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Abstract

We developed a space-time model to project seasonal streamflow extremes on a river network for at several lead times. In

this, the extremes – 3-day maximum streamflow - at each gauge location on the network are assumed to be realized from a

Generalized Extreme Value (GEV) distribution with temporal non-stationary parameters. The parameters are modeled as a

linear function of suitable covariates. In addition, the spatial dependence of the extremes across the network is modeled via a

Gaussian copula. The parameters of the non-stationary GEV at each location are estimated via maximum likelihood, whereas

those of the Copula are estimated via maximum pseudo-likelihood. Best subset of covariates are selected using AIC. Ensembles

of streamflow in time, which are based on the varying temporal covariates and from the Copula, are generated, consequently,

capturing the spatial and temporal variability and the attendant uncertainty. We applied this framework to project spring

(May-Jun) season 3-day maximum flow at seven gauges in the Upper Colorado River Basin (UCRB) network, at 0 ˜ 3 months

lead time. In this basin, almost all of the annual flow and extremes that cause severe flooding, arrives during the spring season

as a result of melting of snow accumulated during the preceding winter season. As potential covariates, we used indices of

large scale climate teleconnection – ENSO, AMO, and PDO, regional mean snow water equivalent and temperature from the

preceding winter season. The skill of the probabilistic projections of flow extremes is assessed by rank histograms and skill scores

such as CRPSS and ES for marginal and spatial performance. We also evaluate the utility of Gaussian Copula by computing

spatial threshold exceedance probabilities compared to a model without the Copula – i.e. independent model at each gauge.

The validation indicates that the model is able to capture the space-time variability of flow extremes very well, and the skills

increase with decreasing lead time. Also the use of climate variables enhances skill relative to using just the snow information.

The median projections and their uncertainties are highly consistent with the observations with a Gaussian copula than without

it, indicating the role of spatial dependence. This framework will be of use in long leading planning of flood risk mitigation

strategies.
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Study Region
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Colorado Headwaters River Basin

Source:
RJ Sangosti, The Denver Post



Data
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Streamflow

Covariates (1965-2018)
• Climate indices: ENSO, PDO, AMO

(https://www.esrl.noaa.gov/psd/data/climateindices/list/)

• April Mean Temperature (AMT) – Global 
Historical Climatology Network (GHCN) dataset 
(https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/)

• Snow Water Equivalent (SWE) – Natural 
Resources Conservation Service (NRCS) 
(https://wcc.sc.egov.usda.gov/reportGenerator/)

• Daily observed streamflow – U.S. Geological Survey 
(USGS) 

• Years: 1965-2018 (54 years), no. of sites 7
• 3-day maximum (May-Jun) seasonal streamflow

Colorado Headwaters River Basin

https://www.esrl.noaa.gov/psd/data/climateindices/list/
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/
https://wcc.sc.egov.usda.gov/reportGenerator/


General Bayesian Model Structure
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𝜽 𝑠𝑗 , 𝑡𝑖 = 𝜇 𝑠𝑗 , 𝑡𝑖 , log 𝜎 𝑠𝑗 , 𝑡𝑖 , 𝜉 𝑠𝑗 , 𝑡𝑖

For each time and location

𝑦 𝑠𝑗 , 𝑡𝑖 ~𝐺𝐸𝑉 𝜇 𝑠𝑗 , 𝑡𝑖 , 𝜎 𝑠𝑗 , 𝑡𝑖 , 𝜉 𝑠𝑗 , 𝑡𝑖



Gaussian copula can replicate the dependence 
structure of the observed data
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Without copula              Gaussian copula             Student-t copula

Joe copula                     Gumbel copula                  Vine copula

Observed Simulated contour lines



Models Considered
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Stationary
Nonstationary

SWE

Nonstationary

SWE+Climate predictors

Nonstationary

SWE+Climate predictors

+ Gaussian copula

We considered 4 models for 0-month lead time (Nov-April)

And three different lead times for the last model
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0-month (Nov-April)

1-month
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2-month
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Seasonal Projection 

Models



Two covariates show a strong correlation with 
Seasonal maximum streamflow
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Exploratory analysis: 0-month lead time (Nov-April)



Predictors and copula allow to capture the 
spatial-temporal dependence
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Energy Skill Score (ESS)
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𝑀
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𝐸𝑆𝑆 = 1 −
𝐸𝑆𝑚𝑜𝑑𝑒𝑙

𝐸𝑆𝑐𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦

Stationary (0-month lead time)

SWE (0-month lead time)

SWE+SAMT (0-month lead time)

SWE+SAMT with Gaussian copula (0-month lead time)



By adding a copula, the model can capture the 
observed values
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Average of seasonal maximum flow over all gauges, models with SWE+ SAMT
(0-month lead time)

Observation non captured by ensembles Observation captured by ensembles Ensembles

(a) without a Gaussian copula                              (b) with a Gaussian copula(b) SWE+SAMT with Gaussian copula(a) SWE+SAMT



Three models has a better performance than 
climatology for predict high flows years
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Energy Skill Score (ESS) for different cases



The performance is not so difference between 
different lead times
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average of seasonal maximum flow over all gauges, Case 2 (cross-validation 
all years)

Observation non captured by ensembles

Observation captured by ensembles

Ensembles



Deliver interpretable seasonal projections
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Description
Average Seasonal 

Streamflow (mm/day)

Max streamflow 75% (2018) 21.0

Max streamflow 50% (2018) 26.8

Max streamflow 25% (2018) 35.3

Max streamflow (high flow event) 48.2

Max median streamflow (normal year) 29.2

Proposed Spring Seasonal Projection
• Provide 3 percentiles along with some past streamflow as reference 
• Reference values can help to make decision about risk mitigation in 

advance 
• Example: Forecast 2018 for 0-month lead time

Reference values

Max streamflow with 
a xx% of chance of 

being exceeded 



Conclusions
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Skillful seasonal projections by 
considering no stationarity, 
spatial dependence, and 
parameter uncertainties 

Seasonal projections up 
to 2 months in advance 
without reduce the 
model skill significantly

The framework can be 
easily applied to another 
region or adjusted to 
represents future climate 
conditions 
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