## First authorship gender gap in the geosciences

Tamara Pico<sup>1</sup>, Paul Bierman<sup>2</sup>, Sarah Richardson<sup>3</sup>, and Kevin Doyle<sup>4</sup>

<sup>1</sup>Caltech <sup>2</sup>University of Vermont <sup>3</sup>Harvard University <sup>4</sup>Diffeo

November 30, 2022

## Abstract

Although gender parity has been reached at the graduate level in the geosciences, women remain a minority in top-level positions. First authorship of peer-reviewed scholarship is a measure of academic success and is often used to project potential in the hiring process.

Given the importance of first author publications for hiring and advancement, we sought to quantify whether women are underrepresented as first authors relative to their representation in the field. We compiled first author names across 13 leading geoscience journals from January 2013 to April 2019 (n = 35,183). Using a database of 216,286 names from 79 countries, across 89 languages, we classified the likely gender associated with each author's given (first) name. We also estimated the gender distribution of authors who publish using only initials, which may itself be a strategy employed by some women to preempt perceived (and actual) gender bias in the publication process. Female-author names represent 13-30% of all first authors in our database, and are significantly underrepresented relative to the proportion of women in early career positions (30-50%). The proportion of female-name first authors varies significantly by subfield, reflecting variation in representation of women across subdisciplines. In geoscience, the quantification of this first authorship gender gap supports the hypothesis that the publication process – namely, achievement or allocation of first authorship – is biased by social factors, which may modulate career success of women in the sciences.

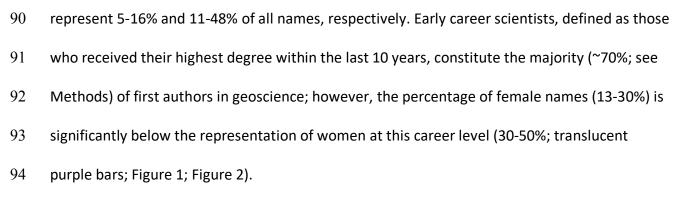
- 1 First authorship gender gap in the geosciences
- 2
- 3 T. Pico<sup>1\*</sup>, P. Bierman<sup>2</sup>, K. Doyle<sup>3</sup>, S. Richardson<sup>4</sup>
- 4 \* Corresponding author: tpico@g.harvard.edu
- <sup>1</sup> Division of Geological and Planetary Sciences, Caltech, Pasadena, CA
- 6 <sup>2</sup> Department of Geology, University of Vermont, Burlington, VT
- <sup>3</sup> Diffeo, Cambridge, MA
- <sup>4</sup> Department of History of Science and Studies of Women, Gender, and Sexuality, Harvard University, Cambridge,
   MA
- 10 Keywords: science careers; gender bias; scholarly productivity; geoscience
- 11 Abstract
- 12 Although gender parity has been reached at the graduate level in the geosciences, women
- 13 remain a minority in top-level positions. First authorship of peer-reviewed scholarship is a
- 14 measure of academic success and is often used to project potential in the hiring process.
- 15 Given the importance of first author publications for hiring and advancement, we sought to
- 16 quantify whether women are underrepresented as first authors relative to their representation
- 17 in the field. We compiled first author names across 13 leading geoscience journals from January
- 18 2013 to April 2019 (n = 35,183). Using a database of 216,286 names from 79 countries, across
- 19 89 languages, we classified the likely gender associated with each author's given (first) name.
- 20 We also estimated the gender distribution of authors who publish using only initials, which may
- 21 itself be a strategy employed by some women to preempt perceived (and actual) gender bias in
- 22 the publication process. Female-author names represent 13-30% of all first authors in our
- 23 database, and are significantly underrepresented relative to the proportion of women in early

| 24 | career positions (30-50%). The proportion of female-name first authors varies significantly by    |
|----|---------------------------------------------------------------------------------------------------|
| 25 | subfield, reflecting variation in representation of women across subdisciplines. In geoscience,   |
| 26 | the quantification of this first authorship gender gap supports the hypothesis that the           |
| 27 | publication process – namely, achievement or allocation of first authorship – is biased by social |
| 28 | factors, which may modulate career success of women in the sciences.                              |
| 29 |                                                                                                   |
| 30 | Introduction                                                                                      |
| 31 |                                                                                                   |
| 32 | First authorship of papers in peer-reviewed journals is crucial to academic success, promotion,   |
| 33 | and competitive research funding (1,2). Authorship is key to moving up the career ladder from     |
| 34 | graduate school to postdoctoral positions to faculty appointments (3). In the natural sciences,   |
| 35 | women are underrepresented at the highest academic tiers (4–7). Representation of women in        |
| 36 | academic geoscience drops off significantly at every successive tier, with the greatest           |
| 37 | discrepancy at the highest ranks. This representation varies by career stage and subfield (40-    |
| 38 | 50% of Ocean, Atmospheric, and Earth Sciences graduate students (8), 30-36% at the assistant      |
| 39 | professor level, and only 11.5-13% at the full professor level (6,7) are women).                  |
| 40 |                                                                                                   |
| 41 | A critical contributor to this gender gap is the transition from post-doc to the first faculty    |
| 42 | position (9), and studies suggest this discrepancy results from differences in academic           |
| 43 | productivity and perceived potential (3). While academic productivity, measured by publication    |
| 44 | record, is often assumed to represent inherent scientific talent (10), the strongest predictor of |
| 45 | scholarly productivity is work environment, which highlights the importance of social factors in  |

| 46 | determining academic success (11). For decades, publication analyses have revealed a                 |
|----|------------------------------------------------------------------------------------------------------|
| 47 | significant gender gap in authorship (12), publication in high impact journals (13), and citation    |
| 48 | rates (14,15). While recent assessments document the persistence of a gender discrepancy in          |
| 49 | first authorship of peer-reviewed publications in the sciences (4,5,16–18), an in-depth study        |
| 50 | focused on the geosciences has yet to be done. Analysis of authorship imbalances contributes         |
| 51 | to a stream of recent scholarship quantifying gender inequities in the geosciences at research       |
| 52 | conferences (19,20), in peer review (21), and in recommendation letters (9).                         |
| 53 |                                                                                                      |
| 54 | Given the importance of first authorship for career advancement (3), we sought to assess the         |
| 55 | extent to which female first authors are underrepresented among 13 of the major geoscience           |
| 56 | journals. In this field, it is first authors who conventionally perform the majority of the research |
| 57 | and the writing. We used data-mining to quantify the representation of women as first authors        |
| 58 | from January 2013 to April 2019 in leading geoscience journals (Nature Geoscience, Geology,          |
| 59 | Geological Society of America Bulletin, Journal of Geophysical Research (JGR) – all fields,          |
| 60 | Geophysical Research Letters, Quaternary Science Reviews, Geochimica et Cosmochimica                 |
| 61 | Acta). 62% of first-author names were categorizable by gender (Table 1).                             |
| 62 |                                                                                                      |
| 63 | One factor that potentially confounds any analysis of women's representation in science is that      |
| 64 | women may be more likely to initialize their given name in order to mask their gender as a           |
| 65 | preemptive defense against implicit bias (as substantiated by studies showing that a name's          |
| 66 | gender influences competence assessments (22)). In this study, we compared initialed author          |

67 names to all authors in the complete mined database and identified the likely given name

based on coauthorship overlap. We then assigned a likely gender to these first authors with initialized given names in order to assess the extent to which the practice of initializing names impacts measures of women's representation in the geoscience. We include open-access code in a GitHub repository to reproduce this approach in future studies, because quantifying authorship gender ratios will be useful to repeat for specific subdisciplines as well as to test for change over time (see Materials & Methods).


74

75 Results

76

77 In the majority of journals analyzed (ten of the thirteen), female names made up fewer than 78 30% of gender-categorizable first-author names. The proportion of female name first authors 79 varies significantly by subfield, and likely reflects the representation of women across 80 subdisciplines. We found that female names represented at lowest, 23% of categorizable first 81 author names in Journal of Geophysical Research Space Physics (where representation of 82 women in student or early career positions is close to 20% (23)), and at most 36% of 83 categorizable first author names in Journal of Geophysical Research Biogeosciences (n = 26,623 84 for categorizable first author names, excluding unmatched initials; see Materials & Methods) 85 across the journals analyzed (Figure 1; Figure 2). 86 87 Of the full database, including non-categorizable names, the percentage of female names 88 ranges from 13-30% across all journals. Male names (green; Figure 1) represent 25-61% of all

89 names, while uncategorized names (black; Figure 1) and unmatched initials (purple; Figure 1)





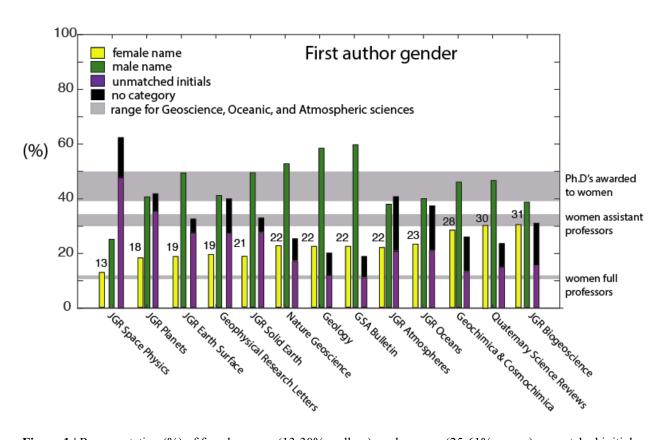



Figure 1 | Representation (%) of female names (13-30%; yellow), male names (25-61%; green), unmatched initials
(11-48%; purple), and uncategorized (5-16%; black) non-initialed names in total first authors across geoscience

99 journals between January 2013 and April 2019. Female names (%) labeled for each journal. Light purple bars show

- 100 representation of Ph.D's awarded to women in 2016 (8), women assistant professors and women full professors (6,7)
- 101 in 2010 in Geosciences, Oceanic, and Atmospheric sciences.
- 102

96

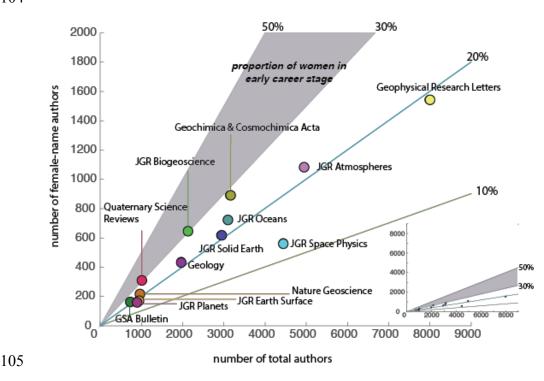
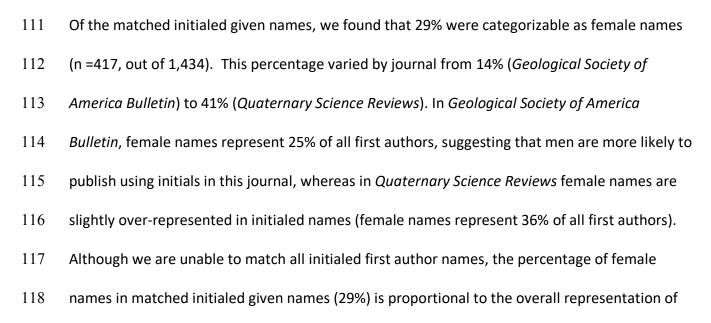




Figure 2 | Proportion of female-name authors for each journal. Inset figure shows equal axes for number of total
authors and number of female-name authors. The purple shaded region spans 30-50%, the proportion range of
women in early career positions in geoscience (from women in assistant professor positions to women earning
Ph.D's). The green and blue lines represent the 10% and 20% proportion line, respectively.



119 female names across all 13 journals (28%), indicating there is not a significant gender bias in

120 authors' decision to publish in the geosciences using only initials.

121

## 122 Discussion

123 Geoscience is not the only field with a first author gender gap. In other disciplines, a similar first 124 authorship gender gap was quantified by Bendels et al., including in the biological sciences 125 (female names represent 35% of first authors) and chemistry (female names represent 23% of 126 first authors); this gap persists across communities internationally (4). A study analyzing 127 neuroscience journals showed that female name first authorship only increased by 1% from 128 2006 to 2016 (17). Bendels et al. found a comparable first authorship gender gap in the Earth & 129 Environmental sciences (24%), and reported an annual growth rate of 1.8% for female name 130 first authorship (4). If we assume this growth rate of female name first authorship continues, 131 we estimate that parity would be reached in Earth & Environmental sciences in 2061. 132 133 The results from this study are limited by the range of journals selected for analysis and the 134 specific subfields of geoscience these journals represent. Future studies could reproduce this 135 analysis with other subdiscipline-specific journals using the open-access code provided from 136 this study in a GitHub repository (see Materials & Methods). One limitation to our approach is 137 the choice of gender-categorizing method and database. For example, genderize io will not be 138 able to identify the gender for names pertaining to cultures where given names are not 139 gendered (e.g. some East Asian cultures). Furthermore, in this study, we compared our results 140 to the representation of women in geoscience within the United States, even though the author

141 names included in this study come from a range of international institutions, and the

142 proportion of women in different geoscience career stages varies by country.

143

| 144 | We cannot draw a firm conclusion about what drives the identified disparity in first authorship   |
|-----|---------------------------------------------------------------------------------------------------|
| 145 | but we can speculate based on the existing literature. Biases may exist at many different stages  |
| 146 | of the publication process. At the graduate school level, women may receive less mentoring or     |
| 147 | encouragement to write and submit first-author research articles (24,25). A study analyzing       |
| 148 | authorship in political science journals found a gender bias in the perception of likely          |
| 149 | acceptance in journals, and therefore, in the ultimate decision to submit articles (26).          |
| 150 |                                                                                                   |
| 151 | Double blind review, which is not widely used in the geosciences, has been shown to reduce        |
| 152 | gender gaps in publication acceptance rates (27), although a study on peer review in ecology      |
| 153 | suggests that reviewers do not rate papers differently based on first author gender in that field |
| 154 | (28). First authors may respond differently to a paper's rejection, as studies on confidence      |
| 155 | suggest that men's self-assessment of competence is significantly higher than those of women      |
| 156 | (29,30). Because of this higher level of confidence, men may be more likely to resubmit a paper   |
| 157 | following a rejection, contributing to a higher rate of male first authorship in top journals. To |
| 158 | understand what causes our finding of a gender disparity in first author publication rates, it    |
| 159 | would be helpful to understand disparities at different stages in the publication process in the  |
| 160 | geosciences. Are women submitting fewer papers, are women's papers being rejected at higher       |
| 161 | rates, or do women resubmit at lower rates compared to male counterparts? Answering these         |

questions would require journals to track gender (in addition to other social metrics such ascareer stage) in submitted and accepted manuscripts.

164

165 As with gender, journals could consider other demographic sources of inequities such as race. 166 However, it is more tractable to infer the gender of given names than to identify race. For many 167 journals, first author demographics are not tracked at submission, and therefore self-reported 168 gender or race data are not available. Improved datasets documenting representation by 169 gender, race/ethnicity, sexuality, and nationality, across different career stages in a range of 170 disciplines, may help identify where biases exist in the publication pipeline (31). 171 172 Our findings support efforts to implement journal practices, such as double-blind review, which 173 reduce the impact of perceptions of first author gender and have been shown to increase the 174 success of women in publishing articles (27). In addition, mentoring is an important element in 175 academic productivity for early career scientists, and gender has been shown to influence the 176 degree of mentorship provided (25). The gender-pairing of faculty mentors with students can 177 result in different scholarly productivities (32), and links between gender, mentoring, and 178 publication might be highlighted by institutional leaders to raise awareness around social bias 179 in mentoring. Scientific communities might also consider other ways to recognize the various 180 contributions of authors, reevaluating the weight placed on first author publications (33). 181

Data documenting gender biases in the publication process in addition to studies identifying the
 impact of social factors on productivity (1,2,26,30) challenge the view that science careers

advance solely on merit. Underrepresentation of female first authors relative to their presence
in the geosciences contributes to a growing body of evidence that suggests success in science is
strongly modulated by social factors (2), and that these factors influence tangible products such
as first-authored publications. Efforts by journals, funders, and professional societies to
understand what practices produce gender disparities in scholarly achievement will be required
to reduce bias in and out of the publication pipeline.

191 Materials & methods

192 The code used to produce the results included in this study can be found at

193 <u>https://github.com/kevindoyle/geoscience-first-authorship</u>. We compiled author names from

194 January 2013 to April 2019 across a range of 13 geoscience journals (Nature Geoscience,

195 Geology, Geological Society of America Bulletin, Journal of Geophysical Research (JGR)– all

196 fields, Geophysical Research Letters, Quaternary Science Reviews, Geochimica et Cosmochimica

197 *Acta*). We selected these journals to include a range of general geoscience journals as well as

198 discipline-specific journals across Earth, Ocean, and Atmospheric Sciences. We web-scraped

author and article names from each journal website (n = 35,183) by iteratively changing query

200 parameters in the websites' search page URLs. The search result pages were rendered and

201 downloaded using the Python package selenium (34). Author names and article titles were

202 parsed from the downloaded pages by navigating the HTML tree using the python package

203 BeautifulSoup (35). An author's given name was identified as the first token of an author's

204 name string. Tokens were created using whitespace as a delimiter. Of these author names,

205 24,525 are unique full names and 7,157 are unique given names. We classified the gender of

206 author's given names using the genderize.io API (36), accessed through a python client (37). 207 The genderize.io database contains 216,286 distinct given names across 79 countries and 89 208 languages. This library categorizes names as 'female', 'male', or 'uncategorized', and returns 209 the probability that the given name is classified as a specific gender. In running the scraped 210 author names through this database, we assigned the category 'female' or 'male' if the 211 probability was above 50% for the given gender. This approach is limited to gendered given 212 names, which may not hold across all cultures. Furthermore, this approach assumes the first 213 name is the given name, which is not true for some cultures where family names are the first 214 name.

215

216 Of 35,183 first author names, 9,994 names were initials (28%). To improve the accuracy of our 217 results, we attempted to identify the non-initialed given name of initialed authors. This was 218 done by comparing initialed names to all authors in the complete database of publications 219 across these 13 journals. For a given initialed name, we used the associated family name 220 (identified as the last token in the name string) to find all articles that included a coauthor with 221 that family name. We then compared the extent of overlap in coauthor names between the list 222 of articles containing this family name. The article with the greatest overlap in coauthorship 223 (minimum overlap of one) was selected to identify the given name of the initialed first author. 224 We were able to match 1,434 of 9,994 (14.3%) of initialed first authors. In calculating the 225 overall representation of female or male names, we combined the matched given names of 226 initialed authors with the remaining set of first authors who published using their non-initialed

given name (a total of 26,623 names). We then identified the likely gender of all compiled givennames.

| 230        | We then compared these percentages to the representation of women at different career               |
|------------|-----------------------------------------------------------------------------------------------------|
| 231        | stages in geoscience in the United States (translucent purple bars; Figure 1). Because              |
| 232        | publications do not identify first-author career position (i.e., student, postdoc, faculty), we     |
| 233        | could not categorize all first author names by likely career stage. To estimate the                 |
| 234        | representation of early career scientists in first author positions in geoscience journals, we used |
| 235        | a database of first-author names in American Geophysical Union (AGU) journals from 2013-            |
| 236        | 2018, which have been categorized for career stage. These stages are defined as student, early      |
| 237        | career, mid-career, experienced, and retired. Here, early career stage is defined as those who      |
| 238        | received their highest degree within the last 10 years or those within the age range of 30-39 if    |
| 239        | no graduation date was provided. According to this database, 68% of first authors in AGU            |
| 240        | journals from 2013-2018 were students or early career stage.                                        |
| 241        |                                                                                                     |
| 242        | Acknowledgments                                                                                     |
| 243        | We are grateful to K. Blaufuss and B. Hanson for providing a dataset on first authorship            |
| 244        | demographics in AGU journals. T. Pico acknowledges funding from Harvard University and NSF-         |
| 245        | GRFP. The code used in this study is available in the following Git Hub repository:                 |
| 246        | https://github.com/kevindoyle/geoscience-first-authorship.                                          |
| 247<br>248 | References                                                                                          |
| 240        |                                                                                                     |
| 249        | 1. Evans HK, Houston S. Reflecting on a Decade of Women's Publications in Four Top                  |

- 250 Political Science Journals. Am Polit Sci Assoc. 2011;44(4):793–8.
- Way SF, Morgan AC, Larremore DB, Clauset A. Productivity, prominence, and the effects
   of academic environment. Proc Natl Acad Sci. 2019;201817431.
- 253 3. Lerchenmueller MJ, Sorenson O. The gender gap in early career transitions in the life
- 254 sciences. Res Policy [Internet]. 2018;47(6):1007–17. Available from:
- 255 https://doi.org/10.1016/j.respol.2018.02.009
- Bendels MHK, Brueggmann D, Groneberg DA, Mu R. Gender disparities in high-quality
   research revealed by Nature Index journals. PLoS One. 2018;1–21.
- 5. Filardo G, Graca B, Sass DM, Pollock BD, Smith EB, Martinez MA. Trends and comparison
- of female first authorship in high impact medical journals : observational study (1994-
- 260 2014 ). BMJ. 2014;
- 261 6. Glass JB. We are the 20%: Updated Statistics on Female Faculty in Earth Sciences in the

262 U.S. Women Geosci Pract Posit Pract Towar Parit. 2015;(May 2015):17–22.

- 263 7. Macphee D, Canetto SS. Women in academic atmospheric sciences. Bull Am Meteorol
  264 Soc. 2015;96(1):59–67.
- 265 8. Bernard RE, Cooperdock EHG. No progress on diversity in 40 years. Nat Geosci [Internet].
- 266 2018;(April). Available from: http://dx.doi.org/10.1038/s41561-018-0116-6
- 267 9. Dutt K, Pfa DL, Bernstein AF, Dillard JS, Block CJ. Gender differences in recommendation
- 268 letters for postdoctoral fellowships in geoscience. Nat Geosci. 2016;9(October).
- 10. Heesen R. Academic superstars: competent or lucky? Synthese. 2017;194(11):4499–518.
- 270 11. Way SF, Morgan AC, Larremore DB, Clauset A. Productivity , prominence , and the effects
- of academic environment. PNAS. 2019;1–5.

- 272 12. Cole JR, Zuckerman H. The Productivity Puzzle: Persistence and change in patterns of
  273 publication of men and women scientists. Women Sci. 1984;2.
- 13. Brooks C, Fenton EM, Walker JT. Gender and the evaluation of research. Res Policy.
- 275 2014;43(6):990–1001.
- 276 14. Caplar N, Tacchella S, Birrer S. Quantitative evaluation of gender bias in astronomical
   277 publications from citation counts. Nat Astron. 2017;0141(May).
- 278 15. King MM, Bergstrom CT, Correll SJ, Jacquet J, West JD. Men Set Their Own Cites High :
- 279 Gender and Self-citation across Fields and over Time. SOCIUS. 2017;3:1–22.
- 280 16. West JD, Jacquet J, King MM, Correll SJ, Bergstrom CT. The Role of Gender in Scholarly
  281 Authorship. 2013;8(7).
- 282 17. Shen YA, Webster JM, Shoda Y, Fine I. Persistent Underrepresenation of Women's
- 283 Science in High-profile Journals. bioRxiv. 2018;
- 18. Holman L, Stuart-Fox D, Hauser CE. The gender gap in science: How long until women are
- 285 equally represented? PLoS Biol. 2018;16(4):1–20.
- 286 19. King L, Mackenzie L, Tadaki M, Cannon S, Mcfarlane K, Reid D, et al. Diversity in
- 287 geoscience : Participation , behaviour , and the division of scientific labour at a Canadian
- 288 geoscience conference. 2018;415–40.
- 289 20. Ford HL, Brick C, Blaufuss K, Dekens PS. Gender inequity in speaking opportunities at the
- American Geophysical Union Fall Meeting. Nat Commun [Internet]. 2016;(2018):3–8.
- 291 Available from: http://dx.doi.org/10.1038/s41467-018-03809-5
- 292 21. Lerback J, Hanson B. Journals invite too few women to referee. Nature. 2017;541.
- 293 22. Moss-Racusin CA, Dovidio JF, Brescoll VL, Graham MJ, Handelsman J. Science faculty 's

- subtle gender biases favor male students. PNAS. 2012;109(41):16474–9.
- 23. Porter AM, Ivie R. Women in Physics and Astronomy, 2019. AIP Stat Res Cent [Internet].
  2019;45. Available from: www.aip.org/statistics
- 297 24. Unkovic C, Sen M, Quinn KM. Does encouragement matter in improving gender
- 298 imbalances in technical fields? Evidence from a randomized controlled trial. PLoS One.

299 2016;11(4):1–15.

300 25. Moss-Racusin CA, Dovidio JF, Brescoll VL, Graham MJ, Handelsman J. Science faculty's

301 subtle gender biases favor male students. Proc Natl Acad Sci. 2012;109(41):16474–9.

- 302 26. Breuning M, Gross BI, Feinberg A, Martinez M, Sharma R, Ishiyama J. Clearing the
- 303 Pipeline? Gender and the Review Process at the American Political Science Review. PS 304 Polit Sci Polit. 2018;51(3):629–34.
- 305 27. Budden AE, Tregenza T, Aarssen LW, Koricheva J, Leimu R, Lortie CJ. Double-blind review
- 306 favours increased representation of female authors. Trends Ecol Evol. 2008;23(1):4–6.

307 28. Borusk R, Aarssen L, Budden A, Koricheva J, Leimu R, Tregenza TOM, et al. To Name or

- 308 Not to Name : The Effect of Changing Author Gender on Peer Review. Bioscience.
- 309 2009;59(11):985–9.
- 310 29. Bench SW, Lench HC, Liew J, Miner K, Flores SA. Gender Gaps in Overestimation of Math
- 311 Performance. Sex Roles. 2015;72(11–12):536–46.
- 312 30. Sarsons H, Xu G. Confidence men? Gender and confidence: Evidence among top
- 313 economists. Unpubl Manuscr [Internet]. 2015;1–26. Available from:
- 314 http://www.guoxu.org/docs/confidence.pdf
- 315 31. Morgan AC, Way SF, Clauset A. Automatically assembling a full census of an academic

- 316 field. PLoS One. 2018;13(8):1–18.
- 317 32. Pezzoni M, Mairesse J, Stephan P, Lane J. Gender and the Publication Output of Graduate
- 318 Students : A Case Study. 2016;1–12.
- 319 33. Larivière V, Desrochers N, Mongeon P, Paul-hus A. Contributorship and division of labor
- 320 in knowledge production. Soc Stud Sci. 2016;
- 321 34. Selenium [Internet]. Available from: https://www.selenium.dev/
- 322 35. Beautiful Soup.
- 323 36. genderize.io.
- 324 37. getGenders [Internet]. Available from: https://github.com/block8437/gender.py

- 326
- 327
- 328

| Journal                         | Uncategorized | Male         | Female       | Unmatched<br>initialed | Total |
|---------------------------------|---------------|--------------|--------------|------------------------|-------|
| JGR Space Physics               | 644 (14.5%)   | 1114 (25.1%) | 566 (12.7%)  | 2118 (47.7%)           | 4442  |
| JGR Planets                     | 58 (6.3%)     | 372 (40.6%)  | 166 (18.1%)  | 321 (35.0%)            | 917   |
| JGR Earth Surface               | 45 (4.9%)     | 453 (49.2%)  | 171 (18.6%)  | 252 (27.4%)            | 921   |
| Geophysical<br>Research Letters | 999 (12.5%)   | 3268 (40.9%) | 1543 (19.3%) | 2171 (27.2%)           | 7981  |
| JGR Solid Earth                 | 419 (14.3%)   | 1224 (41.8%) | 618 (21.1%)  | 667 (22.8%)            | 2928  |
| Nature<br>Geoscience            | 77 (8.0%)     | 507 (52.5%)  | 217 (22.5%)  | 164 (17.0%)            | 965   |
| Geology                         | 153 (7.8%)    | 1145 (58.3%) | 438 (22.3%)  | 229 (11.7%)            | 1965  |
| GSA Bulletin                    | 55 (7.5%)     | 435 (59.5%)  | 163 (22.3%)  | 78 (10.7%)             | 731   |
| JGR Atmosphere                  | 971 (19.6%)   | 1867 (37.7%) | 1083 (21.9%) | 1026 (20.7%)           | 4947  |
| JGR Oceans                      | 498 (16.1%)   | 1236 (39.9%) | 723 (23.3%)  | 642 (20.7%)            | 3099  |

| Geochimica &<br>Cosmochimica<br>Acta | 392 (12.5%)  | 1443 (45.9%)  | 891 (28.3%)  | 418 (13.3%)  | 3144  |
|--------------------------------------|--------------|---------------|--------------|--------------|-------|
| Quaternary<br>Science Reviews        | 181 (8.5%)   | 988 (46.4%)   | 646 (30.3%)  | 316 (14.8%)  | 2131  |
| JGR<br>Biogeosciences                | 154 (15.2%)  | 390 (38.5%)   | 310 (30.6%)  | 158 (15.6%)  | 1012  |
| Total                                | 4646 (13.2%) | 14442 (41.0%) | 7535 (21.4%) | 8560 (24.3%) | 35183 |

**Table 1** Count for all names in journals scraped from January 2013 to April 2019. Proportions for uncategorized,

331 male, female, and unmatched initialed names are shown in parentheses. Journal of Geophysical Research is

abbreviated to JGR.