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Abstract

The development of semi-distributed hydrological models that reflect the dominant processes controlling streamflow spatial
variability is a challenging task. In small, well-instrumented headwater catchments the model can be built taking advantage of
knowledge derived from extensive fieldwork activities; that is, however, not possible in much larger catchments where, usually,
these models are actually needed. To address this problem, we propose a new methodology where we analyze the correlations
between hydrological signatures, catchments characteristics, and climatic indices to get insights about the hydrological func-
tioning of the catchment and to guide the decisions involved in the development of a semi-distributed model. The methodology
is tested in the Thur catchment (Switzerland, 1702 km2); in a first stage we show how to identify catchment characteristics
and climatic indices that control streamflow variability; in a second stage, we use these findings to develop a set of model
experiments aimed at determining an appropriate model representation for the catchment. Results show that only models that
account for the influencing factors indicated by the correlation analysis are able to represent correctly the observed streamflow

signatures, confirming our understanding of the processes happening in the catchment.
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Conclusions

We have presented a methodology for the construction of a
semi-distributed hydrological model where model hypotheses
are informed by preliminary analysis on determining the domi-
nant controls on streamflow spatial variability.

Results show that:

e there is large variability between the subcatchments of the
Thur in terms of streamflow signatures, climatic indices, and
catchment characteristics;

main controls of streamflow spatial variability can be identi-
fied using expert judgement aided by correlation analysis;

signatures analysis can be used to formulate hypotheses
about the functioning of the catchment;

model experiments can be constructed to conjrm the
hypotheses formulated; in particular:

- MO shows that distributing the precipitation among the
subcatchments is sufficient to represent the mean
streamflow variability;

M1 shows that the difference in seasonality among the
subcatchments is mainly due to snow dynamics: just
adding a snow component in the model is enough to
achieve great performance regarding this signature.
M2 shows that only a model that incorporates the geol-
ogy is able to represent the variability of the baseflow
iIndex, as suggested by the correlation analysis.

M3, while being more complex than M1, does not have
better results since its increased complexity is not mo-
tivated by processes representation.

SuperflexPy

SuperflexPy is a new open source framework for building
lumped and semi-distributed conceptual hydrological models.
Based on our previous experience with Superflex, the new
SuperflexPy improves it in several aspects:

® it is easier to use and to extend:

e it enables to construct spatially distributed models;

e |t is written in pure Python but it maintains great perfor-
mances

it Is completely open for post-run inspection

https://superflexpy.readthedocs.io
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