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Abstract

We developed a novel Bayesian Hierarchical Network Model (BHNM) for daily streamflow, which uses the spatial dependence

induced by the river network topology, and average daily precipitation from the upstream contributing area between station

gauges. In this, daily streamflow at each station is assumed to be distributed as Gamma distribution with temporal non-

stationary parameters. The mean and standard deviation of the Gamma distribution for each day are modeled as a linear

function of suitable covariates. The covariates include daily streamflow from upstream gauges or from the gauge above of the

upstream gauges depending on the travel times, and daily, 2-day, or 3-day precipitation from the area between two stations that

attempts to reflect the antecedent land conditions. Intercepts and slopes of the mean and standard deviation parameters are

modeled as a Multivariate Normal distribution (MVN) to capture their dependence structure. To ensure that the covariance

matrix of MVN is positive definite, it is model as an Inverse Wishart distribution. Non-informative priors for each parameter

were considered. Using the network structure in incorporating flow information from upstream gauges and precipitation from the

immediate contributing area as covariates, enables to capture the spatial correlation of flows simultaneously and parsimoniously.

The posterior distribution of the model parameters and, consequently, the predictive posterior Gamma distribution of the daily

streamflow at each station and for each day are obtained. The model is demonstrated by its application to daily summer

(July-August) streamflow at 4 gauges in the Narmada basin network in central India for the period 1978 – 2014. The skill of

the probabilistic forecast is carried out by rank histograms and the Continuous Ranked Probability Score (CRPS). The model

validation indicates that the model is highly skillful relative to climatology and relative to a null-model of linear regression. The

forecasts present an adequate spread of uncertainty and non-bias. Since flooding is of major concern in this basin, we applied

the BHNM in a cross-validated mode on two high flooding years – in that, the model was fitted on other years, and forecasts

were made for the dropped-out high flooding year. The skill of the model in forecasting the high flood events was very good

across the network – in both the timing and magnitude of the events. The model will be of immense help to policy makers in

risk-based flood mitigation. The BHNM framework is general in nature and can be applied to any river network with other

covariates as appropriate.
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INTRODUCTION
In India, Riverine floods are the major cause of the destruction of property and loss of life, each
year.

The floods occur mostly during the summer monsoon season of June - September when more
than 80% of annual rainfall arrives over India. The extreme rainfall events which produce the
floods are a result of synoptic-scale cyclonic depressions.

While forecast of precipitation is increasingly becoming skillful, forecasts of streamflow and
consequently, floods, are not skillful and vary widely across River Basins. This need motivates
the proposed research.

We propose a Novel Bayesian Hierarchical Network Model (BHNM) for daily streamflow
forecast, which uses the spatial dependencies induced by the river network topology, and
antecedent hydroclimate information from upstream. The hierarchical aspect and the Bayesian
framework, Together it captures the spatial correlation in the streamflow on the river network
and provides robust estimates of uncertainties.

The Narmada River Basin in West Central India is used as a testbed to develop and demonstrate
this model.
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STUDY REGION AND DATA

Figure 1. Map of the Narmada basin boundary in India showing the digital elevation model of the
basin (SRTM DEM); the locations of five sub-basin outlets: Sandiya, Hoshangabad, Handia,
Mandleshwar and Garudeshwar; and some of the major dams in the basin are marked: Bargi, Tawa,
Indirasagar, Jobat, and Sardar Sarovar (from upstream to downstream direction).

Narmada River originates from the Amarkantak hills in Madhya Pradesh and drains into the
Gulf of Cambay in the Arabian Sea, flowing from the east to west direction.

Narmada is the fifth largest river in India and the largest west flowing river in the country.

The Narmada River basin has an area of 98,796 km, and it extends 953 km in the east-west
direction.

Streamflow

Observed daily summer (July-August) streamflow at four gauge stations in the Narmada basin:
Sandiya, Handia, Hoshangabad, and Mandleshwar were obtained from India Water Resource
Information System (IWRIS) (Figure 1)

Period 1978 – 2014

Garudeshwar gauge station was not considered in this study since it had longer missing periods.

Hydro-Meteorological Variable

Gridded daily summer (July-August) precipitation from the India Meteorology Department
(IMD)

0.25° spatial resolution

Period 1978 – 2014

Narmada Basin, India

Data
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MODEL STRUCTURE

As potential covariates, we considered:

Daily streamflow from upstream gauges or from the gauge above of the upstream gauges
depending on effective travel times

1-day, 2-day, or 3-day spatial average precipitation from the area between two stations that
attempts to reflect the antecedent land conditions.

These variables are considered at lag -1 day, i.e., we have 1-day lead time for the forecast.

The best set of covariates for each station gauges were obtained based on the highest linear
correlation coefficient, R (Figure 2).

Figure 2. Scatter plots of daily streamflow vs. lag -1 day covariates selected for each station gauge:
Mandleshwar streamflow vs. (a) daily spatial average precipitation, (b) and daily Hoshangabad
streamflow; Handia streamflow vs. (c) 2-day spatial average precipitation, (d) and daily Hoshangabad
streamflow; Hoshangabad streamflow vs. (e) 2-day spatial average precipitation, (f) and daily Sandiya
streamflow; Sandiya streamflow vs. (g) 3-day spatial average precipitation, (h) and lag -1 day daily
Sandiya streamflow. All Pearson correlation coefficients, R, are significant (P-value<0.1).

For the structure of the Bayesian Hierarchical Network Model (BHNM) for the Narmada basin, we
considered that streamflow at each gauge station follows a gamma distribution. Figure 3 displays the
conceptual sketch of the network Bayesian model implemented here.

Covariates

Model Structure for Narmada Basin
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Figure 3. Conceptual sketch of the network Bayesian model for the Narmada basin.  corresponds

to the observed streamflow at gauge i and day t, and  to x-day spatial average precipitation

from the area between stations i and i+1 at day t-1.

We incorporated the covariates showed in Figure 2, which give the model structure showed in Figure 3
and represented by the following equations
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Hoshangabad:

Sandiya:

Posterior distributions of the parameters and streamflow (ensembles) were estimated using the
Gibbs sampling algorithm for the Markov Chain Monte Carlo method.

The priors of β  and ϕ  for each gauge station were considered Multivariate Normal
distribution (MVN) to capture their dependence structure.
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RESULTS

3000 simulations from posterior distributions of the model parameters, and consequently, streamflow
ensembles were obtained.

Figure 4. Ensembles of simulated July August daily streamflow for the Handia gauge station
presented as boxplot time series for (a) entire record (1978-2014) and (b) 2013-2014. The boxplots
represent the posterior distribution estimates of the daily streamflow. Red lines correspond to the
observed daily streamflow and blue-dashed lines to the posterior median daily streamflow. The
medians of these boxplots/distributions are considered to be the actual simulated values when
computing R, which are displayed on the scatter plots on the upper right of each panel. R values are
significant (P value<0.1). The black box in panel a shows the temporal windows for time series in panel
b.

All the observed values are captured by the ensembles variability

The timing of the streamflow peaks is captured by the ensembles

The performance for high flow years is even better (R values).

Calibration
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We applied the BHNM in a cross-validated mode on two high flooding years – in that, the model was
fitted on other years, and forecasts were made for the dropped-out high flooding years. Figure 5 shows
the four two high flooding years validation periods considered.

Figure 5. Ensembles forecast of July-August daily streamflow presented as boxplot time series for the
four validation periods (1984 1985, 1990-1991, 1996-1997, and 2013 2014) at Handia gauge station.
The boxplots represent the posterior distribution estimates of the daily streamflow. Red lines
correspond to the observed daily streamflow and blue-dashed lines to the posterior median daily
streamflow. The medians of these boxplots/distributions are considered to be the actual forecast
values when computing R, which are displayed on the scatter plots on the upper right of each panel. R
values are significant (P value<0.1). black-dashed vertical lines indicate the division between
validation periods.

Most of the observed values are captured by the ensembles forecast variability

The correlation obtained is higher than the one for the whole calibration period.

Statistical Consistency

Figure 6. Rank histograms of the ensembles forecast of July-August daily streamflow during cross-
validation periods for (a) the Bayesian Hierarchical Network Model (BHNM) and (b) the Linear Model
(LM) at Handia gauge station. DI denotes the discrepancy index.

Cross-Validation
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A better spread is generated using the ensembles forecast of the BHNM since its rank
histogram of the BHNM is almost uniform (non-bias) and shows low DI values

The U-shaped rank histogram for the Linear Model (LM) indicates a lack of variability in
the ensembles.

At Site Probabilistic Skill

Figure 7. The cross‐validation distributions for the continuous rank probability score (CRPSS)
statistic of BHNM (sky blue boxes) and LM (gray boxes) models for (a) 496 days of the four validation
periods and (b) days with high flows. Climatology was considered as the reference forecast model.
CRPSS values above zero and closest to one indicates a better skill.

For both models, and BHNM presents better performance than LM and climatology with the
exception of Sandiya (median of the distribution is lower for BHNM compared to LM, Figure
7a)

For high flow days, BHNM presents a better overall performance than LM and climatology for
all the gauges (Figure 7b).
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CONCLUSIONS
The proposed Bayesian Hierarchical Network Model has benefits when is compared to stationary, at
site Bayesian and non-Bayesian models:

By incorporating flow information from upstream gauges and precipitation from the immediate
contributing area as covariates, enables to capture the spatial correlation of flows
simultaneously and parsimoniously.

Can be applied to basins with non-natural flow regimes since by incorporating the right gauge
feeder, the effect of some human interventions such as dams can be replicated by the model.

It is not as computationally exhaustive as other models that consider the spatial correlation of
the flow.
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ABSTRACT
We developed a novel Bayesian Hierarchical Network Model (BHNM) for daily streamflow, which uses
the spatial dependence induced by the river network topology, and average daily precipitation from the
upstream contributing area between station gauges. In this, daily streamflow at each station is
assumed to be distributed as Gamma distribution with temporal non-stationary parameters. The mean
and standard deviation of the Gamma distribution for each day are modeled as a linear function of
suitable covariates. The covariates include daily streamflow from upstream gauges or from the gauge
above of the upstream gauges depending on the travel times, and daily, 2-day, or 3-day precipitation
from the area between two stations that attempts to reflect the antecedent land conditions. Intercepts
and slopes of the mean and standard deviation parameters are modeled as a Multivariate Normal
distribution (MVN) to capture their dependence structure. To ensure that the covariance matrix of
MVN is positive definite, it is model as an Inverse Wishart distribution. Non-informative priors for
each parameter were considered. Using the network structure in incorporating flow information from
upstream gauges and precipitation from the immediate contributing area as covariates, enables to
capture the spatial correlation of flows simultaneously and parsimoniously. The posterior distribution
of the model parameters and, consequently, the predictive posterior Gamma distribution of the daily
streamflow at each station and for each day are obtained. The model is demonstrated by its application
to daily summer (July-August) streamflow at 4 gauges in the Narmada basin network in central India
for the period 1978 – 2014. The skill of the probabilistic forecast is carried out by rank histograms and
the Continuous Ranked Probability Score (CRPS). The model validation indicates that the model is
highly skillful relative to climatology and relative to a null-model of linear regression. The forecasts
present an adequate spread of uncertainty and non-bias. Since flooding is of major concern in this
basin, we applied the BHNM in a cross-validated mode on two high flooding years – in that, the model
was fitted on other years, and forecasts were made for the dropped-out high flooding year. The skill of
the model in forecasting the high flood events was very good across the network – in both the timing
and magnitude of the events. The model will be of immense help to policy makers in risk-based flood
mitigation. The BHNM framework is general in nature and can be applied to any river network with
other covariates as appropriate.
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