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Abstract

The quantification and monitoring of photosynthesis are essential to understand the global carbon cycle and vegetation’s

responses to climate. Among the different remotely-sensed photosynthesis-related variables, Sun-Induced chlorophyll a Flu-

orescence (SIF) is especially promising since it results directly from photochemical energy conversion but uncertainties still

complicate its interpretation. Recent studies have pointed to the influences of vegetation biochemistry and structure on ra-

diative transfer as the main confounding factors for the use of SIF as a photosynthesis proxy. Leaf-level fluorescence research

has shown that such influences may be removed by adjusting the raw fluorescence signal to the emitting leaf’s spectra and

we suggest that this can be upscaled to the landscape level. In this study we present and test new Spectrally-Adjusted SIF

formulations (SASIFs), along with previously proposed SIF modifications and other acknowledged photosynthesis productivity

proxies, against carbon-flux data from vegetation of diverse structure. Accordingly, we used Gross Primary Productivity (GPP)

data spanning periods from two to seven years, from 27 FLUXNET sites classified into different Land Cover Classes (LCCs)

as defined by the International Geosphere-Biosphere Programme (IGBP). The data tested against GPP was calculated with

GOME-2 SIF data, MODIS reflectance and spectral vegetation indices, and it included: NIRV, SIF from the red and the far-red

frequency peaks, SIF normalized by the cosine of the Sun’s zenith angle, SIF-yield, new SASIFs and FLUXCOM GPP. The

relationships between all variables and FLUXNET GPP were tested using time-series decomposition, site- and LCC-specific

Kendall’s rank correlation tests and linear mixed model analysis. Results show that one of our new SASIFs has the best overall

correlation to FLUXNET GPP among all tested data. Our LCC-specific analysis demonstrates the influences of biochemistry,

phenology, temporal resolution and vegetation structure on the relationships between the tested variables. Results support

the idea that chlorophyll fluorescence can be complemented with reflectance data improving our ability to monitor vegetation

productivity and predict climate-driven changes to standing biomass in spite of their particular limitations.
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Figure 1: Locations, codes and vegetation types of the FLUXNET 2015 sites used in this 
study. Land Cover Classes are: ENF - evergreen needleleaf Forest; EBF - evergreen 
broadleaf forest; DBF - deciduous broadleaf forest; MF - mixed forest; SAV - savannah; 
CSH - closed shrubland; OSH - open shrubland; GRA - grassland;

Figure 3: Linear Mixed Model (LMM) metrics. Models are 
variable specific, with LCC, Site, Month and Year as random 
variables. R2 is the coefficient of determination; Marginal and 
Conditional refer to only fixed effects and fixed plus random 
effects, respectively. RMSE is the root mean squared error of 
each LMM. N = 384.

Figure 5: Linear Model (LM) metrics. Models are LCC-specific.  
Model N = 48 per LCC.

Figure 4: LCC-specific Kendall Rank Correlation Test scores per 

sample group.  Full set N = 1636, Equal N per LCC N = 48, 

Growing Season N = 28, Peak Season N = 12.

Figure 2: Variable-specific Kendall Rank Correlation Test scores 
per sample group.  Full set N = 1636, Equal N per LCC N = 384, 
Growing Season N = 224, Peak Season N = 96.

• Chlorophyll a fluorescence or Sun-Induced Fluorescence (SIF, when measured under natural illumination) is emitted by plants at 
the moment of energy conversion and it relates to the instantaneous level of photosynthesis [1].
 
• Spectral Vegetation Indices (SVIs), calculated from reflectance at various wavelengths, carry information related to another aspect 
of plant life: the biomass and its structuration [2, 3, 4, 5, 6].
 
• SVIs relate to longer term processes than SIF [1,7] and represent longer-term biomass investment into plant survival and growth 
while SIF represents the current productive status of that biomass.
 
• Accordingly, reflectance has already been used more than 20 years ago to successfully correct chlorophyll fluorescence output at 
the leaf level [8].
 
• Gross Primary Productivity (GPP) can be expressed, according to Monteith [9, 10], as follows: 

                                   GPP = fAPAR * LUE

• Both SIF and SVIs have been successfully used to estimate GPP [11,12].

• These are complementary information sources and, together, present a better picture of reality than in separate.
 
• Here propose simple combinations of SIF and reflectance based on:

           - Monteith’s GPP framework [9,10].

           - Sellers’ two-stream approximation model [3].

           - Gitelson’s real fluorescence (analogous to SIFYield) [8]. 

           - and Knyazikhin’s Directional Area Scatering Factor (DASF) [6, 13]. 

• These Spectrally Adjusted SIFs (SASIFs) were tested, along with standard GOME-2 SIF and NIRV [14], against GPP data from 27 
FLUXNET sites of varied Land Cover Classes (LCC) to investigate their relationship to GPP data.

Materials and Methods

Variable label Description Data sources Quality Flag

SIFFR  Sun-Induced Chlorophyll a fluorescence at the far-red wavelenght peak. GOME-2 B

SIFFR  : SZA  The quotient of far-red SIF by the cosine of the Sun's zenith angle.           GOME-2 B

dSIFFR  A proxy of daily average of SIFFR  (daily SIF). GOME-2 B

SIFR  Sun-Induced Chlorophyll a fluorescence at the red wavelenght peak. GOME-2 B

NIRV  (NDVI - 0.07) * NIR reflectance. MODIS A
 A pseudo-control variable, it is the mean of all three estimates of GPP 
generated from the same FLUXNET dataset as was used in this work.

dSIFFR  * f APAR The product of daily SIF by  f APAR.       fAPAR = (1.25 * (EVI - 0.1)) GOME-2 and MODIS B

dSIFFR  * NDVI The product of daily SIF by NDVI GOME-2 and MODIS B

dSIFFR  * NDVIG The product of daily SIF by NDVI (from GOME-2) GOME-2 C

dSIFFR  * NIRV The product of daily SIF by NIRV GOME-2 and MODIS B

dSIFFR  * NIR The product of daily SIF by NIR GOME-2 and MODIS B

dSIFFR  : NDVI The quotient of daily SIF by NDVI - SIF Yield GOME-2 and MODIS B

dSIFFR  : NDVIG The quotient of daily SIF by NDVI (from GOME-2) - SIF Yield GOME-2 C

dSIFFR  : NDVI * NIR The quotient of daily SIF by NDVI multiplied by NIR. GOME-2 and MODIS B

FLUXCOM RS + Meteo AFLUXCOM 

The comparison between the two GOME-2 pixel-sized 
sampling modes showed that GOME-2 data was better 
correlated to FLUXNET GPP when sampled from 4 pixels 
instead of from only 1 (results not shown). NIRV and 
FLUXCOM were better correlated to FLUXNET GPP when 
sampled at 1 pixel unit and thus they were employed in 
further tests. 

SASIFs showed improvement in their correlation to GPP 
when compared to the standard GOME-2 SIF used in their 
calculation (Fig. 1). SIFYield -like formulations performed 
worst in correlations but similarly in Linear-Mixed Models 
(LMMs). LMM formulation were straightforward but 
FLUXNET Site, Land Cover Class and Year were included 
as random factors to constrain models.

Kendall rank correlation tests (Fig. 1), LMM coefficients 
and RMSE (Fig.2) show that the product of daily SIFFR and 
fAPAR had the strongest relationship to FLUXNET GPP, 
except for our control variable.  

     All data was tested against the average between daytime and night time partitionings of reference GPP from FLUXNET 2015 
dataset sites. All RS data was resampled to a similar grid matching resolution to MODIS MOD13C2. Tested variables are explained in 
Table 1 below and data used for their calculation was extracted in two samples equivalent to one and four GOME-2 pixels at each 
FLUXNET site, to account for any effects of GOME-2 SIF's signal to noise ratio.

     We calculated discrepancies between data sampled from 1 and from 4 pixels to subset the data into four groups:
                                     - Full set of 27 sites with unbalanced N (number of samples) from each Land Cover Class (LCC).
                                     - Equal N per LCC, maximum balanced sample.
                                     - Equal N per LCC, only growing season (winter months removed).
                                     - Equal N per LCC, only peak season (3 months per year).     

Table 1: Variables tested against FLUXNET GPP. Quality flags refer to: A, relatively high spatial resolution and reliable data (i.e., BRDF 

corrected, validated); B, lower spatial resolution, noisy, biased by sensor degradation, and/or radiometrically incompatible; C, not 

recommended for research by authors (no BRDF correction, not validated and subject to sensor degradation bias).  

Results from Evergreen Needleleaf Forest (ENF) sites 
show small improvement in SASIF formulations in relation 
to raw SIF (Figs. 4a and 5a). fAPAR, NIR, NDVI and NIRV 
formulations seem comparable on all sampling groups and, 
all outperform NIRV.

Samples from Evergreen Broadleaf Forest (EBF) had the 
weakest relationships with GPP observed in this study (Figs. 
4b and 5b). Interestingly, in this LCC, SIFYield -like SASIFs 
performed considerably better than even FLUXCOM data. 
Most of the data was not significantly correlated to
FLUXNET reference GPP (results not shown).

Most variables performed well in Deciduous Broadleaf 
Forest samples (DBF) and SASIFs were similar to raw SIF 
(Figs. 4c and 5c).

Mixed Forest (MF) samples and those of open 
physiognomies Savannah (SAV), Closed Shrublands (CSH) 
and Open Shrublands (OSH) presented a decreasing pattern 
of correlation (Figs. 4 and 5, d, e, f and g). While NIRV 
showed best results in OSH, SASIFs were equal or superior 
in MF, SAV and CSH.

Grassland (GRA) results were comparable, if lower, than 
what was observed in ENF (Figs. 4h and 5h). SIFR was 
consistently the least correlated to FLUXNET GPP among 
all tested variables (with the exception of SAV and CSH 
sites), and a particularly large difference in performance in 
GRA data. 

In spite of differences in tested data and methods, Kendall 
τ (tau) scores mostly agreed with LM and LMM metrics 
(coefficient of determination and RMSE) except in 
shrubland LCCs (Figs. 4f, 4g, 5f and 5g).

     Results from LCC-specif tests show that tested variables performance against FLUXNET GPP depends mostly on LCC type and 
therefore, suggest that they are being largely driven by vegetation structure and its effects on radiative transfer.

     SIFYield -like SASIFs (e.g., dSIFFR : NDVI and dSIFFR : NDVI * NIR), which were assumed to moderate the influences of structure 
and biochemistry on sampled fluorescence [8], have resulted in a deterioration of the SIF x GPP relationship. This is not surprising if 
we consider Monteith's original equation [9,10] and the supposed proportionality between SIF and Light Use Efficiency [15, 16, 17].

     SIFR was not well correlated to FLUXNET GPP in most LCC types (Figs 2, 3, 4 and 5) even if adjusted with reflectance data 
(results not shown). The observed differences between SIF at red and far-red wavelenght peaks in this study are supported by the 
known difference in the radiative transfer of fluorescent photons from these regions of the spectra [18] and are expected if one 
considers the effects of phenological processes as leaf-shedding and chlorophyll degradation on the seasonality of SIFR reabsorption 
within the emitting vegetation's canopy.
     
    While NIR was shown in previous studies to be almost completely correlated to DASF in an evergreen broadleaved forest [13], it 
is interesting to see that by itself, it was not as effective to improve the relationship between SIF and GPP as the proxies of 
chlorophyll content and fAPAR employed here (dSIFFR * fAPAR, dSIFFR * NDVI and dSIFFR * NIRV), except on Evergreen 
Broadleaved Forests (EBF) (Figs 4 b and 5 b).  
     
     Furthermore, the lack of pronounced seasonality might be one of the strongest influences on the observed relationship between 
SIF and GPP at tropical evergreen broadleaved forests. It is perhaps unreasonable to expect that a weak signal such as SIF would be 
closely related to tower-measured GPP from vegetation with such complex and stratified structure. We suggest that observations in 
higher spatial resolution, using drone-mounted or tower-mounted sensors for example, should be used to further study SIF x GPP 
relationship in tropical forests.

     The apparent effect of the radiometric incompatibility between the data used here to calculate SASIFs (GOME-2 and MODIS 
data) is apparently not so great if we consider the differences between SASIFs using NDVI from MODIS and from GOME-2 
(NDVIG). Nevertheless, we admit that these tests and their results are inherently imperfect as they are biased by the differences 
between the sensor from which we got our data.
 
     Despite of the known problems with GOME-2 SIF data (noisy, low resolution, mixed pixel and sensor-degradation bias) [19, 20], 
we believe that our results support the idea that SIF is an excellent proxy into GPP and that reflectance proxies to plant biochemistry 
and structure should be used to support the interpretation of chlorophyll fluorescence data. 

     We suggest that further study is needed and that variables such as the Photochemical Reflectance Index (PRI) [21], already shown 
to be useful for the investigation of the SIF x GPP relationship [22], should be included. Also better proxies for fAPAR and 
chlorophyll content like the recently suggested light absorption coefficient of vegetation [23] can replace some of the terms used here 
and should also be tested. 


