The Effect of Lorentz Stresses on the Solar Frequency Spectrum: The Forward Problem.

Srijan Bharati Das¹, Tuneer Chakraborty², Shravan Hanasoge³, and Jeroen Tromp¹

¹Princeton University ²TIFR-Mumbai ³Tata Institute of Fundamental Research

November 23, 2022

Abstract

Departures from standard spherically symmetric solar models, in the form of perturbations such as global and local-scale flows and structural asphericities, result in the splitting of eigenfrequencies in the observed solar spectrum. Here we describe new theoretical developments that enable the computation of sensitivity kernels for frequency splittings (a coefficients) due to general Lorentz stresses in the Sun. We draw from theoretical ideas prevalent in normal-mode coupling theory in geophysical literature to build these kernels. We plot the Lorentz-stress kernels and estimate the a-coefficients arising from a combination of deep-toroidal and surface-dipolar fields (although we note that this could equally well be substituted by another choice of Lorentz stresses). These results pave the way to formally pose an inverse problem, and infer magnetic fields from the measured even a-coefficients.

email: sbdas@princeton.edu

Abstract

Departures from standard spherically symmetric solar models, in the form of perturbations such as global and localscale flows and structural asphericities, result in the splitting of eigenfrequencies in the observed spectrum of solar oscillations. We find the Lorentz-stress sensitivity kernel for a general magnetic field, and therefore, also propose the sensitivity kernels for frequency splittings (a- coefficients) due to axisymmetric Lorentz stresses in the Sun. These results pave the way to formally pose an inverse problem, and infer solar (stellar) internal magnetic fields.

Magnetohydrodynamic (MHD) equations

GSH basis : $\hat{e}_{-} = \frac{1}{\sqrt{2}} (\hat{e}_{\theta} - i\hat{e}_{\phi})$ Expanding the displacement vectors in

the basis of normal modes:

$$\begin{aligned} (\boldsymbol{r},\omega) &= \sum_{k} \boldsymbol{\xi}_{k} e^{i\omega_{k}t}, \\ &= \sum_{st} \sum_{\mu} \xi_{st}^{\mu}(r) Y_{st}^{\mu}(\theta,\phi) \hat{e}_{\mu} \end{aligned}$$

No toroidal components in $\boldsymbol{\xi}$. Similarly, $\neg \neg$

$$\mathbf{B} = \sum_{st} \sum_{\mu} B^{\mu}_{st}(r) Y^{\mu}_{st}(\theta, \phi) \hat{e}_{\mu}$$
$$\mathcal{H} = \mathbf{B} \mathbf{B} = \sum_{st} \sum_{\mu\nu} h^{\mu\nu}_{st}(r) Y^{\mu}_{st}$$

Background solar model: SNRNMAIS

We adopt the method of perturbation theory. Therefore, we need a background model of the Sun which shall be perturbed to `fit' the real Sun. It is standard practise in helioseismology to start with the following simplified model, referred to as **SNRNMAIS**:

- **S**pherically symmetric,
- Non-Rotating,
- Non-Magnetic,

We use Model-S.¹

Modeling a custom magnetic field \mathbf{B}

- Inner toroidal upto tachocline, $r \leq 0.7 R_{\odot}$.
- Outer dipolar beyond $r \ge 0.95 R_{\odot}$.
- Intermediate mixed (toroidal + spheroidal) field.

$$B_{st}(r) = \begin{cases} -i\frac{\alpha(r)}{\gamma_1} \begin{pmatrix} 1\\0\\-1 \end{pmatrix} & -\frac{\beta}{\gamma_1} \end{cases}$$

Figure 2:(a) Profiles for tunable parameters a(r) and b(r) chosen in this study. (b) Strength associated to each GSH component of B_{10}^{μ} .

The Effect of Lorentz Stresses on the Solar Frequency Spectrum: The Forward Problem

Srijan Bharati Das¹ Tuneer Chakraborty² Shravan M. Hanasoge² Jeroen Tromp¹

$- {oldsymbol abla} \cdot (ho {f v}),$	(1)
$-\nabla p + \frac{\mathbf{j} \times \mathbf{B}}{c} - \rho \nabla \phi,$	(2)
$-\mathbf{v}\cdot\mathbf{\nabla}p-\gamma p\mathbf{\nabla}\cdot\mathbf{v},$	(3)

 $\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \times (\mathbf{v} \times \mathbf{B}).$ (4)

Definitions

$$\hat{e}_0 = \hat{e}_r \quad \hat{e}_+ = -\frac{1}{\sqrt{2}}(\hat{e}_\theta + i\hat{e}_\phi)$$

Figure 1:Spherical coordinate geometry

 $\underset{st}{\overset{\mu+\nu}{}}(\theta,\phi)\hat{e}_{\mu}\hat{e}_{\nu}, \quad \mu\leftrightarrow\nu.$

- Adiabatic,
- Isotropic,
- Static.

How to find Sun's internal magnetic fields by observing the solar surface oscillation frequency?

- 1. Ideal MHD,
- 2. Normal-mode helioseismology,
- 3. Quasi-degenerate perturbation theory.

Isolated multiplet vs. coupled multiplet

Labelling multiplets: Isolated or coupled?

Figure 3:Darker and larger `o' represents multiplets where cross-coupling causes significant relative frequency offset with respect to self-coupling. We have used Lorentz-stress field with $s = \{0, 1, 2, 3, 4, 5, 6\}$ including all t for a certain s. The strength of GSH components $h_{st}^{\mu\nu} = h_0(r)$ where $h_0(r)$ is the `total' field strength as shown in Figure 4.

¹Department of Geosciences, Princeton University ²Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research

Isolated-multiplet approximation,

- Axisymmetric perturbation $\implies t = 0$,

The inverse problem

where,
$$\Lambda_{k'k} = \sum_{st} \sum_{\mu\nu} \int_0^{R_{\odot}} dr \, r^2 \mathcal{B}_{st}^{\mu\nu}(r) h_{st}^{\mu\nu}(r). \tag{4}$$

 $_{2}S_{10}$ $_{2}S_{30}$ $_{2}S_{50}$ $_{2}S_{70}$ $_{2}S_{90}$ $_{2}S_{110}$ $0.9R_{\odot}$ · ${}_{3}S_{10}$ ${}_{3}S_{30}$ ${}_{3}S_{50}$ ${}_{3}S_{70}$ ${}_{3}S_{90}$ ${}_{3}S_{110}$ $0.9R_{\odot}$ · $_{4}S_{10}$ $_{4}S_{30}$ $_{4}S_{50}$ $_{4}S_{70}$ $_{4}S_{90}$ $_{4}S_{110}$ $0.9R_{\odot}$ · ${}_{5}S_{10}$ ${}_{5}S_{30}$ ${}_{5}S_{50}$ ${}_{5}S_{70}$ ${}_{5}S_{90}$ ${}_{5}S_{110}$ $0.9R_{\odot}$ $--- \rho \mathcal{A}_{n\ell}^{0-}$ $--- \rho \mathcal{A}_{n\ell}^{--}$

Figure 4: Magnetic field strength (Model M1 in Table 1) associated with three different regions with the following field configurations: (A) Purely toroidal for $r < 0.7R_{\odot}$, (B) Toroidal + spheroidal extending from r = $0.7R_{\odot} \leq r \leq 0.95R_{\odot}$ and (C) Purely dipolar for $r > 0.95R_{\odot}$.

- The Current State of Solar Modeling. Science, 272:1286, May 1996
- , 505:390--417, September 1998.

Abstract no: SH11D-3375*

Inversion technique using *a*-coefficients

Self-coupling kernels for *a*-coefficients

Varying depth sensitivity of modes

	M1	M2	2 M	3	M4	M5	M6	Μ	7	M8		
B_I	Low	Lov	v Lo	\mathbb{N}	Low	High	High	Hig	gh	High		
B_{II}	Low	Lov	v Hig	gh H	High	Low	Low	Hig	gh	High		
B_{III}	Low	Hig	h Lo'	₩ ŀ	High	Low	High	Lo	W	High		
Table 1:Strength ratio High:Low = 10:1. M1 = Sun-like.												
Modes			$_{2}S_{10}$				${}_{5}S_{110}$					
a-coe	efficie	nts	a_0		0	l_2	a_0		a_2			
	M1		4.10	38	-0.5	501	2.39	9	0.628			
	M2		1 00		-0.167		<u> </u>	<u> </u>		$\mathbf{v} \mathbf{o} \mathbf{v} \mathbf{o}$		
	∨ ∠		4.92	1	-0.1	167	239.9	86	62	.863		
	M3		4.99	91 696	-0.1	167 .360	239.9	86 9	62 0.	628		
	M3 M4		4.99 399.0 400.5	91 596 549	-0.1 -62	167 .360 .026	239.9 2.39 239.9	86 9 86	62 0. 62	.863 .628 .863		

Table 2: Mode-response in *a*-coefficients (nHz).

15.127

12.158 239.986 62.86

411.551 -50.349 2.399 0.628

412.405 -50.015 239.986 62.863

References

[1] J. Christensen-Dalsgaard, W. Dappen, S. V. Ajukov, E. R. Anderson, H. M. Antia, S. Basu, V. A. Baturin, G. Berthomieu, B. Chaboyer, S. M. Chitre, A. N. Cox, P. Demarque, J. Donatowicz, W. A. Dziembowski, M. Gabriel, D. O. Gough, D. B. Guenther, J. A. Guzik, J. W. Harvey, F. Hill, G. Houdek, C. A. Iglesias, A. G. Kosovichev, J. W. Leibacher, P. Morel, C. R. Proffitt, J. Provost, J. Reiter, E. J. Rhodes, Jr., F. J. Rogers, I. W. Roxburgh, M. J. Thompson, and R. K. Ulrich.

M6

M8

[2] J. Schou, H. M. Antia, S. Basu, R. S. Bogart, R. I. Bush, S. M. Chitre, J. Christensen-Dalsgaard, M. P. di Mauro, W. A. Dziembowski, A. Eff-Darwich, D. O. Gough, D. A. Haber, J. T. Hoeksema, R. Howe, S. G. Korzennik, A. G. Kosovichev, R. M. Larsen, F. P. Pijpers, P. H. Scherrer, T. Sekii, T. D. Tarbell, A. M. Title, M. J. Thompson, and J. Toomre. Helioseismic Studies of Differential Rotation in the Solar Envelope by the Solar Oscillations Investigation Using the Michelson Doppler Imager.