CH₄ global simulation for the initial and boundary conditions and the WetCHARTs wetland CH₄ emissions and NEI2017 anthropogenic CH₄ emissions, which dominate emissions over the contiguous United States (CONUS). Yearly WRF-GHG simulations are conducted for year 2018 and 2019 over CONUS at a horizontal grid spacing of 12 km to examine the impact of 2019 abnormal midwest precipitation on CO_2 and CH_4 fluxes and atmospheric concentrations, with the simulation for 2018 serving as a baseline for comparison, similarly to Yin et al (2020). Simulated CO_2 and CH_4 are evaluated using remotely sensed data from Total Carbon Column Observing Network (TCCON), OCO-2, TROPOMI, and in-situ measurements from the GLOBALVIEW obspack data. WRF-GHG has been shown to capture the monthly variation of column-averaged CO_2 concentrations (XCO_2) and episodic variations associated with frontal passages. In this work, we will show that TCCON XCH_4 shows mild seasonal variation and more prominent episodic variations, which are captured by WRF-GHG. As a case study, the 2019 May flood delayed growing season in mid-west and the typical spring and summer drawdown of atmospheric CO_2 by 1-3 weeks. Obspack and TROPOMI data indicate higher CH_4 in the mid-west in July and August, in 2019 relative to 2018, which we hypothesize is related to the abnormal precipitation in 2019 in the region that induces more wetland CH_4 emissions. The WRF-GHG model significantly underestimates CH_4 concentration in mid-west in summer 2019 when the WetCHARTs wetland CH_4 emissions are driven by ERA-Interim reanalysis precipitation, which is known to be underestimated. An

updated *WetCHARTs* wetland CH_4 emissions driven by the PRISM precipitation data are currently being produced at JPL, which are expected to reduce the WRF-GHG CH_4 bias, as wetland fluxes are highly sensitive to inundation from precipitation.