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Abstract

Deep learning techniques are used for capturing intricate structures of large-scale data by employing computational models

of multiple processing layers that can learn and represent data with multiple levels of abstraction [1]. Such methods can

include Convolutional Neural Networks, stacked auto-encoders and Long-Short Term Memory (LSTM) architectures. LSTM

networks are suitable for dealing with time-dependent data through mapping input sequences to output sequences as it is

done, for instance, in language modeling and speech recognition. One application that has recently attracted considerable

attention within the geodetic community is the possibility of applying these techniques to account for the adverse effects of the

ionospheric delays on the GNSS satellite signals. LSTM architectures model long-range dependencies in time series, making them

appropriate for ionospheric modeling in GNSS positioning. This paper deals with a modeling approach suitable for predicting

the ionospheric delay at different locations of the IGS network stations using the LSTM networks. We also incorporate a

Bayesian optimization method for selecting the best configuration parameters of the LSTM network, thus improving network’s

performance.
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Introduction

Deep learning techniques are used for capturing intricate structures of large-scale data by em-
ploying computational models of multiple processing layers that can learn and represent data
with multiple levels of abstraction [1]. Such methods can include Convolutional Neural Net-
works, stacked auto-encoders and Long-Short Term Memory (LSTM) architectures. LSTM
networks are suitable for dealing with time-dependent data through mapping input sequences
to output sequences as it is done, for instance, in language modeling and speech recognition.
One application that has recently attracted considerable attention within the geodetic com-
munity is the possibility of applying these techniques to account for the adverse effects of
the ionospheric delays on the GNSS satellite signals. LSTM architectures model long-range
dependencies in time series, making them appropriate for ionospheric modeling in GNSS po-
sitioning. This paper deals with a modeling approach suitable for predicting the ionospheric
delay at different locations of the IGS network stations using the LSTM networks. We also
incorporate a Bayesian optimization method for selecting the best configuration parameters
of the LSTM network, thus improving network’s performance.

Preliminaries

The high accuracy in position estimation is of great importance for a variety of satellite navigation
applications. The evaluation of Total Electron Content (TEC) and the corresponding correction of
the ionospheric delay play a key role in improving GNSS performance. The combination of multi-
frequency GNSS measurements allows us to remove most of the ionospheric effects. However,
when using single frequency receivers this cannot be directly achieved. Augmentation systems
that are used in such cases in order to improve accuracy, use grid-based models, so interpolation
to a specific point is necessary, leading to a reduction of the accuracy that can be achieved [2].
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Fig.1 The memory cell of an LSTM network.

Ionospheric delay depends on three main factors: (i) the total electron content (TEC), (ii) the
frequency of the GNSS signals, and (iii) the angle at which the signal enters the ionospheric layer.
For this study, slant TEC data (STEC) were obtained using available GNSS measurements after
processing with various techniques, such as Precise Point Positioning (PPP). STEC is mapped to
its vertical counterpart VTEC at the points where the satellite-to-receiver signal paths intersect
the ionospheric shell, the so-called ionospheric pierce points (IPPs) using the following mapping
function [3]:

VTEC =

(
1−

(
Re

Re + hs
cos θ

)2
)1/2

STEC

where Re is the mean radius of the Earth ; θ is the elevation angle of the satellite ; h is the height
of the ionospheric layer (typically taken at 350 km).

Introducing Deep Learning for TEC prediction: DLTEC Model

It is intuitively clear that ionospheric delay forecasting is a complicated problem and as such, a
complex model is required if one is to attempt to represent effectively the spatial and temporal
variability of VTEC data. The objective is to predict the ionospheric delay between a station
and an observed satellite at a specific time. Gaining knowledge from previous states through a
training process, a large part of future ionospheric activity could be inferred. Supervised deep
learning methods are necessary in order to create a model equipped with prior knowledge, able to
predict ionospheric delay in future time intervals.
The challenge of this study to design an LSTM network able to handle a specific sequence of
steps in the prediction problem whereby both the inputs and the target prediction estimates are
sequences of data (i.e. timeseries). An input sequence is a quadruplet containing longitude (λIPP)
and latitude (φIPP) for each IPP point between the station and a specific satellite and approximate
values of longitude (λ0

r ) and latitude (φ0
r ) for the station in the ground. Consequently, a target

sequence is a timeseries of the ionospheric delay with 1 min time step and varying time duration
depending on the satellite’s previous visibility from the station.
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Fig.2 DLTEC model used for ionospheric delay prediction. The inputs are sequences of longitude and latitude for
each IPP point between the station and a specific satellite and approximate values of longitude and latitude for the
station in the ground. Outputs are timeseries data of the predicted ionospheric delay.

Short-range dependencies are not adequate for ionospheric delay estimation. For this reason,
a bidirectional LSTM network is adopted in this paper, as an alternative regression model for
ionospheric delay estimation, called DLTEC. LSTMs are of similar structure to the bidirectional
recurrent regression model but each node in the hidden layer is replaced by a memory cell, instead
of a single neuron [4]. The structure of a single memory cell is depicted in Fig. 1, while Fig. 2
indicates an unfolded LSTM network over time.
The memory cell contains three different components (see Fig. 1); (i) the forget gate, (ii) the
input node and the input gate, and (iii) the output gate. Each component applies a non-linear
relation on the inner product between the input vectors and respective weights (estimated through
a training process). Some of the components have the sigmoid function, expressed as σ (·) in
Fig. 1, while others use the hyperbolic tangent function, tanh (·).
The forget gate F (n) separates the worth-remembering information from the unnecessary infor-
mation, by keeping the latter out of the memory cell. The input node H (n) activates appropriately
the respective state (true or false output from the tanh (·) function activation). The input gate
I (n) regulates whether the respective hidden state is significant enough for the accurate esti-
mation of the ionospheric delay. The output gate O (n) regulates whether the response of the
current memory cell is significant enough to contribute to the next cell.

Experimental Setup

The evaluation of the proposed model for forecasting ionospheric delay values was carried out using
GNSS measurements for various stations of MGEX campaign [5], analyzing different ionospheric
activity situations with varying spatio-temporal features. Fig. 3 illustrates the spatial distribution
of various stations used in the present study, which were suitably selected with the following
scenaria in mind:

• Scenario A: 4 adjacent stations within the greater area of Central Europe. These
stations are: WTZZ (Germany), GRAZ (Austria), GOPE (Czech Republic) and PEN2 (Hun-
gary).

• Scenario B: 3 stations situated on the same meridian. These stations are: SOD3
(Finland), ISTA (Turkey), MBAR (Uganda). SOD3 station is further north (with φ > 600),
MBAR is near the equator and ISTA is situated in mid-latitude between these two stations.
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Fig.3 Geographic locations of the MGEX stations used in the study.

Fig. 4 Scenario A: Probability distribution of the differences between predicted and observed TEC value (in m) for
4 MGEX stations.

In order to evaluate the validity of the ionospheric delay predictions resulting from the DLTEC
model, we have computed the Bias sr (t) of the predicted values per station as follows:

Bias sr (t) = VTEC s
r ,DLTEC(t)− VTEC s

r ,RTKLIB(t)

where VTEC s
r ,DLTEC(t) is the predicted value provided as the outcome of the DLTEC model;

VTEC s
r ,RTKLIB(t) is the corresponding estimated value that is independently computed using the

RTKLIB PPP processing results. The proposed method is implemented using MATLAB software.
The LSTM network is fine-tuned using the Bayesian optimization [6].

Performance

Fig. 5 Scenario B: Probability distribution of the differences between observed and predicted TEC values, i.e. of
the Bias (·) values previously described, given in meters for the 3 north-south situated MGEX stations.

The models are trained using varying time periods of prior GNSS measurements. Specifically, the
training period for the Scenario A is selected as the window of observations between 10/12/2018
to 12/12/2018, while for Scenario B the observational window was between 4/09/2017 to
6/09/2017. The time interval for Scenario B was purposely selected since at that time period
high ionospheric activity had been observed. Thus, we have the opportunity to examine our
models’ response under both ’normal’ as well as ’special’ ionospheric conditions. Fig. 4 and 5
show that the Bias sr (t) values follow normal distribution with a mean value and standard deviation
N (µ, σ2). For instance, for the GRAZ station (Fig. 4), the probability of predicting ionospheric
delay with a bias approximately to 0.13m, from the estimated value, is equal to 36%. Similarly,
adjacent stations showed comparable estimation errors, which can be explained due to largely
similar atmospheric conditions. Fig. 5 shows that the BIAS of the ionospheric delay predictions
at stations in high-latitude areas (e.g. SOD3) or close to the equator (e.g. MBAR) exhibit higher
variance as compared to the predictions for mid-latitude stations like ISTA.

Conclusions

First results, using two different scenarios for various MGEX stations, indicate that the pro-
posed DLTEC model is able to yield predictions of TEC values on a daily basis and with
high accuracy suitable for many geodetic GNSS applications. Further research is required to
examine the possibility to create an integrated LSTM network architecture that will contain
various stations simultaneously, as well as including in the process additional parameters (e.g.
inputs of geomagnetic indices) in order to allow better training of the DLTEC models under
high ionospheric conditions.
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