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Abstract

Sediment settling velocities are commonly estimated from process-based or parametric data-driven approaches. The process-

based approach has theoretical constraints due to the unclear settling physics; the parametric data-driven approach is limited by

its mathematical assumptions. To overcome these limitations, this study compiles an aggregated sediment settling experimental

database from literature and develops a non-parametric data-driven model to estimate the non-cohesive sediment settling velocity

in water. A cross-comparison against five process-based equations and a parametric data-driven equation demonstrates the

higher accuracy and better consistency of the new model in estimating sediment settling velocities under various physical regimes.

The data-driven model also shows an easy-implemented self-update capability by assimilating theoretical data generated from

the process-based equations. The updated model, leveraging experimental and theoretical data of sediment settling process,

further improves the accuracy and reduces the uncertainty in estimating sediment settling velocities. This approach illustrates

the value of integrating experimental and theoretical knowledge in estimating the complex process in sediment transport, and

provides an alternative framework for future sediment transport exploration.
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𝑊𝑒𝑖𝑔ℎ𝑡 = 𝐷𝑟𝑎𝑔 + 𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦

𝑤 = 𝑓(𝑆, 𝐶8, 𝜌:, 𝜌, 𝑔)

Previous Studies
§ Process-based approach

• 𝐶8 is a function of particle 
Reynolds number (𝑅𝑒).

• Laboratory experiments were 
conducted for 𝐶8 −𝑅𝑒 relation.

• Many models have been proposed.
• Comparisons of different models within integrated data are rare.
• Uncertainty remains in real applications. 

§ Parametric data-driven approach
Goldstein and Coco (2014):
• Compiled a multi-source database from literature
𝑤, 𝐷 𝑔𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒 , 𝜈 𝑤𝑎𝑡𝑒𝑟 𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑎𝑛𝑑 Δ

• Trained 𝑤 = 𝑓(𝐷, 𝜈, Δ) in a genetic programming software
• Picked the best fit from all candidate solutions
• Need pre-specify mathematical operators.

Sediment Settling Velocity Affects
§ sediment transport process
§ reservoir and harbor designs
§ wetland reclamation and restoration
§ waterways navigation
§ more …

Model Comparisons
§ Accuracy on test data

§ Sensitivity tests

Model Development
§ Parameter tuning and model selection
• test data size, number of trees, maximum depth
• grid search with 5-fold cross validation

Model Update
§ Theoretical data
• Select 1000 sediment particles with fixed density (2650 kg/m3) and varying 

grain sizes evenly distributed between [10-4 10-2] m.
• Estimate the particle settling velocities in water using the process-based 

equations (VR89, SB97, CH97, WW05 and SH09).
• Average the estimate values of each particle as theoretical data.

§ Integration of theoretical data
• Randomly pick 10% of the theoretical data to retrain RF and get RF_update
• Evaluate model performance on the rest theoretical data via an individual 

accuracy metric: 𝐼𝐴H,I = 1 −
|LMNOP QLR

P|
LMNOP , 

where 𝑤STLH is the theoretical value of the 𝑖th particle, 𝑤IH is the estimated   
value of the 𝑖th particle by the 𝑗th model.

Conclusions
§ Non-parametric data-driven approach reduces the uncertainty in 

estimating sediment settling velocities under various physical 
regimes.

§ The data-driven model has an easy-implemented update capability 
by integrating theoretical data.

§ Leveraging experimental and theoretical knowledge to enhance 
estimate performance provides an alternative framework for 
sediment transport study.

Model Name
sand gravel sand & gravel

!"#∗ %!&#∗ %2 !"#∗ %!&#∗ %2 !"#∗ %!&#∗ %2

Van Rijn 1989 (VR89) 1.18 1.62 0.92 7.65 10.60 0.78 3.44 6.39 0.93

Soulsby 1997 (SB97) 1.36 1.93 0.89 8.17 11.40 0.75 3.73 6.90 0.91

Cheng 1997 (CH97) 1.12 1.76 0.91 7.95 10.62 0.78 3.51 6.43 0.92

Wu and Wang 2005 (WW05) 0.96 1.35 0.94 10.34 13.34 0.65 4.23 7.96 0.88

Sadat-Helbar 2009 (SH09) 1.40 2.10 0.86 10.47 13.51 0.64 4.56 8.16 0.88

Goldstein and Coco 2014 (GC14) 1.56 2.23 0.85 6.67 8.60 0.86 3.34 5.39 0.95
This study (RF) 0.87 1.21 0.96 5.31 7.07 0.92 2.42 4.28 0.97

* 10-2 m
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This Study
§ Aggregated database
• 13 distinct experimental data sources
• 756 non-cohesive sediment settling data in water

§ Random forest regression model

Scenario Tuning parameters Training data Test data
!"#!_#%&" '!(""# )*+_,"-!ℎ /01∗3/41∗ 35 /01∗3/41∗ 35

1 0.1 100 8 1.57 2.67 0.99 2.54 4.81 0.97
2 0.2 150 9 1.37 2.35 0.99 2.42 4.28 0.97
3 0.3 100 9 1.35 2.30 0.99 2.44 4.38 0.97
4 0.4 350 11 1.17 2.13 0.99 2.60 4.64 0.96
5 0.5 400 13 1.16 2.15 0.99 2.55 4.65 0.96
6 0.6 400 5 2.05 3.31 0.98 3.06 5.55 0.95
7 0.7 150 6 1.62 2.34 0.99 3.30 6.14 0.93
8 0.8 100 5 1.66 2.50 0.99 3.68 6.66 0.92
9 0.9 150 9 1.31 2.29 0.99 3.77 6.78 0.92

* 10-2 m/s

vHigh accuracy
vNo overfitting
vSimple structure

• Scenario 2


