Quantifying Isolated Pore Space in Geological Barrier Materials

Qinhong Hu¹, Qiming Wang¹, Prince Oware¹, Tristan Tom¹, Yukio Tachi², Fukatsu Yuta², Jan Ilavsky³, Jonathan Almer³, and Jun-Sang Park³

¹University of Texas at Arlington ²Japan Atomic Energy Agency ³Argonne National Laboratory

November 21, 2022

Abstract

Pore connectivity, a topological characteristic of pore structure, is oftentimes more important than the geometrical aspects in controlling fluid flow and mass transport in porous natural rocks as well as their associated utilities in energy and environmental stewardship. A different extent of pore connectivity can be reflected in the proportion of isolated pore space not connected to the surface of natural rocks. This work presents the multi-approach and multi-scale laboratory studies to investigating the proportion of isolated pore space of, and its resultant anomalous fluid flow and radionuclide movement in, generic geological barrier materials (clay sediment, crystalline rock, salt rock, shale, tuff). The samples include clay sediments of Wakkanai formation at Horonobe underground research center in Hokkaido of Japan, Opalinus clay of Mt. Terri Underground Research Laboratory as well as granodiorite from the Grimsel Test Site in Switzerland, salt rock from Waste Isolation Pilot Plant in New Mexico, various shales (Barnett, Eagle Ford and Wolfcamp from Texas), and welded tuff in Yucca Mountain in Nevada. Working with sample sizes from $<75 \,\mu m$ to several centimeters, the experimental approaches include the independent quantification of both (1) surface-accessible pore space with various probing fluids (e.g., helium in expansion, water in vacuum saturation and nuclear magnetic resonance, mercury in intrusion porosimetry, nitrogen in gas physisorption, and Wood's metal in high-pressure impregnation and micron-scale tracer mapping using laser ablation-ICP-MS); and (2) total (both connected and isolated) porosity by small angle X-ray scattering. In summary, our evolving complementary approaches provide a rich toolbox for tackling the pore structure characteristics in geological barrier materials, and associated fluid flow & radionuclide transport, implicated in their long-term performance in natural and engineered systems of a nuclear waste repository.

Quantifying isolated pore space in geological barrier materials

(Max) Qinhong Hu, Qiming Wang, Prince Oware, Tristan Tom, Yukio Tachi, Yuta Fukatsu, Jan Ilavsky, Jonathan Almer, Jun-Sang Park

University of Texas at Arlington; Japan Atomic Energy Agency; Argonne National Laboratory

PRESENTED AT:

RATIONAL AND EARLY WORK

Historical Evolution of Major Research Thrusts in the Environment, Energy, and Resources Studies

- Air and surface water contamination (1950s-1980s)
- Environmentalism movement (since 1960s) ٠
- Soil contamination (1960s-present)
- Geothermal energy exploitation (1974–present)
- •

clay materials

&

involves

- Tight sands and coalbed methane (1976-present)
- Geological repository of high-level nuclear waste (1978-present)

fractured media

- Groundwater remediation and Superfund (1980–present)
- Carbon sequestration (1997–present)
- Petroleum production in shale gas and oil reservoirs (1981; 2008-present)
- Gas (methane) hydrate (2005–present)

https://agu2020fallmeeting-agu.ipostersessions.com/Default.aspx?s=D0-EB-74-E7-A8-04-E6-CF-1B-30-B2-0E-5E-71-C3-D0&pdfprint=true&guestview=true

Nuclear Power Plants Worldwide

Nuclear Operating Nuclear electricity generation Nuclear electricity plants in 2010 electricity Country Projected repository operation in 2006 (2019) (billions kWh) of world total (%) (2019)reliance (%) between 2035-2080 Belgium 7 (7) 44.3 (41.3) 54 (47.6) 1.7 (1.6) Canada 18 (19) 92.4 (95.5) 18 (14.9) 3.5 (3.8) after 2034 China 11 (48) 51.8 (348) 2.1 (4.9) 1.9 (13.8) at earliest 2040 **Czech Republic** 32 (35.2) after 2030 6 (6) 24.5 (28.6) 0.9 (1.1) Olkiluoto in 2020; construc. in 2004; Finland 4 (4) 22 (22.9) 30 (34.7) 0.8 (0.9) license in 2015; emplacement in 2023 France 59 (56) 429 (380) 76 (70.6) 16 (15.0) by 2025 17 (6) 159 (0) 28 (0) 6.0 (0) no projected date Germany India 18 (22) 15.6 (40.7) 2.0 (3.2) 0.6 (1.6) TBD Japan 53 (33) 292 (65.6) 25 (7.5) 11 (2.6) at earliest 2035 TBD Korea (South) 20 (24) 141 (137) 36 (26.2) 5.3 (5.5) 144 (209) 17 (19.7) Russia 31 (38) 5.4 (8.3) after 2025 16.6 (15.4) 56 (53.9) TBD Slovakia 4 (4) 0.6 (0.61) 57.4 (55.9) TBD 18 (21.4) 2.2 (2.2) Spain 8 (7) Sweden 10 (7) 65.1 (55.9) 42 (21.4) 2.4 (2.2) Forsmark, license applied in 2011 Switzerland 5 (4) 26.4 (16.6) 39 (23.9) 1.0 (0.66) after 2050 15 (15) 84.8 (83.0) 47 (53.9) 3.2 (3.3) after 2020 Ukraine 19 (15) 69.2 (51.0) 13 (15.6) TBD United Kingdom 2.6 (2.0) 787 (809) 30 (32.0) Indefinite after 2008 **United States** 104 (95) 20 (19.7) UNIVERSITY OF TEXAS-ARLINGTON

Nuclear Power and Geological Repository in Major Countries

Geological Repository: Barrier (Host Rocks and Buffer) Materials

Earlier Fracture-Matrix Interaction Studies

Imbibition in Fractured Rock: Sorptivity and Permeability

Laboratory Tracer Tests and Penetration Delineation

SAMPLES AND METHODOLOGIES

A Variety of Generic Geological Media: Host Rocks and Barrier Materials

	Sample	Topopah Spring Welded Tuff	Marcellus Shale	Mancos Shale	Wolfcamp Shale	Salt Rock	Cement / Concrete LLNL; EPA	
	Source	Yucca Mtn., NV	Centre County, PA	San Juan Co., NM	Midland County, TX	Carlsbad, NM		
Sample (Gray Chalk	Wakkanai Mudston	e Boom (Clay	Grimsel Granodiorite	Granite C	palinus Clay	
Source	Negev Desert, Israel	Horonobe Underground Res. Center, Hokkaido, Japan	The HA Undergrou Lab., Bel	DES ind Res. gium	Grimsel, Switzerland	Stripa Mt. To mine, Rese Sweden	erri Underground arch Laboratory, Switzerland	
Sample	Silica Sa	nd Berea Sandstone	Na-rich Montmorilloni	ite Illi	te Kaoli	n Chlorit	e	
Source	Ottawa,	IL Berea Quarry, OH	Crook County WY	y, Silver M	Hill, Twigg T County,	gs El Dorad GA County, O	do CA	
	SITY OF ra	DOE-Nuclear Energy dionuclides from <u>pore str</u>	University Progr ucture characteri	am: " <u>Redu</u> zation of <u>b</u>	<u>ced diffusion</u> an arrier materials	d <u>enhanced retentio</u> for enhanced reposi	on of multiple itory performance"	

Pore Structure: Geometry and Topology

Multiple Approaches to Studying Pore Structure (Geometry and Topology)

A Range of Sample Sizes for Different Tests

A Range of Sample Sizes	for Pore Structure	Characterization
-------------------------	--------------------	------------------

A second se						
1-in plug	Size designation	Sieve mesh	Size fraction (diameter)	Equivalent spherical dia. (μm)	Equivalent spherical dia. (mm)	0.84-1.70
	Cylinder / Plug		2.54 cm dia.; any height (e.g., 3 cm)	(24394)	(24.39)	-min
25.4-mm	Cube		1.0 cm	9086	9.086	509-841
	Size X	8 mm to #8	2.38 - 8.0 mm	5180	5.180	pres-
10	GRI+	#8 to #12	1.70 - 2.38 mm	2030	2.030	
cube	Size A	#12 to #20	841 - 1700 μm	1271	1.271	1//-500
	GRI	#20 to #35	500 - 841 μm	671	0.671	
	Size B	#35 to #80	177 - 500 μm	339	0.339	
	Size C	#80 to #200	75 - 177 μm	126	0.126	/ .5-1/ /
A MARKEN	Powder	<#200	$< 75 \ \mu m$	< 75	< 0.075	
and the	Size D	#200 to #625	20 - 75 μm	47.5	0.0475	<75
	Size E	<#635	<20 µm	<20	<0.02	

GRI: Gas Research Institute

RESULTS: PYCNOMETRY, POROSIMETRY, AND TRACER MAPPING

Helium Pycnometry for Grain Density: Envelop Method for Bulk Density

Multiple nm-µm Pore Systems of Mudrock

Pore-Throat Size Distribution and Pore Connectivity

MIP Analyses of Pore Structure and Network: <u>Barnett Shale</u>

Clay Structure and Pore Space at Different Scales

Wettability-based Fluids and Tracers

Unique Dual-Connectivity Zones of Mudrock: Multiple Evidence

RESULTS (SCATTERING) & CONCLUSIONS

YMP Welded Tuff: (U)SANS and Other Results

AGU - iPosterSessions.com

Wolfcamp Shale: (U)SANS and Other Results

Advanced Photon Sources (APS)

- 80-acre site; ~450 employees
- The brightest x-ray beams in the Western Hemisphere
- The largest of the 5 DOE light sources in terms of users per year for more than 5,000 (and growing) scientists from around the United States and the world

9-ID: USAXS/SAXS/WAXS

- Energy range: 10-24 keV
- Beam size: .
- Analytical time: 4-5 min . one position

"New user and joint SANS/SAXS proposals on pore connectivity studies of shale gas and oil reservoirs" (2 days of 9-ID, 8/2020)

Jan Ilavsky

26

UNIVERSITY OF TEXAS-ARLINGTON

https://youtu.be/-a9nD4W2ShQ

Sample Preparation: Solid Form and Thickness

High-Energy SAXS/WAXS at 1-1D

Sample Preparation: Form and Thickness

Summary

- A variety of generic barrier materials are studied
- Dual connectivity zones are observed for mudrock
- Pore structure, especially pore connectivity, influences fluid flow and chemical transport in lowpermeability media
- Limited pore connectivity will be conductive to enhanced diffusion and retention of radionuclides
 in barrier materials

UNIVERSITY OF TEXAS-ARLINGTON

U.S. Department of Energy

Acknowledgments

ABSTRACT

Pore connectivity, a topological characteristic of pore structure, is oftentimes more important than the geometrical aspects in controlling fluid flow and mass transport in porous natural rocks as well as their associated utilities in energy and environmental stewardship. A different extent of pore connectivity can be reflected in the proportion of isolated pore space not connected to the surface of natural rocks. This work presents the multi-approach and multi-scale laboratory studies to investigating the proportion of isolated pore space of, and its resultant anomalous fluid flow and radionuclide movement in, generic geological barrier materials (clay sediment, crystalline rock, salt rock, shale, tuff). The samples include clay sediments of Wakkanai formation at Horonobe underground research center in Hokkaido of Japan, Opalinus clay of Mt. Terri Underground Research Laboratory as well as granodiorite from the Grimsel Test Site in Switzerland, salt rock from Waste Isolation Pilot Plant in New Mexico, various shales (Barnett, Eagle Ford and Wolfcamp from Texas), and welded tuff in Yucca Mountain in Nevada. Working with sample sizes from <75 µm to several centimeters, the experimental approaches include the independent quantification of both (1) surface-accessible pore space with various probing fluids (e.g., helium in expansion, water in vacuum saturation and nuclear magnetic resonance, mercury in intrusion porosimetry, nitrogen in gas physisorption, and Wood's metal in high-pressure impregnation and micron-scale tracer mapping using laser ablation-ICP-MS); and (2) total (both connected and isolated) porosity by small angle X-ray scattering. In summary, our evolving complementary approaches provide a rich toolbox for tackling the pore structure characteristics in geological barrier materials, and associated fluid flow & radionuclide transport, implicated in their long-term performance in natural and engineered systems of a nuclear waste repository.

Acknowledgements: This project was completed with funding provided by the Nuclear Energy University Program of Office of Nuclear Energy at the U.S. Department of Energy (award number DE-NE0008797) and Japan Atomic Energy Agency.