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Abstract

There have been important criticisms of IPCC recent reports for failing to communicate the dire nature of the current predica-

ment facing civilization – so-called “scientific reticence” – as well as for assuming functional, planetary-effective scale biomass

carbon capture and storage in its survivable scenarios [1-3]. In the light of major reports released in 2018 [4,5] which underscore

the discrepancy between the current climate trajectory and best-case requirements to maintain global civilization, the current

predicament is often described as an “existential” crisis [6]. Part of the confusion appears to stem from the lack of discussion

of specific scenarios, such as rapid arctic methane release [7,8], which are not discussed by the IPCC in proportion to their

catastrophic potential. This scenario is briefly examined using the Goddard Institute for Space Studies (GISS) ModelE v2

7.50.05 [9]. It is suggested that the results presented here represent a lower bound to climate disruption since in this set-up,

neither the oceans nor arctic sea ice (a significant and ongoing runaway feedback [10]) respond to the changes modeled; namely,

a sudden release of stored methane gas.
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Board W-35: Parametric study of prompt methane 
release impacts on global mean temperature using 
GISS ModelE

Goddard Institute ModelE
 Standard “Non-Interactive” (NINT) atmospheric model 

template with prescribed ocean (Hadley 1975 – 1984 
annual SST) and sea ice (Hadley 1996 – 2005 annual Sea 
Ice) observational datasets.  [11]

 Model spin-up 100 years 1920 – 2020 (transient 
simulation) starting from default global atmosphere 
observations

 Likely these are conservative results as well-observed 
recent Arctic ice/snow changes are not modeled.

There have been important criticisms of the Intergovernmental Panel on Climate Change (IPCC) recent reports for failing to communicate
the dire nature of the current predicament facing civilization – so-called “scientific reticence” – as well as for assuming functional,
planetary-effective scale biomass carbon capture and storage in its survivable scenarios [1-3]. In the light of major reports released in 2018
[4,5] which underscore the discrepancy between the current climate trajectory and best-case requirements to maintain global civilization,
the current predicament is often described as an “existential” crisis [6]. Part of the confusion appears to stem from the lack of discussion
of specific scenarios, such as rapid arctic methane release [7,8], which are not discussed by the IPCC in proportion to their catastrophic
potential. This scenario is briefly examined using the Goddard Institute for Space Studies (GISS) ModelE v2 7.50.05 [9]. It is suggested that
the results presented here represent a lower bound to climate disruption since in this set-up, neither the oceans nor arctic sea ice (a
significant and ongoing runaway feedback [10]) respond to the changes modelled; namely, a sudden release of stored methane gas.

Model Scenarios for Prompt CH4 Release
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Prompt Land Surface Temperature Response
Only land surface air temperature values were 
calculated.  Temperatures were calculated by:

…summing over all grid cells, LFC = in-cell land 
fraction, AC = cell area, PC = in-cell model 
variable being averaged, for annual or 
seasonal averages of the monthly model 
outputs.  CH4 is assumed uniformly dispersed.

Mean grid cell temperatures were converted 
to temperature change by subtracting mean of 
2020 – 2022 temperatures.

Model Effects of 20% Decrease in 
Mean Arctic Insolation
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The temperature-change signal is noisy, but 
boxcar smoothing shows that it rises 
concomitantly with CH4 loading, suggesting 
a unit impulse response for the system as 
modeled.  

Normal 
Insolation

Global Land Surface Mean Temperature Change

Arctic Land Surface Mean Temperature Change

Decreased 
Insolation

Global Land Surface Annual
Data, Averaged 2031-2039

T   0.01 (DGtCH4)  

(cf., Wadhams, et al. [2013])

(1 )

(cf., Latham, et al. Phil.Trans.R.Soc.A 372 [2014])
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 Unit impulse response (fully-dispersed CH4) 

 Temperature lags may be related primarily 
to CH4 dispersion rates

 Larger warming over Arctic land surface 
(oceans not investigated)

 Decreased Arctic insolation measurably 
decreases mean Arctic land temperature
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