NASA Student Airborne Research Program (SARP) Whole Air Sampling across the United States during the COVID-19 Pandemic

Melissa Yang¹, Donald Blake², Alex Jarnot², Simone Meinardi², Gloria Weitz³, Brent Love³, Barbara Barletta², Barbara Chisholm², James Flynn⁴, Sergio Alvarez⁴, Travis Griggs⁴, Maya Zimmerman⁵, Jordan Zachmann⁶, MacKenzie Warner⁷, Gabriela Vidad⁸, Graham Trolley⁹, Jacob Schenthal¹⁰, Morgan Schachterle¹¹, Everett Rzeszowski¹², Dominick Ryan¹³, Amanda Rodell¹⁴, McKenna Price-Patak¹⁵, Elena Press¹⁶, Scarlet Passer¹⁷, Nathan Pappalardo¹⁸, Joseph Palmo¹⁹, David Moore²⁰, An Li²¹, Jessica Kasamoto²², Tatiana Jimenez²³, Amelia Hurst²⁴, Kendra Herweck²⁵, Paola Granados²⁶, Katey Dong²⁷, Walker Demel²⁸, Ariana Deegan²⁹, Mackenzie Conkling³⁰, John Carlson³¹, Joel Been³², Nicole Taylor³³, Patrick Sullivan³⁴, Alexander MacDonald³⁵, Jesse Bausell³³, Dar Roberts³⁶, Raphael Kudela³³, Andreas Beyersdorf³⁷, Roya Bahreini³⁸, Barry Lefer³⁹, Jack Kaye³⁹, Hal Maring⁴⁰, Ryan Stauffer⁴¹, Joseph Bennett⁴², and Emily Schaller⁴²

```
^{1}NASA
```

²University of California Irvine

³University of California - Irvine

⁴University of Houston

⁵Swarthmore College

⁶Saint John's University

⁷Ripon College

⁸Adelphi University

⁹Cornell University

¹⁰Vanderbilt University

 $^{^{11}\}mathrm{University}$ of Colorado - Colorado Springs

¹²Bowdoin College

¹³Northern Arizona University

 $^{^{14}\}mathrm{Missouri}$ University of Science and Technology

 $^{^{15}}$ Tulane University

¹⁶Stanford University

 $^{^{17} \}mathrm{University}$ of California - Santa Cruz

¹⁸Pomona College

¹⁹Amherst College

²⁰University of Albany

²¹University of Chicago

²²Johns Hopkins University

²³Harvard University

²⁴Univeristy of Connecticut

²⁵Northern Kentucky University

 $^{^{26} \}mathrm{University}$ of Texas - Rio Grande Valley

- ²⁷Oregon State University
- ²⁸Butler University
- ²⁹University of Georgia
- ³⁰Centre College
- ³¹Norwich University
- ³²Colorado School of Mines
- ³³University of California Santa Cruz
- ³⁴University of Utah
- ³⁵University of Arizona
- ³⁶University of California Santa Barbara
- ³⁷NASA Langley Research Center
- ³⁸University of California Riverside
- ³⁹NASA Headquarters
- ⁴⁰NASA-Scien Mission Directorate
- ⁴¹USRA at NASA/GSFC
- ⁴²National Suborbital Research Center

November 23, 2022

Abstract

The 2020 COVID-19 pandemic provided a unique opportunity to sample atmospheric gases during a period of very low industrial/human activity. Over 1000 Whole Air Samples were collected in over 30 cities and towns across the United States from April through July 2020 as part of the NASA Student Airborne Research Program (SARP). Sample locations leveraged the geographic distribution across the United States of the undergraduate and graduate students, faculty, and NASA personnel associated with the internship program (44 people total). Each person collected approximately 24 air samples in their city/town with the goal of characterizing local emissions with time during the pandemic. Samples were collected in 2-Liter stainless steel evacuated canisters at approximately 2 meters above ground level. The canisters were shipped to the Rowland/Blake Laboratory at the University of California Irvine and analyzed for methane, carbon dioxide, carbon monoxide, non-methane hydrocarbons, and halocarbons using the gas chromatographic system described in Colman et al. (2001) and Barletta et al. (2002). Initial samples collected in April coincided with the peak of stay-at-home/social distancing orders across most of the United States while samples collected later in the spring and early summer reflect the easing of these measures in most locations. Overall trends in emissions with time across the United States during the pandemic (in several large metro areas as well as rural locations) will be discussed.

NASA Student Airborne Research Program (SARP) Whole Air Sampling across the United States during the COVID-19 Pandemic

Melissa Yang¹, **Donald Blake**², Alex Jarnot², Simone Meinardi², Gloria Weitz², Brent Love², Barbara Barletta², Barbara Chisholm², James Flynn III³, Sergio Alvarez³, Travis Griggs³, Maya Zimmerman⁴, Jordan Zachmann⁵, MacKenzie Warner⁶, Gabriela Vidad⁵, Graham Trolley⁶, Jacob Schenthal⁶, Morgan Schachterle¹⁰, Everett Rzeszowski¹¹, Dominick Ryan¹², Amanda Rodell¹³, McKenna Price-Patak¹⁴, Elena Press¹⁵ Scarlet Passer¹⁶, Nathan Pappalardo¹⁷, Joseph Palmo¹⁶, David Moore¹⁶, An Li²⁰, Jessica Kasamoto²¹, Tatiana Jimenez²², Amelia Hurst²³, Kendra Herweck²⁴, Paola Granados²⁵, Katey Dong²⁶, Walker Demel²づ, Ariana Deegan²⁶, Mackenzie Conkling²⁶, John Carlson³⁰, Joel Been³¹, Nicole Taylor¹⁶, Patrick Sullivan³², Alexander MacDonald³³, Jesse Bausell¹⁶, Dar Roberts³⁴, Raphael Kudela¹⁶, Andreas Beyersdorf³⁵, Roya Bahreini³⁶, Barry Lefer³⊓, Jack Kaye³⊓, Hal Maring³⁶, Ryan Stauffer³٫ Joseph Bennett¹ and Emily Schaller¹

(1) National Suborbital Research Center, Palmdale, CA (2) University of California Irvine, Irvine, CA (3) University of Houston, Houston, TX (4) Swarthmore College, Swarthmore, PA (5) Saint John's University, Collegeville, MN (6) Ripon College, Ripon, WI (7) Adelphi University, Garden City, NY (8) Cornell University, Ithaca, NY (9) Vanderbilt University, Nashville, TN (10) University of Colorado - Colorado Springs, Colorado Springs, CO (11) Bowdoin College, Brunswick, ME (12) Northern Arizona University, Flagstaff, AZ (13) Missouri University of Science and Technology, Rolla, MO (14) Tulane University, New Orleans, LA (15) Stanford University, Stanford, CA (16) University of California - Santa Cruz, Santa Cruz, CA (17) Pomona College, Claremont, CA (18) Amherst College, Amherst, MA (19) University of Albany, Albany, NY (20) University of Chicago, LL (21) Johns Hopkins University, Baltimore, MD (22) Harvard University, Cambridge, MA (23) University of Connecticut, Mansfield, CT (24) Northern Kentucky University, Highland Heights, KY (25) University of Texas - Rio Grande Valley, Edinburg, TX (26) Oregon State University, Corvallis, OR (27) Butler University, Indianapolis, IN (28) University of Georgia, Athens, GA (29) Centre College, Danville, KY (30) Norwich University, Northfield, VT (31) Colorado School of Mines, Golden, CO (32) University of Utah, Salt Lake City, UT (33) University of Arizona, Tucson, AZ (34) University of California Santa Barbara, Santa Barbara, CA (35) NASA Langley Research Center, Hampton, VA (36) University of California Riverside, Riverside, CA (37) NASA Headquarters, Washington, DC (38) NASA-Science Mission Directorate, Washington, DC (39) USRA at NASA/GSFC, Greenbelt, MD

Competitive summer internship for 28 junior/senior undergraduate STEM majors from across the USA

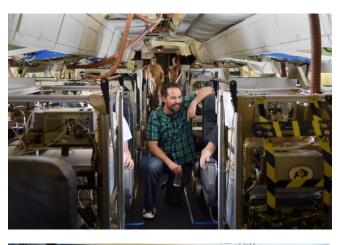
SARP Program Elements

- Expose and engage participants in NASA Airborne Science and its role in Earth system research
- Provide participants with hands-on experience of the end-to-end aspects of a scientific mission using NASA research aircraft and instrumentation
- Ensure that authentic student projects can be completed

Week 1 (NASA Armstrong)

- Background lectures on Earth Science Research
- Tours of NASA facilities and aircraft in southern California
- Students divided into 4 research groups

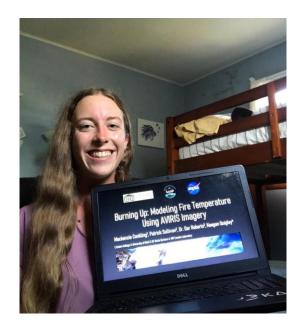
Week 2 (NASA Armstrong)

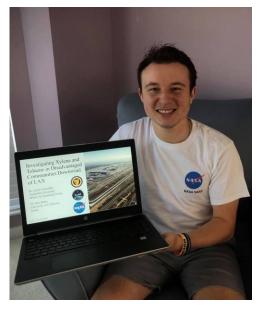

- Fly onboard NASA research aircraft and assist in the collection of remote sensing and atmospheric chemistry data
- Field trips for ground truth validation measurements

Week 3-7 (UC Irvine)

- Develop individual research projects in the atmosphere, oceans and land from data collected onboard aircraft, and from satellites and the field
- Laboratory and data analysis
- Coding and science lectures
- Weekend trips and tours

Week 8 (UC Irvine)


- Formal presentation of results and conclusions
- Submission of top abstracts to AGU scientific sessions



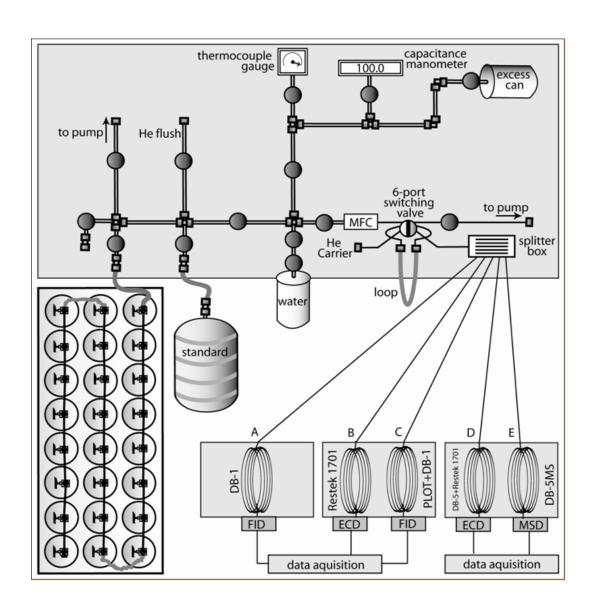
SARP 2020 at Home

28 individual student research projects using data from 2009-2019 SARP flights, other airborne campaigns, satellites and ground stations

Hands-on at home group projects:

- Whole Air Sampling (WAS)
- Aerosol measurements

SARP at Home: Whole Air Sampling Group Project


SARP students, mentors, faculty and NASA scientists took air samples near their homes that were subsequently analyzed for nearly 100 different trace gases

Sample Analysis using Gas Chromatography

Detectors:

- Flame Ionization Detection (FID)
 - Sensitive to hydrocarbons
- Electron Capture Detection (ECD)
 - Sensitive to halocarbons, alkyl nitrates
- Mass Spectrometer Detection (MSD)
 - Unambiguous compound identification

VOCs quantified for SARP 2020 samples (n = 1100)

Alkanes

- 1. Ethane
- 2. Propane
- 3. *i*-Butane
- 4. *n*-Butane
- 5. *i*-Pentane
- 6. *n*-Pentane
- 7. *n*-Hexane
- 8. *n*-Heptane
- 9. *n*-Octane
- 10. *n*-Nonane
- 11. *n*-Decane
- 12. 2,3-Dimethylbutane
- 13. 2-Methylpentane
- 14. 3-Methylpentane
- 15. Cyclopentane
- 16. Methylcyclopentane
- 17. Cyclohexane
- 18. Methylcyclohexane

Alkyl Nitrates

- 19. MeONO₂
- 20. EtONO₂
- 21. *i*-PrONO₂
- 22. *n*-PrONO₂
- 23. 2-BuONO₂
- 24. 2-PeONO₂
- 25. 3-PeONO₂
- 26. 3-Methyl-2-BuONO₂

Alkenes, Alkynes

- 27. Ethene
- 28. Propene
- 29. 1-Butene
- 30. *i*-Butene
- 31. *cis*-2-Butene
- 32. trans-2-Butene
- 33. 1,3-butadiene
- 34. Isoprene
- 35. *α-Pinene*
- 36. *β-Pinene*
- 37. Ethyne

Aromatics

- 38. Benzene
- 39. Toluene
- 40. Ethylbenzene
- 41. *m,p*-Xylene
- 42. *o*-Xylene
- 43. Styrene
- 44. *i*-Propylbenzene
- 45. *n*-Propylbenzene
- 46. 2-Ethyltoluene
- 47. 3-Ethyltoluene
- 48. 4-Ethyltoluene
- 49. 1,2,3-Trimethylbenzene
- 50. 1,2,4-Trimethylbenzene
- 51. 1,3,5-Trimethylbenzene

Halocarbons (GHGs)

- 52. CFC-11 67. HFC-227ea
- 53. CFC-12 68. HFC-365mfc
- 54. CFC-112 69. CH₃Cl 55. CFC-113 70. CH₃Br
- 56. CFC-114 71. CH₂I
- 57. CCl₄ 72. CH₂Cl₂
- 58. CH₂CCl₂ 73. CHCl₃
- 59. H-1211 74. C₂HCl₃
- 60. H-1301 75. C₂Cl₄
- 61. H-2402 76. CH₂Br₂
- 62. HCFC-22 77. CHBr₃
- 63. HCFC-141b 78. CHBrCl₂
- 64. HCFC-142b 79. CHBr₂Cl
- 65. HFC-134a 80. Ethyl chloride
- 66. HFC-152a 81. 1,2-Dichloroethane

Sulfur Species

- 82. OCS
- 83. DMS

Oxygenates

- 84. MAC 88. Acetone
- 85. MVK 89. Acetaldehyde
- 86. Butanal 90. Methyl acetate
- 87. Butanone 91. Ethyl acetate

Some VOC tracers

Oceans:

• MeONO₂

Biomass burning:

• Ethyne

Urban/industrial:

• C₂Cl₄

Solvents:

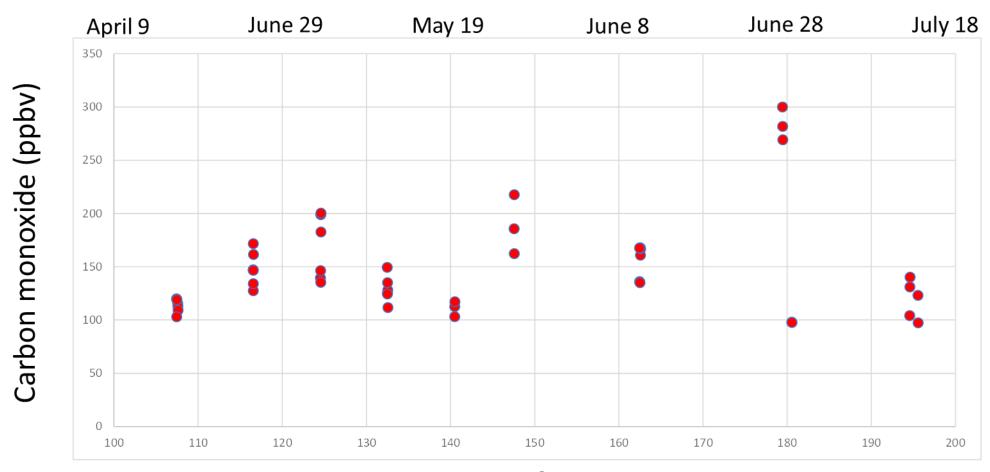
• Toluene

Natural gas:

Ethane

Gas evaporation:

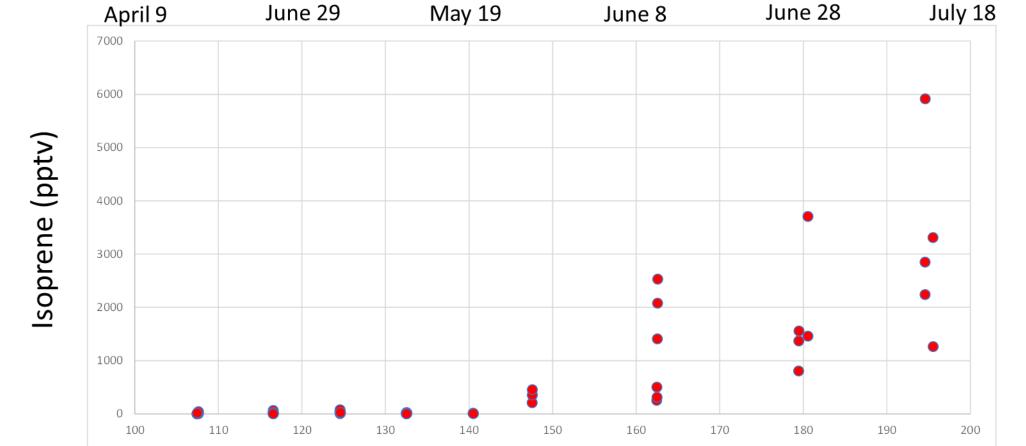
• *i*-Pentane


Vehicle exhaust:

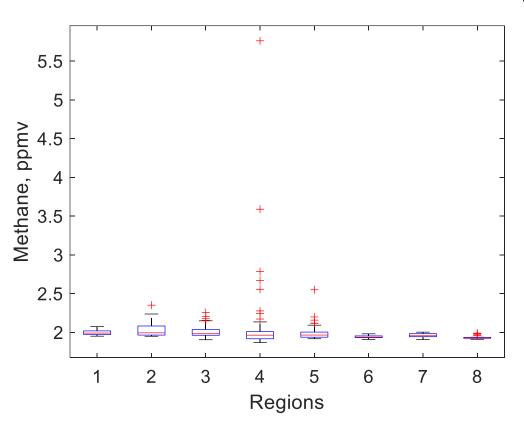
Ethene

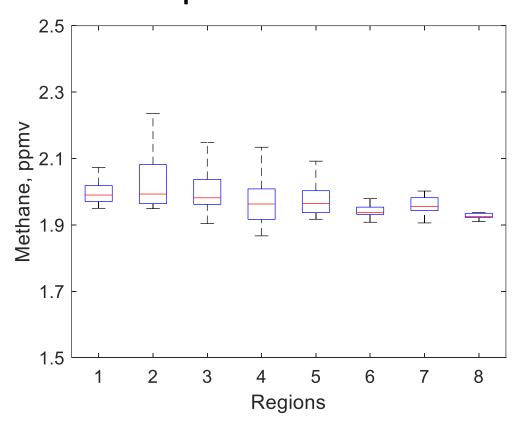
Biogenic:

• Isoprene


Carbon monoxide (CO) time series: New Jersey and Connecticut samples

Day of Year

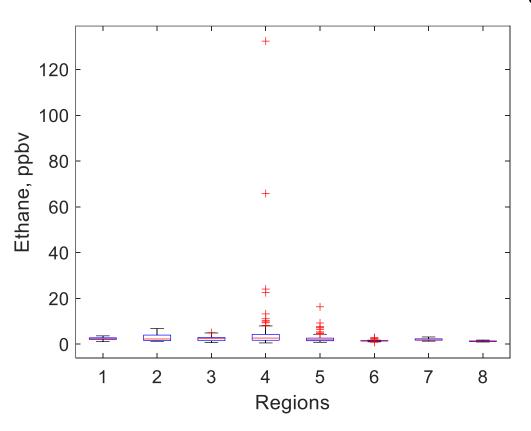

Isoprene time series: New Jersey and Connecticut samples

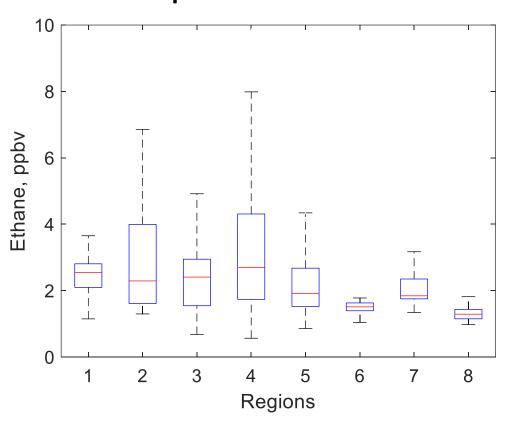


Day of Year

Methane SARP 2020 ground samples

Regions

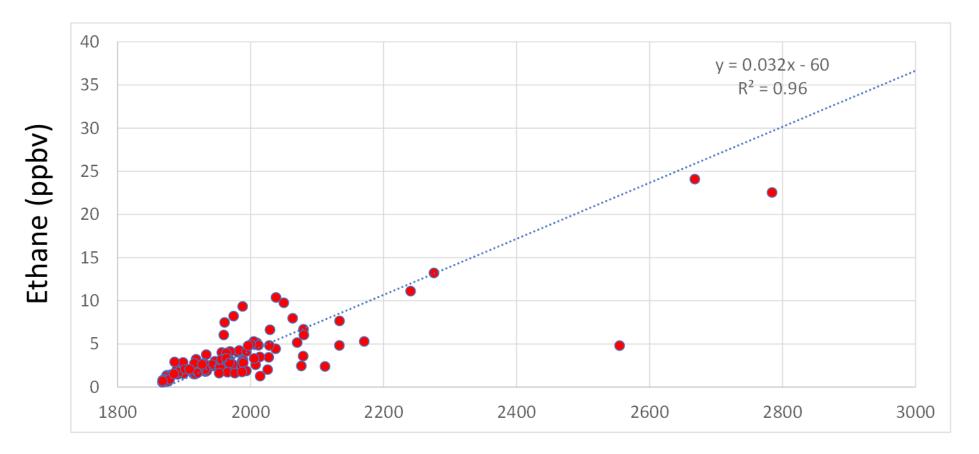

1 = New Jersey 5 = California 2 = Connecticut 6 = Utah 3 = New York


4 = Texas 8 = Oregon

7 = Missouri

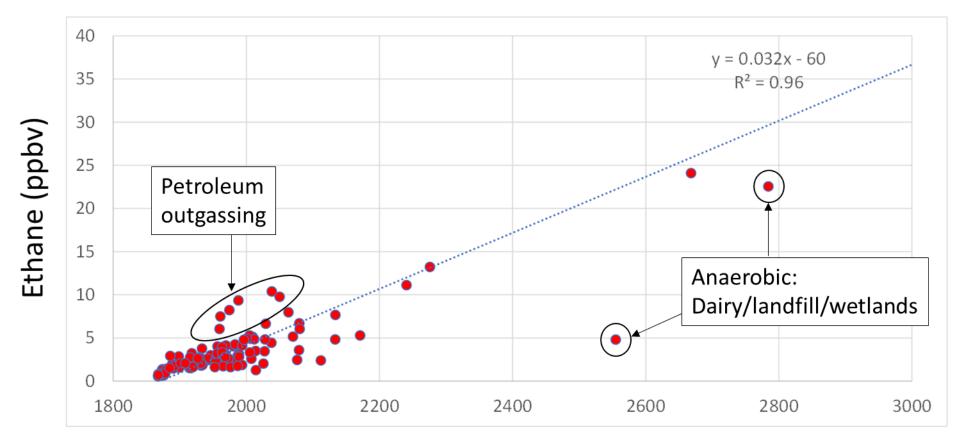
Ethane SARP 2020 ground samples

Regions

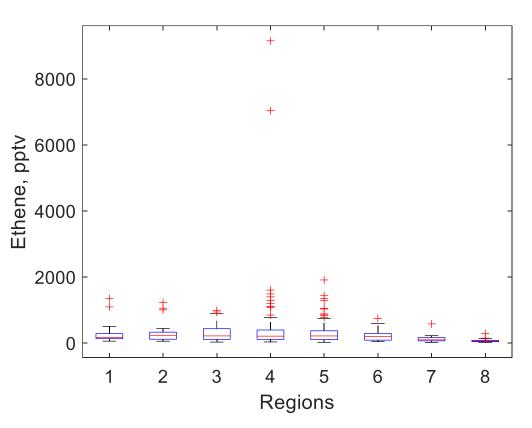

1 = New Jersey 5 = California 2 = Connecticut 6 = Utah

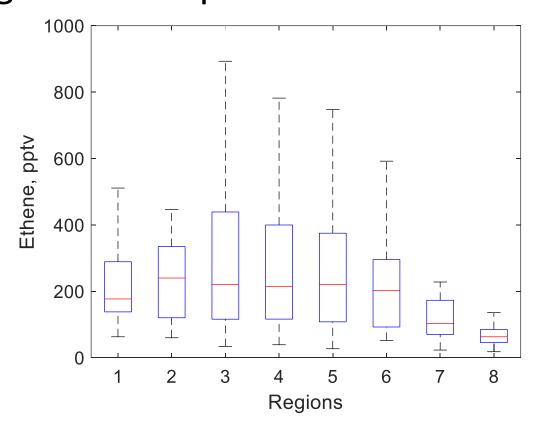
3 = New York 7 = Missouri

4 = Texas


Ethane vs methane for Texas samples: The slope of ~3% is consistent with natural gas

Methane (ppbv)

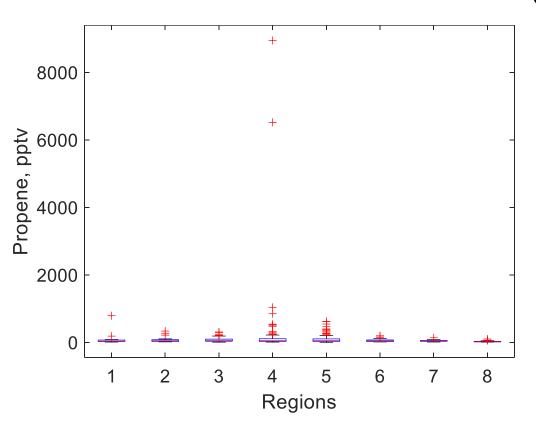

Ethane vs methane for Texas samples: The slope of ~3% is consistent with natural gas



Methane (ppbv)

Ethene SARP 2020 ground samples

Regions

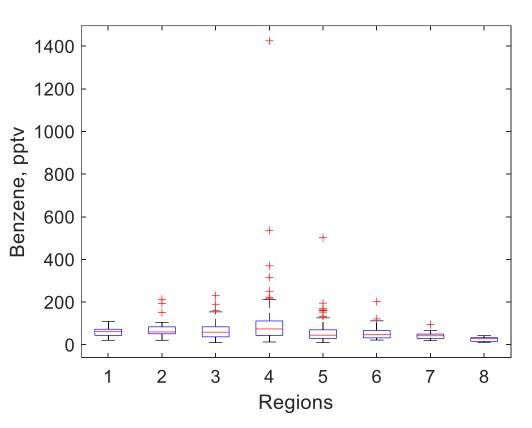

1 = New Jersey 5 = California 2 = Connecticut 6 = Utah

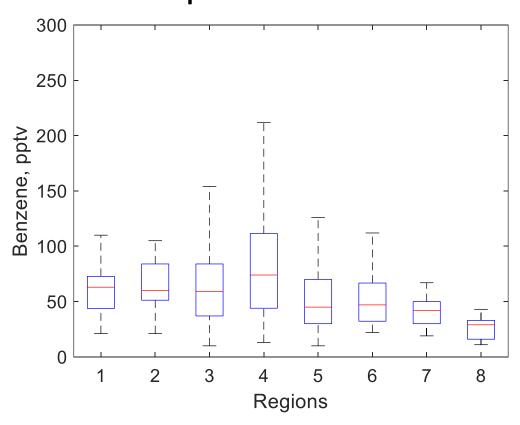
3 = New York 7 = Missouri

4 = Texas

Propene SARP 2020 ground samples

Regions

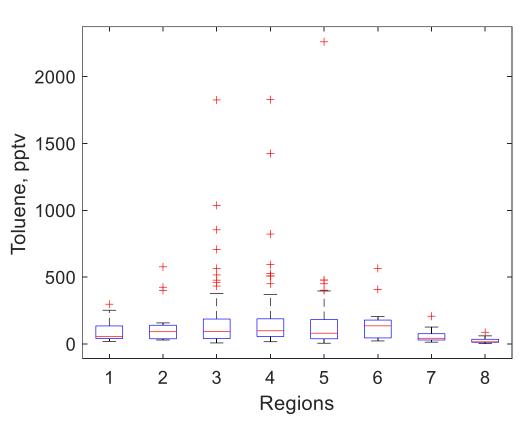

1 = New Jersey 5 = California 2 = Connecticut 6 = Utah

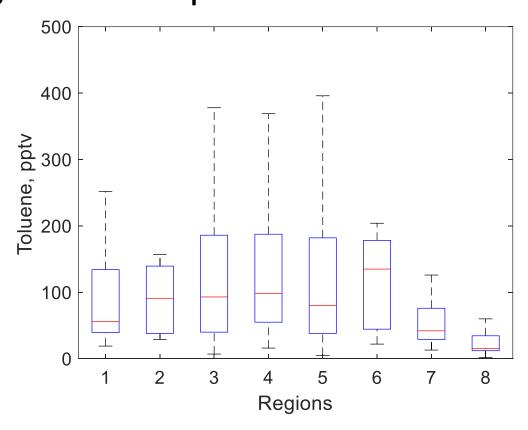

3 = New York 7 = Missouri

4 = Texas

Benzene SARP 2020 ground samples

Regions

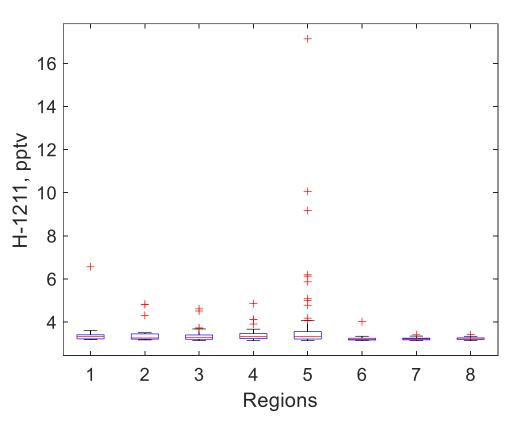

1 = New Jersey 5 = California 2 = Connecticut 6 = Utah

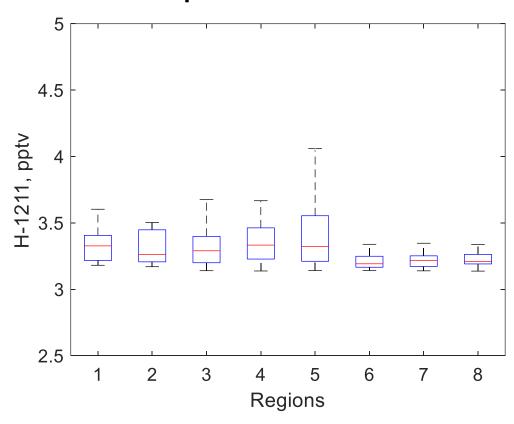

3 = New York 7 = Missouri

4 = Texas

Toluene SARP 2020 ground samples

Regions

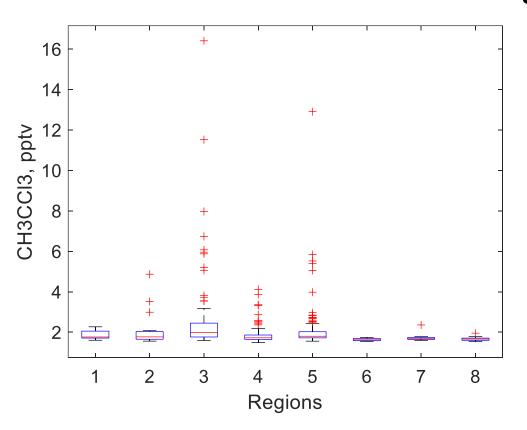

1 = New Jersey 5 = California 2 = Connecticut 6 = Utah

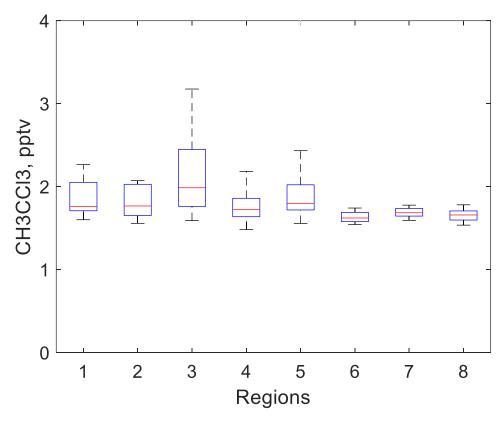

3 = New York 7 = Missouri

4 = Texas

Halon 1211 SARP 2020 ground samples

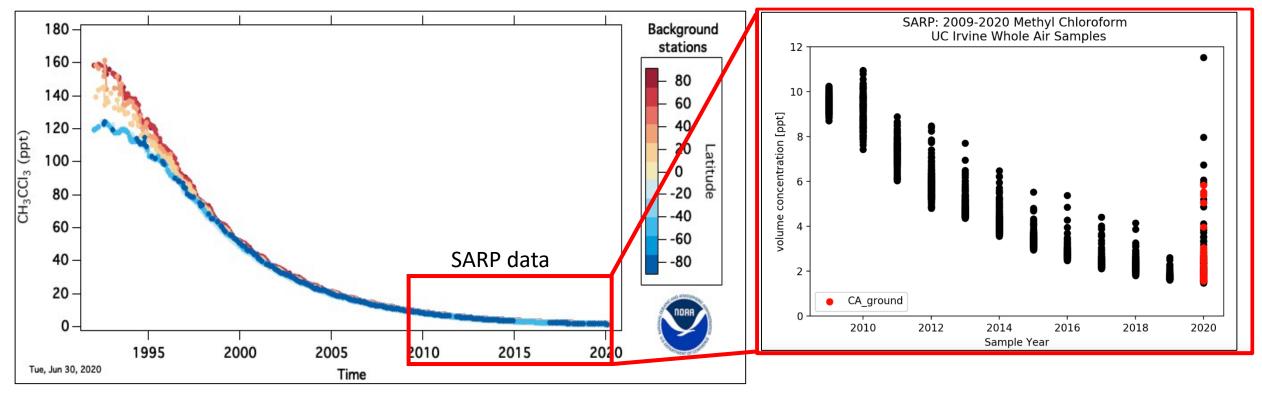
Regions


1 = New Jersey 5 = California2 = Connecticut 6 = Utah


3 = New York 7 = Missouri

4 = Texas

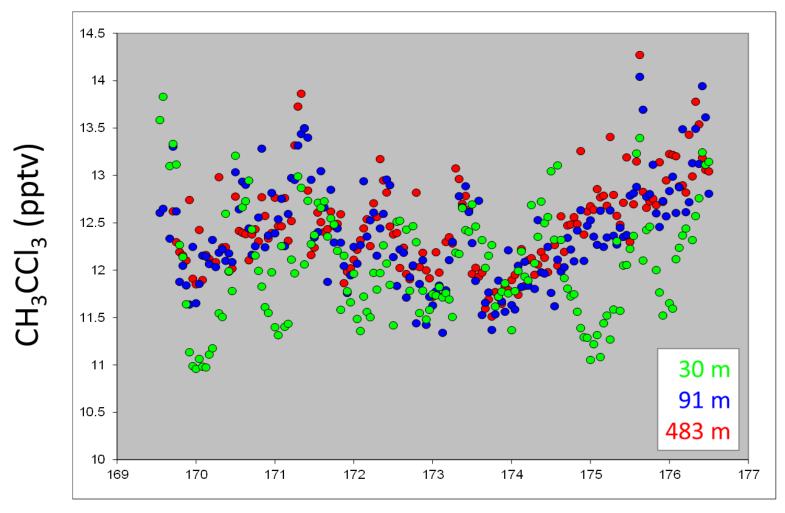
Methyl chloroform (CH₃CCl₃) SARP 2020 ground samples



Regions

1 = New Jersey5 = California2 = Connecticut6 = Utah3 = New York7 = Missouri4 = Texas8 = Oregon

SARP at Home, Preliminary Results: Methyl chloroform



https://www.esrl.noaa.gov/gmd/hats/gases/CH3CCl3.html

- Previously produced industrially in large quantities for use as a solvent
- Regulated by the Montreal Protocol as an ozone-depleting substance

Hourly CH₃CCl₃ mixing ratios

Walnut Grove Tower, northern Central Valley of CA, June 17-25, 2008

Day of Year

Conclusions

- Ethane vs methane for Texas samples suggests sources from petroleum, natural gas, and dairy/landfills/wetlands
- Methyl chloroform enhancements are surprising and bothersome
- The study did not identify significant changes in VOC concentrations resulting from reduced traffic from COVID restrictions
- Visit Final Paper Number: A095-0001 for more in-depth discussion