Methane Measurements Using Portable Fourier Transform Spectrometers in the Greater Toronto Area

Nasrin Mostafavi Pak ${ }^{1}$, Sebastien Ars ${ }^{1}$, Sajjan Heerah ${ }^{1}$, Tazeen Ajmari ${ }^{2}$, Banyan Lehman ${ }^{2}$, Dan Weaver ${ }^{3}$, Felix Vogel ${ }^{2}$, and Debra Wunch ${ }^{1}$
${ }^{1}$ University of Toronto
${ }^{2}$ Environment and Climate Change Canada
${ }^{3}$ University of Toronto Scarborough

November 24, 2022

Abstract

The Greater Toronto Area (GTA, pop. 6.4 million) is the populous city in Canada, thus accurately quantifying GHG emissions from the GTA is an important step towards meeting Canada's commitments to reduce its Greenhouse gas emissions. Mitigation of methane (CH 4) emissions is of particular importance when setting the country's policy measures to meet the GHG reduction goal since it can be economically advantageous. In this study, a methane emission inventory with a high spatial resolution was prepared using individual facility reports gathered for each municipality in the GTA. Measurements using portable Fourier Transform Spectrometers (FTS), are then used to monitor CH4 levels in the GTA continuously. Four FTS instruments were installed in different locations in the city in line with the most frequent wind directions based on historical observations. High peak events were investigated and with measurements of tracer concentrations and wind data, the emissions from the city were estimated. At the end, we investigated how the results could be used to improve the existing emission inventory.

Abstract

- A facility based emission inventory for the GTA is introduced
- Used mobile in-situ measurements to validate facility emissions
- Used stationary in-situ measurements to validate local emissior - Used total column measurements to validate city emissions

A Facility based methane emission inventory
Facility Level and Area Methane Emissions for the GTA (FLAMEGTA) lists all point sources and area sources of CH_{4} to construct an inventory with a high spatial resolution.

igure 2: Maximum surface CH_{4} concentrations measured by mobile concentrations measured (2017-2019)
instruments in the GTA

Spatial distribution of the emission inventories
In addition to the discrepancies in total emissions and category emissions, the spatial distribution of the emission inventories are also significantly different. FLAME inventory suggests more disperse emissions compared to the other two inventories. Average TROPOMI satellite measurements are included for qualitative comparison.

gure 3: (a)ECCC,(b)EDGAR and (c) FLAME emission distribution Figure 3: (a)ECCC,(b)EDGAR and (c) FLAME emission distribution
and (d) average Tropomi XCH_{4} measurements on the 0.1×0.1 degree grid.

Transport model analysis
Measured data at Downsview (DOW) for Jan-Mar 20152016 was used to compare against Flexpart generated concentrations from each inventory.

Figure 4: Left: FLEXPART predicted concentrations from the three inventories against the measured values. Right: Grid cells that

Total Column Measurements

Bruker EM27/SUN FTS instruments have been measuring $\mathrm{CO}_{2}, \mathrm{CH}_{4}$ and CO total column abundances in Toronto starting from 2017. The instruments were deployed at 4 different locations in summer 2019:

When the wind conditions were favorable, a XCH_{4} enhancement of upto 20 ppb were observed at the downwind site compared to the upwind site. Those enhancements were often coincident with XCO_{2} and/or XCO enhancements. Assuming the CO and CO_{2} inventories have better accuracies than the CH_{4} inventories, the ratio of the anomalies could be used to estimate CH_{4} emissions as described by Wunch et al. 2009.

Figure 5: Timeseries of XCH_{4} (top), XCO_{2} (middle) and XCO
(bottom) measured since July 2019 to present

Emission estimates using enhancement ratios
To obtain dXGas values ten minute average XGas mole fractions measured at each site are subtracted from the values measured at the reference site (UTSG).

 equre 6: Correlations between dXCH_{4} and dXCO_{2} (top) and etween dXCH_{4} and dXCO (bottom)
Toronto CH_{4} emissions are estimated based on EDGAR CO and CO_{2} emissions and the corresponding anomaly ratio.

XCH_{4} AvCO Average anomaly ratio CH_{4} emission estimate FLAME EDGAR ECCC | | 3.7 ± 0.6 | 19.9 ± 3.6 | 14.8 | 47.8 | 50.4 |
| :--- | :---: | :--- | :--- | :--- | :--- |
| $\mathrm{XCH}_{4} / \mathrm{dXCO}_{2}$ | 3.7 dXCO | 0.74 ± 0.22 | 40.4 ± 12 | 14.8 | 47.8 |
| XXCH | | | | | | Table 2: Average anomaly ratios and corresponding estimated CH_{4} emissions for the city of Toronto ($\mathrm{Gg} / \mathrm{yr}$)

Conlcusion

- Total column measurements are preferable to surface in-situ measurements to validate city scale emissions
- Significant discrepencies between CO and CO_{2} based emissions
- The enhancement ratios for Toronto are similar to Boston [7]
- Once more data is collected, seasonal trends could be
implemented in the emission inventory
References

