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Abstract

Importance sampling is modified via {\it homotopy continuation} to improve the efficiency and success of the sampler. The

homotopy will use a known distribution as a starting empirical importance sampling distribution and generate a continuous

schedule which culminates with the target distribution. The focus is the estimation of the normalization constant of the target

distribution. The homotopy method is extended to a Bayesian setting, for stationary and time dependent posterior distributions.

The numerical implementation uses a combination of sample averages, with sampling parameter N, and homotopy stages M,

where M is typically a small number. The algorithm replaces homotopy stages for sampling steps, potentially resulting in a

better or more efficient importance sampler. Numerical experiments suggest this is the case. The results also suggest that the

method may improve the efficiency of the sampler by concentrating the samples in regions of greater impact.
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Abstract

Importance sampling is modified via homotopy continuation to im-
prove the efficiency and success of the sampler. The homotopy
will use a known distribution as a starting empirical importance
sampling distribution and generate a continuous schedule which
culminates with the target distribution. The focus is the estimation
of the normalization constant of the target distribution. The homo-
topy method is extended to a Bayesian setting, for stationary and
time dependent posterior distributions.
The numerical implementation uses a combination of sample av-
erages, with sampling parameter N , and homotopy stages M ,
where M is typically a small number. The algorithm replaces ho-
motopy stages for sampling steps, potentially resulting in a bet-
ter or more efficient importance sampler. Numerical experiments
suggest this is the case. The results also suggest that the method
may improve the efficiency of the sampler by concentrating the
samples in regions of greater impact.

1. HOMOTOPY IMPORTANCE SAMPLING

Find Z1 =
∫
q(x) dx, where q(x), an improper probability den-

sity function (pdf) via a homotopy procedure, starting with a
known pdf p(x):
Let Zs, s ∈ [0, 1], a continuous function

Zs =

∫
qs(x)p(1−s)(x)dx,

and p(x)/Z0 is a known pdf. With

φs(x) =
qs(x)p(1−s)(x)

Zs
.

then, p = φ0 to q = φ1 and

ln
(
φs(x)

)
= s ln

(
q(x)

)
+ (1− s) ln

(
p(x)

)
− lnZs, 0 ≤ s ≤ 1,

Assuming continuity of Zs, we find that

dZs
ds

=

∫
log

(
q

p

)
qsp1−sdx :=

〈
log

(
q

p

)〉
s
Zs.

Hence
dZs
Zs

=

〈
log

(
q

p

)〉
s
ds.

We note that

Zs+ε
Zs

=
1

Zs

∫ (
q(x)

p(x)

)ε
p(1−s)(x)qs(x)dx :=

〈(
q(x)

p(x)

)ε〉
s
.

This expression is generally true, however, we will be assuming
the ε� 1 when used in the numerical homotopy procedure.

2. Numerical Approximation of the Continuous Dynamic

Let sm := mε, m = 1, ...,M , and ε = 1/M . We can write Z1/Z0 as
the expanded product of fractions:

Z1
Z0

=
Zε
Z0
· Z2ε
Zε
· · · Z1

Z(M−1)ε
=

M∏
m=1

Zmε
Z(m−1)ε

=

M∏
m=1

〈(
q(x)

p(x)

)ε〉
(m−1)ε

ln

(
Z1
Z0

)
≈

M∑
m=1

ln

(
1

N

N∑
n=1

(
q[X(n)(m−1)])

p([X(n)(m−1)]

)ε)
,

where the n samples

[X(n)(m−1)] ∼
1

Z(m−1)ε
q(m−1)ε(x)p1−(m−1)ε(x).

the (m− 1)th distribution (known).
Gaussian Example:
Find Z1 =

∫∞
−∞ q(x) dx, where q(x) = exp

[
−(x−µ1)2

2σ2q

]
, via homo-

topy. Starting pdf: p(x) = 1√
4πσ2q

exp[−(x−µq)2
2σ2q

],

Zs =
2sπs/2σs−1p σqσp

w(s)
exp

(
− 1

4

(µq − µp)2(s− 1)s

w(s)

)
.

where w = tσ2p + (s − 1)σ2q, and 0 ≤ s ≤ 1. Analytically,
Z1 = 1√

4πσ2q
. For the case µq = µp = 0, the Figure shows Z(s):

Plot of Z(s), with µq = µp = 0 and σq = 0.1 and σp = 0.2. Compar-
ison of analytical and numerical approximation to Z(s).

Bimodal Example:
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(a) Evolution of the pdf during the homotopy, from p(x) =
exp[−(x − 3)2/100]/

√
200π), to target q(x) = (exp[0.1(x − 3)2] +

exp[−(x+2)2])/Z1; (b) Exact and estimated Z(s). N = 100, M = 10.

Finding Z1 for a Bivariate Gaussian: Target q(x) is bivari-
ate distribution with maximas at (−2, 2) and (3, 0), and widths
0.5 and 1, respectively. p(x) is bivariate standard normal.
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(a) p(x) and q(x); (b) plot of Z(s), as a function of the number of
homotopy steps M . N = 30.

3. BAYESIAN HOMOTOPY: Find Z1 =
∫
p(x|y) dx

Homotopy without Updates Choose p(x) either π(x) prior or
π(y|x). Choice is dictated by requiring support of p(x) greater
than q(x) and knowledge of Z0.

Zs =

∫
[q(x)]sp(x)dx.

If q(x) = π(y|x) then .p(x) = π(x)/Z0. If q(x) = π(x) then
p(x) = π(y|x)/Z0.

Homotopy with Updates If neither the prior or likelihood are
known, use an importance distribution p = I(x), for which Z0 =∫
I(x) dx is known. The

Zs =

∫ [
π(x)π(y|x)

I(x)

]s
I(x)dx.

The samples are now drawn from I(x).

Bayesian Examples Find Z1 =
∫
π(x)π(y|x) dx, where

π(x) exp[(x− y)2/2Q2] and π(x) = x
R2 exp[−x2/2R2], a Rayleigh dis-

tribution. For this case

Zs =
π

2

QRys

(Q2 +R2s)3/2
exp

[
sy2

2(Q2 +R2s)

](
2− P

[
−1
2
,
(R2s2Y 2)

2W

])
,

W = (Q4 +Q2R2s), where P is the regularized Gamma function.
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Analytical and numerical comparisons: (a) Z(s) corresponding to
to a Rayleigh distribution; (b) Z(s) for case with π(x) Gaussian
and π(y|x) a χ2 distribution.

4. Markovian Homotopy Data Assimilation

Find Z1(k = 0 : T ), of time-discrete posterior distribution

π(x0:T |y1:T ) ∝ π(y1:T |x1:T )π(x0:T ).

Assuming Z1(k − 1) is known, to find Z1(k), let Z0(k) = Z1(k − 1),
known. In this case, for s ∈ [0, 1],

Zs(k) =

∫ [
π(xk|xk−1)π(y1:T |xk))

I(x)

]s
I(x)dx.

where I(x) = π(xk−1|y1:k−1)/Z1(k − 1)

5. Computational Complexity

Homotopy Sampling Replaces reduces the number of N
samples required for the sample averages for M the number
of homotopy steps.

ln[|Z(M,N)−Z1|], Z(M,N) is estimate of Z1, homotopy steps: M
and sampliues used: N .

Typically M = O(10), whereas N is large.

6. APPLICATIONS OF THE METHOD

Sampling
Canonical Partition Ensemble Calculations
Data-informed Sample Generation
Model-informed Sample Generation
Stochastic and Statistical Emulators

7. SUMMARY

We develop a computational method to estimate Z1 =
∫
q(x) dx,

via homotopy continuation, generating Zs, s ∈ [0, 1], starting
with Z0 =

∫
p(x) dx, known.

When implemented numerically the method estimates Z1 us-
ing M steps of homotopy and N sample averages. The total
computational complexity is O(MN) and requires no additional
storage.
The discretized version delivers Z1 with a cost comparable to
MC, however, it is more efficient when the sample distribution
can take advantage of importance sampling.
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