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Abstract

Fragment-form Indochinite Australasian tektites show clear indications of electromagnetic involvement in their formative pro-

cess. High-voltage, high-current arcing can cause effects not previously discussed in the literature, over rapid timescales.
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Introduction: Indochinite Australasian tektites
(AAT) display contorted unit morphology consistent
with electric charge saturation, arc-induced heating dur-
ing magnetic confinement, and magnetic flux expansion
with rapid cooling. Common surface textures are con-
sistent with post-solidus flash heating and coincident
electromagnetic (EM) field imprinting. Common co-
expression of these Indochinite ‘fragment-form’ tektite
features is consistent with disruption by high voltage
(HV) arcing in vacuum, requiring explanation.

Fragment-Form Evidence: Two ~3cm-scale sphe-

Top (1): arcing melt track across left portion of the
concave surface with radiating filaments. Bottom (2):
apparent surface layer EM field line striae imprinted by
HV arcing. Both imply initially solid condition.

A proposed sequence fits the observations, with arc-
ing timescales explaining rapid thermal cycling. Post-
deposition differential etch is inconsistent with AAT
splash form melt homogeneity. The indicated KE scale
is similar to that of uniquely high test-derived and triple-
verified AAT reentry speeds of 80% or more of Earth
escape speed per NASA and Chapman et al. (1964) [1]
as well as the uniquely broad AAT strewn coverage.

These multiple indications of ‘extinction-level’ KE
scale are also considered for further AAT event insight.
Lab Evidence Extended: Kurosawa et al. (2012,
2015) [2, 3] explain the role of the electron in shock
partitioning. Elevated H>O is suggested per Watt et al.
(2011) [4]. H20 ionization and non-equilibrium shock
processes discussed by Skryl et al. (2007) and
Khantuleva (2003) [5,6] respectively, explain induced
electrical current from strong shock, as correlation-
length reduces to the order of H20 molecular dimension.
An inductive-capacitive ‘LC’ circuit model provides an
approximation; with extended period t oc VL * C, plan-
etary-scale inductive and capacitive reactance are indi-
cated by t on the order of tektite melt cooling time.
EM Alteration Sequence: The setting is H20 com-
ponent plasma and high induced electric field from
shocked ice. Left column (pg. 2) images show radiant
flux stripping silicate ions (1) which stream away as a
conductive path in the surrounding high potential elec-
tric field, leading to high-voltage arcing through the tek-
tite (2). Arc-induced heating adds ions, lowering con-
ductive impedance, increasing current and heating, and
fracturing the solid tektite shell (3). Current-induced
magnetic field compresses the body-charged tektite (4),
trapping fragments during energetic plasma venting ero-
sion (5). Right column shows a compressed discoid
fragment (1 & 2) with bulged plastic core A, plasma-
eroded facets B and dissimilar exterior and fracture sur-
faces C. Hollow spheroid fragment (3) shows radial
striac on surface A. Truncated spheroid (4) shows
raised-rim deposition point A, plasma erosion facet B,
fracture plane C and exterior pitting D. Frames (5) and
(6) show ‘extruded’ hollow tektite fragments, with ar-
row showing extension direction. Scale cube is 1 cm.
Conclusions: EM involvement in post-solidus
AAT disruption and thermal alteration is indicated by
indochinite fragment-form specimens. Convex surface
pitting and pock marks are consistent with post-solidus
particle or spatter bombardment during thermal cycling
in vacuum. Extensive target mass Hz2O ice is indicated,
perhaps from large projectile or expanded oblique im-
pact footprint and associated multiple in-track hotspots.
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