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Abstract

Abstract Introduction: Nowadays it is nebulous how much matter is delivered by the largest rivers into the Arctic ocean and
how much sediments are eroded by bank and watershed erosion. Thus, these investigations were made for the two biggest
watersheds of the Arctic Ocean (the Ob’ and Yenisei) and their components of the sediment budget estimated. Methods and
results: 1.The fieldwork campaign allowed us to obtain characteristic models of the distribution of suspended and bed sediments
in the estuaries of the Yenisei and Ob’ river 2. The method for estimating the instantaneous sediment yield is developed based
on the author’s program for extrapolating ADCP measurement data (language R), water velocity and backscatter intensity.
The average annual sediment runoff for the Ob’ is 63.5 Mt/year, for the Yenisei — 32.5 MT/year; 3.The watershed component
of sediment runoff was estimated by the RUSLE, taking into account the trapping of sediments by reservoirs and lakes. For the
Ob’ potential watershed is 85 MT/year, and 53.6 MT /year for the Yenisei 4. The Bank erosion was calculated based on GSWE,
Arctic-DEM, and HYDROATLAS and GRWL databases for the downstream of rivers, which was 35.0 MT /year for the Ob and
21.9 MT/year for the Yenisei. 5.The total deposition of sediments was calculated as a difference between total sediment yield
and total erosion in catchments. For the Ob’ total deposition was 56.5 MT /year, for the Yenisei is 43 MT /year. Discussion and
conclusion The sediments deposited in the catchment area or in the bedforms can be eroded again by snowmelt and rainfall
erosion in the catchment area or directly due to the erosion of the banks. The products of erosion gradually move to the end
of the river, with the exception of the part of sediment trapped by reservoirs. For instance, for the Ob’, it is only 10% of the
watershed erosion, and for the Yenisei, it is 17% of eroded soil on the catchment. According to the calculations, bank erosion for
both downstream is less than the watershed component of sediment runoff. The fact that these components are comparable and
it gives some progress in solving the still unexplored question of the role of the bank and watershed components in the origin
of sediment runoff of large rivers. Acknowledgments This work powered by the grant 18-05-60219 of the Russian Foundation
for Basic Research(RFBR)
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INTRODUCTION, THE AIM GOAL OF THE RESEARCH

The aim of work — estimation of sediment budget of the Ob’ and the Yenisei by empirical data of field sampling at ends of the
Ob’ and Yenisei; GIS data; hydrological calculations and channel and watershed erosion.
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If watershed erosion and channel/bank erosion can be calculated by modeling and remote sensing data, the sediment yield
was measured at the mouths of rivers, the total deposition for all of the watershed can be esteems with normal accuracy only as a
difference between sources (erosion) and sinks (sediment yield).



WATERSHED EROSION CALCULATION

Watershed erosion or soil loss were esteemed with the nowadays popular method of (R)USLE- spatially distributed models,
which looks like multiplication of 4 main paraments (R, K, LS, C), influencers of soil loss, for each cell. The sources for these
paraments calculation mentioned in the table below. The adaptation of this simulation for boreal watershed was made by the land
cover (C factor) value from the literature overview (Panagos et al., 2015), (Morgan,2005), (Fernandez et al..2003).

A=RK-LS-C
Factor [ssue Resol. Formula
R - Rainfall erosivity | painfall erosivity maj (Panagos | 30 sec
fymap (Fanagos | 3 p = B s (e
etal., 2017) - n
(Morgan, Nearing, zom)
K - Soil erodibility Soil map FAOQ 30 sec. K = fisang X far—si X forge X frisand
factor (IUSS Working Group WRB, (Sharpley, Williams, 19g90)
2015)
LS - Slope length (L) | LMP GMETED 2010 30 sec. U\™ (sing\"
sin
and steepness (S) (Danielson, Gesch, 20m) LS =(m+1) (L_u) ( 5, )
factor (Borrelli et al., 2017)
C - Coverand GlobCover 2009 Landcover 250m | Empirical coefficients for each vegetation zones
management factor map (Bontemps et al., 2om) (Panagos et al., 2015) (Morgan, Nearing, 20m)
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The fact is that upstream of rivers there are the reservoirs that trap all main sources' large watershed erosion. In other words,
more than 70% percents of total eroded material are not potentially accessible to be detected downstream for both rivers because
of absence and depositing in reservoirs. It can be illustrated in the figure below. This figure represents the number of sediments

which is eroded in each watershed, so its shape suggests that the quantity of matter is growing from upstream to downstream.

Furthermore, there are reservoirs in catchments that trap the most part of potential watershed erosion.
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CALL FOR COLLABORATION AND DISCUSSION

I want your RIVER BASIN
for SEDIMENT BUDGET
calculation

viktoro.1l998@yandex. ru

This work is about methods of sediment yield sources calculations for the Ob' and the Yenisei, but if you have ideas of
implementing these

calculations for other basins I am full of interest for collaboration!

[VIDEO] https://www.youtube.com/embed/042R 1 E5SL61g?rel=0&fs=1&modestbranding=1&rel=0&showinfo=0



BANK EROSION

CALCULATION

The role of bank erosion for big rivers is massive, especially it grows for the river with big dams upstream. Esteems of sediment
budget for the Ob' and the Yenisei obligatory need to include the block of channel/bank erosion. New DEMs with high resolution
for height ( ~2m) with multi-time satellite image data Landsat allow solving this task on a global scale. The algorithm of these

calculations is illustrated below.
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The calculations look like a search of the volume of eroded by rivers polygons with height consisted of mean river depth and
mean bank height. These values visualized below
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The source for bank erosion areas was the GWSE database that specializes in the water bodies traditions search by Landsat data.
The areas of the absence of water near the current channel can be identified as channel erosion areas. This theory was validated
with the manual search of channel erosion areas from (Kurakova, Chalov, 2019) and appears a good correlation between GSWE
and (Kurakova, Chalov, 2019) data. The difference between areas at least 11%.
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The result of watershed erosion can be visualized as line figures, where lines are summarised values of total channel erosion.

With black lines bolded the intersection of main rivers with the biggest tributaries. These places confirm the slowing of erosion

rates due to the slowing of mean river velocity and the incoming of new material from tributary catchments, most clear it is for

the intersection of the Ob' and the Irtysh.
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RESULTS

Ob'

Sediment runoff
141 MT/year

Watershed erosion
85,0 MT/year

Channel erosion
4 N 35,0 MT/year

Watershed erosion
1215 MTlye

Dam

Deposition
56,5 MT/year

Yenisei

Watershed erosion
53,6 MT/year

e
N N, S Ly

Channel erosion
A 21,9 MTlyear

Sediment runoff
32,5 MTlyear

Watershed erosion
295 MT/ye

Dam

Deposition
43,0 MT/year

1. Based on the use of modern databases and DEM with a resolution of 250 m, the watershed component of sediment
runoff was esteemed by RUSLE, taking into account the trapping of sediment runoff by reservoirs and lakes. For the Ob
catchment area, potential soil loss is estimated as 142 MT/year (11% of the total catchment erosion), for the Yenisei 53.6
MT/year (17%)

2. The calculation of bank erosion was esteemed based on automatic interpretation data: GSWE, Arctic-DEM,
HYDROATLAS, and GRWL for the downstream. It was 35.0 MT/year for the Ob and 21.9 MT/year for the Yenisei,
which was 20% and 29% for rivers of the full erosion in the studied areas

w

The samplings made it possible to obtain characteristic models of the distribution of suspended sediments downstream
of the Yenisei and the Ob' according to the developed methodology for estimating the instantaneous flow of sediments
in the cross-section based on the program created by the author for extrapolating ADCP measurement data (R
language), as well as by Roshydromet net data. The average annual sediment runoff for the Ob' was 63.5 MT/year, for
the Yenisei — 32.5 MT/year (by MSU measurements); for the Ob' 16.4 MT/year, for the Yenisei — 2.38 MT/year for
Roshydromet;

4. Based on the assessment of the average annual sediment discharge, the deposition of sediment in the basins of these
rivers was esteemed. For the Ob', it was 85.5 MT/year (67,8% of the expenditure components), for the Yenisei 43
M/year (57%), and the sediment delivery coefficients were 0,43 and 0,56, respectively for MSU data for not trapped by
reservoirs area.

This information can be also presented as the tables:



Sediment budget

Sedlment

runoff

(100%)

142 (11%) 1250 55 1m86 0,44 0,05

Yenisei 219 53,6 (17%) 315 32,5 430 304 0,43 o0,10

Sediment budget

Sediment
runoff, % full

erosion

Not
Total Total

20% 2,7%  80%  973% 322% 50% 67,.8%  950%

Yenisei 29% 6,5% 53,6 93,5% 43,0% 9,6% 57% 90,4%
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ABSTRACT

Introduction:

Nowadays it is nebulous how much matter is delivered by the largest rivers into the Arctic ocean and how much of sediments
are eroded by bank and watershed erosion. Thus, these investigations were made for two biggest watersheds of the Arctic
Ocean (the Ob' and Yenisei) and their components of sediment budget estimated.

Methods and results:

1.The fieldwork campaign allowed us to obtain characteristic models of the distribution of suspended and bed sediments in
the estuaries of the Yenisei and Ob' river

2.The method for estimating the instantaneous sediment yield is developed based on the author's program for extrapolating
ADCP measurement data (language R), water velocity and backscatter intensity. The average annual sediment runoff for the
Ob' is 63.5 Mt/year, for the Yenisei — 32.5 MT/year;

3.The watershed component of sediment runoff was estimated by the RUSLE, taking into account the trapping of sediments
by reservoirs and lakes. For the Ob' potential watershed is 85 MT/year, and 53.6 MT/year for the Yenisei

4.The Bank erosion was calculated based on GSWE, Arctic-DEM, and HYDROATLAS and GRWL databases for the
downstream of rivers, which was 35.0 MT/year for the Ob and 21.9 MT/year for the Yenisei.

5.The total deposition of sediments was calculated as a difference between total sediment yield and total erosion in
catchments. For the Ob' total deposition was 56.5 MT/year, for the Yenisei is 43 MT/year.

Discussion and conclusion

The sediments deposited in the catchment area or in the bedforms can be eroded again by of snowmelt and rainfall erosion in
the catchment area or directly due to the erosion of the banks. The products of erosion gradually move to the end of the river,
with the exception of the part of sediment that trapped by reservoirs. For instance, for the Ob', it is only 10% of the watershed
erosion, and for the Yenisei, it is 17% of eroded soil on the catchment. According to the calculations, bank erosion for both
downstream is less than the watershed component of sediment runoff. The fact that these components are comparable and it
gives some progress in solving the still unexplored question of the role of the bank and watershed components in the origin of
sediment runoff of large rivers.
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