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Abstract

Machine learning techniques have proven useful at predicting many variables of hydrologic interest, and often out-perform
traditional models for univariate predictions. However, demonstration of multivariate output deep learning models has not
had the same success as the univariate case in the hydrologic sciences. Multivariate prediction is a clear area where machine
learning still lags behind traditional processed based modeling efforts. Reasons for this include the lack of coincident data
from multiple variables, which make it difficult to train multivariate deep-learning models, as well as the need to capture
inter-variable covariances and satisfy physical constraints. For these reasons process-based hydrologic models are still used to
simulate and make predictions for entire hydrologic systems. Therefore, we anticipate that future state of the art hydrologic
models will couple machine learning with process based representations in a way that satisfies physical constraints and allows
for a blending of theoretical and data driven approaches as they are most appropriate. In this presentation we will demonstrate
that it is possible to train deep learning models to represent individual processes, forming an effective process-parameterization,
that can be directly coupled with a physically based hydrologic model. We will develop a deep-learning representation of
latent heat and couple it to a mass and energy balance conserving hydrologic model. We will demonstrate its performance
characteristics compared to traditional methods of predicting latent heat. We will also compare how incorporation of this deep

learning representation affects other major states and fluxes internal to the hydrologic model.
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The main idea:

Put the neural network inside of the
hydrologic model!
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Why turbulent heat fluxes?

Evaporation and transpiration are a major
component of the terrestrial cycle

Statistical models have been shown to be
able to outperform current process-based
models of turbulent heat fluxes



Why couple deep learning to a process
based model?

Process based (PB) models are transferable,
general-purpose, and provide an easy way to
enforce constraints

We hypothesize that we can improve our PB
models by incorporating DL



Our experiment

We use data from FluxNet towers from around the world to
force model simulations for the prediction of turbulent heat
fluxes.



Our experiment

We use data from FluxNet towers from around the world to

force model simulations for the prediction of turbulent heat
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We will use a benchmark process-based model to compare
two different coupled DL-PB model configurations



Our experiment

We use data from FluxNet towers from around the world to

force model simulations for the prediction of turbulent heat
fluxes.

We will use a benchmark process-based model to compare
two different coupled DL-PB model configurations

We will show that our coupled DL-PB configurations are
able to outperform the benchmark in a number of ways



We gathered data from 60 FluxNet sites,
totalling over 500 site-years of half-hourly data
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We used the SUMMA

hydrologic modeling
framework for all of Ke I'a i

our configurations M
The Bridge

e Standalone (SA) uses SUMMA
with only minor modifications

e Neural network 1-way (NN1W) and

use the Fortran-Keras Bridge (FKB)
to integrate the neural networks
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NN1W takes
forcing data and
parameters as
inputs
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To summarize: We created three model setups
to predict the latent and sensible heat fluxes

Standalone (SA)

We calibrated, then
evaluated SA simulations
“in sample”

Calibrated individually at
each FluxNet site

Benchmark simulations
using a process-based
hydrologic model

Neural Network 1 Way

(NN1W)

Trained a neural network
out of sample (5-fold cross
validation)

Inputs are only
meteorological forcing data
and parameter values

1-way coupling since no
information from the
hydrologic model is
included

Neural Network 2 Way
(NN2W)

Same as NN1W, but
includes soil states
(temperature, moisture
content, etc) as an input

2-way coupling since the
hydrologic model
provides feedback at
runtime
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Both neural network parameterizations
outperformed the standalone model,
for both latent and sensible heat
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Better performance
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Both NN1W and have
better representations of the
diurnal cycle than SA
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Inclusion of soil states in improves
long-term water balance over NN1W
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Thanks for listening!
A few takeaways:

Coupling of machine learned parameterizations
for turbulent heat fluxes provides better
performance on a variety of measures

Coupling ML and process based models allows
for including feedbacks which can help to
implicitly enforce constraints

More advanced tools and workflows will likely
lead to even larger gains in performance glides \
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If you have any questions or would like to
discuss further, send me an email:
andrbenn@uw.edu
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