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Nanditha J S1, Álvaro Ossandón2, Balaji Rajagopalan3, and Vimal Mishra4

1Indian Institute of Technology, Gandhinagar
2University of Colorado Boulder
3University of Colorado at Boulder
4Indian Institute of Technology Gandhinagar

November 24, 2022

Abstract

Skillful forecasts of daily streamflow on river networks are crucial for flood mitigation, especially in rainfall-driven river basins.

This is of acute importance on the Narmada River Basin in Central India, which is driven by the summer monsoon rainfall,

and floods lead to heavy loss of life and infrastructure. Physical hydrologic models based on the land surface model – Variable

Infiltration Capacity (VIC), have been developed in an experimental mode to model and forecast the hydrologic system, which

includes – storage, soil moisture and runoff – by incorporating rainfall data from the India Meteorological Department (IMD).

To enhance the forecast skill by model-combination, we propose a coupled physical-statistical modeling framework. In this, we

couple the VIC model with a novel Bayesian Hierarchical Network Model (BHNM) for daily streamflow forecasts that uses the

network topology to capture the spatial dependence. The daily streamflow at each station is modelled as Gamma distribution

with time-varying parameters. The distribution parameters for each day are modeled as a linear function of covariates, which

include antecedent streamflow from upstream gauges and, daily 2-day, or 3-day precipitation from the upstream contributing

areas - that reflect the antecedent land conditions. The posterior distribution of the model parameters and, consequently,

the predictive posterior distribution of the daily streamflow at each station and for each day are obtained. To the BHNM

model, we will couple the VIC model by including the hydrologic forecasts – especially soil moisture and storage – as additional

covariates. The coupled model will be demonstrated by its application to daily summer (July-August) streamflow at 4 gauges

in the Narmada basin network for the period 1978 – 2014. The skill of the probabilistic forecast will be assessed using rank

histograms and skill scores such as CRPS and RPS. The model skill will also be tested on five high flooding events on both the

timing and magnitude. These model combinations will enable to combine the strengths of the individual models in capturing

the hydrologic processes, biases and nonstationary relationships, to provide skillful daily streamflow forecasts. This will be of

immense help in flood mitigation.
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INTRODUCTION
Improving the streamflow forecast skill is of huge importance in flood-prone river basins, especially
basins driven by extreme rainfall events. Here, we present a coupled physical-statistical model for
modelling flood events in the Narmada basin in India. 

Physical hydrological models suffer from model parameterization and regionalization errors, which
may result in biases in the model output. One needs to adopt a combination of post-processing
methods and data assimilation to overcome these errors. Here, we combine the outputs of a semi-
distributed hydrological model with a Bayesian Hierarchical Network Model (BHNM).

The BHNM models the river network as a single system and uses precipitation and physical model
outputs as potential covariates to improve streamflow skill. In addition, the Markov Chain Monte Carlo
(MCMC) approach helps in reducing parameter uncertainty by providing an ensemble forecast.
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STUDY REGION AND DATA

Figure 1. The Narmada basin in India. The figure shows the digital elevation model of the basin
(SRTM DEM); the locations of five sub-basin outlets: Sandiya, Hoshangabad, Handia, Mandleshwar
and Garudeshwar; and some of the major dams in the basin: Bargi, Tawa, Indirasagar, Jobat, and
Sardar Sarovar (from upstream to downstream direction).

Narmada is a west-flowing river that originates from the Amarkantak ranges in Madhya
Pradesh.

The basin has an area of 98,796 km , and it extends 953 km in the east-west direction.

Discharge Data

We obtained daily observed summer discharge data from 1978-2014 at five gauge stations in the
Narmada basin: Sandiya, Handia, Hoshangabad,  Mandleshwar and Garudeshwar
from India Water Resource Information System (IWRIS).

Meteorological Variables

We used 0.25° gridded daily precipitation, temperature and wind data from 1951-2018 from the
India Meteorological Department (IMD) (Pai et al., 2014; Srivastava et al., 2009).

VIC Hydrological Model 

We used the Variable Infiltration Capacity (VIC) hydrological model (Liang et al., 1994, 1996) at
0.25° resolution for modelling the Narmada basin.

VIC is a semi-distributed hydrological model that solves water and energy balance at each grid
cell.

It generates 3-layer soil moisture and streamflow values at each grid point.

We used a routing model (Lohmann et al., 1996) to simulate daily streamflow values at specific
locations. 
We used a reservoir module to obtain naturalized observations to calibrate the VIC model.

Narmada Basin, India 

2
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METHODS

We calibrated the VIC model at three gauge stations using naturalized observations. 

Figure 2. Left panel (a-c) shows the result of calibration of the VIC model from 1980 to 1994 for the
stations Sandiya, Handia and Garudeshwar (1973-1982). Right panel (d-f) shows the result of model
validation from 1998 to 2002. The Nash Sutcliffe efficiency and correlation coefficient, R2 are given in
each plot.

As potential covariates we considered:

1-day, 2-day, and 3-day spatial average precipitation and soil moisture from the area
between two successive stations.

VIC streamflow simulation at each gauge point. 

VIC model calibration 

Potential Covariates
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1-day lagged VIC streamflow simulation at the upstream gauge.

The product between VIC Streamflow simulation and 2-day spatial average precipitation from
the area between two stations. This nonlinear variable allows correcting the nonsystematic bias
and timing issue present in the VIC streamflow (Figure 3)  

Figure 3. Nonsystematic bias and timing delay of the VIC streamflow at the Sandiya station gauge for
2013-2014.

For the structure of the Bayesian Hierarchical Network Model (BHNM) for the Narmada Basin, we
considered that streamflow at each gauge station follows a gamma distribution. Figure 4 displays the
conceptual sketch of the network Bayesian model implemented here.

Figure 4. Conceptual sketch of the network Bayesian model for the Narmada basin. corresponds

to the observed streamflow at gauge i and day t,  to the product daily VIC Streamflow at gauge i

and 2-day spatial average precipitation from the area between stations i and i+1 at day t, and 

to the daily VIC streamflow at gauge i at day t. 

Model Structure 
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We select the best covariates for each gauge based on the lowest value of the Deviance Information
Criterium (DIC). This gives the model structure showed in Figure 3 and represented by the following
equations

Mandleshwar:

Handia:

Hoshangabad:

Sandiya:

Posterior distributions of the parameters and streamflow (ensembles) were estimated using the
Gibbs sampling algorithm for the Markov Chain Monte Carlo method. 

The priors of β(i) and ϕ(i) for each gauge station were considered Multivariate Normal
distribution (MVN) to capture their dependence structure.
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RESULTS

3000 simulations from posterior distributions of the model parameters, and consequently, streamflow
ensembles were obtained

Figure 5. Ensembles of simulated July-August daily streamflow for the Handia gauge station
presented as boxplot time series for (a) entire record (1978-2014) and (b) 2013-2014. The boxplots
represent the posterior distribution estimates of the daily streamflow. Red lines correspond to the
observed daily streamflow and blue-dashed lines to the posterior median daily streamflow. The
medians of these boxplots/distributions are considered to be the actual simulated values when
computing R, which are displayed on the scatter plots on the upper right of each panel. R values are
significant (P-value<0.1). The black box in panel a shows the temporal windows for time series in
panel b.

BHNM Calibration
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Figure 6. Similar to figure 5, but for the Sandiya gauge station. R values are significant (P-value<0.1).

All the observed values are captured by the ensembles variability for Mandleshwar, Handia
(Figure 4a), and Hoshangabad gauges

The timing of the streamflow peaks is captured by the ensembles for all the gauges (see Figures
4b and 4b)

Peaks of observed streamflow for Sandiya gauge station cannot be captured by the ensembles
variability

The BHNM was fitted for the years 1978-2012, and forecasts were made for the years 2013-2014 (high
streamflow values occur in 2013).

BHNM Validation



11/20/2020 AGU - iPosterSessions.com

https://agu2020fallmeeting-agu.ipostersessions.com/Default.aspx?s=C6-37-54-1E-81-2A-0B-21-56-B5-57-84-DB-29-B2-05&pdfprint=true&guestvie…   9/13

Figure 7. Ensembles forecast of July-August daily streamflow presented as boxplot time series for the
years 2013-2014 at Handia gauge station. The boxplots represent the posterior distribution estimates
of the daily streamflow. Red lines correspond to the observed daily streamflow and blue-dashed lines
to the posterior median daily streamflow. The medians of these boxplots/distributions are considered
to be the actual forecast values when computing R, which are displayed on the scatter plots on the
upper right of each panel. R values are significant (P-value<0.1). black-dashed vertical lines indicate
the division between validation periods.

Figure 8. Similar to figure 7, but for the Sandiya gauge station. R values are significant (P-value<0.1).

There is no reduction of the skill compared to the calibration for Handia

The coupled model is able to reduce the negative bias and correct the timing delay for all the
gauges

For Sandiya there is a reduction of the skill for extreme flows compared to the calibration
period.
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CONCLUSIONS
The incorporation of nonlinear covariates in the BHNM model enabled to correct the timing
delay and nonsystematic bias present in the VIC model streamflow.

There is an increase in the skill (R) compared to the VIC streamflow simulations.

There is no significant reduction of the skill in a forecast mode compared to the calibration,
except for Sandiya.

The BHNM model is a potential post-processing tool for improving the streamflow simulations
and could be tested in real-time.

This model can be easily applied to other regions where physical-based models are
implemented for improving the forecast performance.
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ABSTRACT
Skillful forecasts of daily streamflow on river networks are crucial for flood mitigation, especially in
rainfall-driven river basins. This is of acute importance on the Narmada River Basin in Central India,
which is driven by the summer monsoon rainfall, and floods lead to heavy loss of life and
infrastructure. Physical hydrologic models based on the land surface model – Variable Infiltration
Capacity (VIC), have been developed in an experimental mode to model and forecast the hydrologic
system, which includes – storage, soil moisture and runoff – by incorporating rainfall data from the
India Meteorological Department (IMD). To enhance the forecast skill by model-combination, we
propose a coupled physical-statistical modeling framework. In this, we couple the VIC model with a
novel Bayesian Hierarchical Network Model (BHNM) for daily streamflow forecasts that uses the
network topology to capture the spatial dependence. The daily streamflow at each station is modelled
as Gamma distribution with time-varying parameters. The distribution parameters for each day are
modeled as a linear function of covariates, which include antecedent streamflow from upstream gauges
and, daily 2-day, or 3-day precipitation from the upstream contributing areas - that reflect the
antecedent land conditions. The posterior distribution of the model parameters and, consequently, the
predictive posterior distribution of the daily streamflow at each station and for each day are obtained.
To the BHNM model, we will couple the VIC model by including the hydrologic forecasts – especially
soil moisture and storage – as additional covariates. The coupled model will be demonstrated by its
application to daily summer (July-August) streamflow at 4 gauges in the Narmada basin network for
the period 1978 – 2014.  The model skill will also be tested on one high flooding event on both the
timing and magnitude. These model combinations will enable to combine the strengths of the
individual models in capturing the hydrologic processes, biases and nonstationary relationships, to
provide skillful daily streamflow forecasts. This will be of immense help in flood mitigation.
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